Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Hydrogel Breakthroughs in Biomedicine: Recent Advances and Implications

Author(s): Ravi K Mittal*, Raghav Mishra, Rehan Uddin and Vikram Sharma

Volume 25, Issue 11, 2024

Published on: 26 January, 2024

Page: [1436 - 1451] Pages: 16

DOI: 10.2174/0113892010281021231229100228

Price: $65

Abstract

Objective: The objective of this review is to present a succinct summary of the latest advancements in the utilization of hydrogels for diverse biomedical applications, with a particular focus on their revolutionary impact in augmenting the delivery of drugs, tissue engineering, along with diagnostic methodologies.

Methods: Using a meticulous examination of current literary works, this review systematically scrutinizes the nascent patterns in applying hydrogels for biomedical progress, condensing crucial discoveries to offer a comprehensive outlook on their ever-changing importance.

Results: The analysis presents compelling evidence regarding the growing importance of hydrogels in biomedicine. It highlights their potential to significantly enhance drug delivery accuracy, redefine tissue engineering strategies, and advance diagnostic techniques. This substantiates their position as a fundamental element in the progress of modern medicine.

Conclusion: In summary, the constantly evolving advancement of hydrogel applications in biomedicine calls for ongoing investigation and resources, given their diverse contributions that can revolutionize therapeutic approaches and diagnostic methods, thereby paving the way for improved patient well-being.

Graphical Abstract

[1]
Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature, 1960, 185(4706), 117-118.
[http://dx.doi.org/10.1038/185117a0]
[2]
Zhang, W.; Du, A.; Liu, S.; Lv, M.; Chen, S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen. Ther., 2021, 18, 88-96.
[http://dx.doi.org/10.1016/j.reth.2021.04.002] [PMID: 34095366]
[3]
Jiang, Y.; Wang, Y.; Li, Q.; Yu, C.; Chu, W. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem., 2020, 27(16), 2631-2657.
[http://dx.doi.org/10.2174/0929867326666191122144916] [PMID: 31755377]
[4]
Ganji, F.; Vasheghani, F.S.; Vasheghani, F.E. Theoretical description of hydrogel swelling: A review. Iran. Polym. J., 2010, 19(5), 375-398.
[5]
Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. Mussel-inspired hydrogels: From design principles to promising applications. Chem. Soc. Rev., 2020, 49(11), 3605-3637.
[http://dx.doi.org/10.1039/C9CS00849G] [PMID: 32393930]
[6]
Hossen Md, J.; Sarkar, S.D. Mussel‐inspired adhesive nano‐filler for strengthening polyacrylamide hydrogel. ChemistrySelect, 2020, 5, 8906-8914.
[http://dx.doi.org/10.1002/slct.202001632]
[7]
Sarkar, S.D.; Uddin, M.M.; Roy, C.K.; Hossen, M.J.; Sujan, M.I.; Azam, M.S. Mechanically tough and highly stretchable poly(acrylic acid) hydrogel cross-linked by 2D graphene oxide. RSC Advances, 2020, 10(18), 10949-10958.
[http://dx.doi.org/10.1039/D0RA00678E] [PMID: 35492941]
[8]
Andrade, F.; Roca-Melendres, M.M.; Durán-Lara, E.F.; Rafael, D.; Schwartz, S., Jr Stimuli-responsive hydrogels for cancer treatment: The role of pH, light, ionic strength and magnetic field. Cancers, 2021, 13(5), 1164.
[http://dx.doi.org/10.3390/cancers13051164] [PMID: 33803133]
[9]
Hong, Y.; Lin, Z.; Yang, Y.; Jiang, T.; Shang, J.; Luo, Z. Biocompatible conductive hydrogels: Applications in the field of biomedicine. Int. J. Mol. Sci., 2022, 23(9), 4578.
[http://dx.doi.org/10.3390/ijms23094578] [PMID: 35562969]
[10]
Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater. Sci. Eng. C, 2017, 79, 958-971.
[http://dx.doi.org/10.1016/j.msec.2017.05.096] [PMID: 28629101]
[11]
Xue, X.; Hu, Y.; Deng, Y.; Su, J. Recent advances in design of functional biocompatible hydrogels for bone tissue engineering. Adv. Funct. Mater., 2021, 31(19), 2009432.
[http://dx.doi.org/10.1002/adfm.202009432]
[12]
Zhang, H.; Wu, S.; Chen, W.; Hu, Y.; Geng, Z.; Su, J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact. Mater., 2023, 23, 156-169.
[http://dx.doi.org/10.1016/j.bioactmat.2022.10.028] [PMID: 36406248]
[13]
Xue, X.; Zhang, H.; Liu, H.; Wang, S.; Li, J.; Zhou, Q.; Chen, X.; Ren, X.; Jing, Y.; Deng, Y.; Geng, Z.; Wang, X.; Su, J. Rational design of multifunctional CuS nanoparticle‐PEG composite soft hydrogel‐coated 3D hard polycaprolactone scaffolds for efficient bone regeneration. Adv. Funct. Mater., 2022, 32(33), 2202470.
[http://dx.doi.org/10.1002/adfm.202202470]
[14]
Zhou, Z.; Cui, J.; Wu, S.; Geng, Z.; Su, J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics, 2022, 12(11), 5103-5124.
[http://dx.doi.org/10.7150/thno.74548] [PMID: 35836802]
[15]
Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels, 2017, 3(1), 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[16]
Mehrotra, D.; Dwivedi, R.; Nandana, D.; Singh, R.K. From injectable to 3D printed hydrogels in maxillofacial tissue engineering: A review. J. Oral Biol. Craniofac. Res., 2020, 10(4), 680-689.
[http://dx.doi.org/10.1016/j.jobcr.2020.09.006] [PMID: 33072505]
[17]
Yang, Y.; Xu, L.; Wang, J.; Meng, Q.; Zhong, S.; Gao, Y.; Cui, X. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr. Polym., 2022, 283, 119161.
[http://dx.doi.org/10.1016/j.carbpol.2022.119161] [PMID: 35153030]
[18]
Huang, B.; Li, P.; Chen, M.; Peng, L.; Luo, X.; Tian, G.; Wang, H.; Wu, L.; Tian, Q.; Li, H.; Yang, Y.; Jiang, S.; Yang, Z.; Zha, K.; Sui, X.; Liu, S.; Guo, Q. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J. Nanobiotechnology, 2022, 20(1), 25.
[http://dx.doi.org/10.1186/s12951-021-01230-7] [PMID: 34991615]
[19]
Seo, H.S.; Wang, C.P.J.; Park, W.; Park, C.G. Short review on advances in hydrogel-based drug delivery strategies for cancer immunotherapy. Tissue Eng. Regen. Med., 2022, 19(2), 263-280.
[http://dx.doi.org/10.1007/s13770-021-00369-6] [PMID: 34596839]
[20]
Sánchez-Cid, P.; Jiménez-Rosado, M.; Romero, A.; Pérez-Puyana, V. Novel trends in hydrogel development for biomedical applications: A review. Polymers, 2022, 14(15), 3023.
[http://dx.doi.org/10.3390/polym14153023] [PMID: 35893984]
[21]
Nair, A.B.; Al-Dhubiab, B.E.; Shah, J.; Jacob, S.; Saraiya, V.; Attimarad, M. SreeHarsha, N.; Akrawi, S.H.; Shehata, T.M. Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi Pharm. J., 2020, 28(2), 201-209.
[http://dx.doi.org/10.1016/j.jsps.2019.11.022] [PMID: 32042259]
[22]
Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release, 2020, 320, 125-141.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[23]
Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer, 2008, 49(8), 1993-2007.
[24]
Qi, X.; Xiang, Y.; Cai, E.; Ge, X.; Chen, X.; Zhang, W.; Li, Z.; Shen, J. Inorganic-organic hybrid nanomaterials for photothermal antibacterial therapy. Coord. Chem. Rev., 2023, 496, 215426.
[http://dx.doi.org/10.1016/j.ccr.2023.215426]
[25]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[26]
Cheng, Y.H.; Hung, K.H.; Tsai, T.H.; Lee, C.J.; Ku, R.Y.; Chiu, A.W.; Chiou, S.H.; Liu, C.J. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater., 2014, 10(10), 4360-4366.
[http://dx.doi.org/10.1016/j.actbio.2014.05.031] [PMID: 24914827]
[27]
Zhang, X.Z.; Yang, Y.Y.; Chung, T.S.; Ma, K.X. Preparation and characterization of fast response macroporous poly (N-isopropylacrylamide) hydrogels. Langmuir, 2001, 17(20), 6094-6099.
[http://dx.doi.org/10.1021/la010105v]
[28]
Kamaci, M.; Kaya, I. Chitosan based hybrid hydrogels for drug delivery: Preparation, biodegradation, thermal, and mechanical properties. Polym. Adv. Technol., 2023, 34(2), 779-788.
[http://dx.doi.org/10.1002/pat.5930]
[29]
He, Z.; Luo, H.; Wang, Z.; Chen, D.; Feng, Q.; Cao, X. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr. Polym., 2023, 299, 120180.
[http://dx.doi.org/10.1016/j.carbpol.2022.120180] [PMID: 36876795]
[30]
Mastropietro, D.J.; Omidian, H.; Park, K. Drug delivery applications for superporous hydrogels. Expert Opin. Drug Deliv., 2012, 9(1), 71-89.
[http://dx.doi.org/10.1517/17425247.2012.641950] [PMID: 22145909]
[31]
Dalmoro, A.; Sitenkov, A.Y.; Cascone, S.; Lamberti, G.; Barba, A.A.; Moustafine, R.I. Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. Int. J. Pharm., 2017, 518(1-2), 50-58.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.056] [PMID: 28034735]
[32]
Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym., 2019, 221, 94-112.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.067] [PMID: 31227171]
[33]
Bahram, M.; Nurallahzadeh, N.; Mohseni, N. pH-sensitive hydrogel for coacervative cloud point extraction and spectrophotometric determination of Cu (II): Optimization by central composite design. J. Indian Chem. Soc., 2015, 12, 1781-1787.
[34]
Alvarez-Figueroa, M.J.; Blanco-Méndez, J. Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm., 2001, 215(1-2), 57-65.
[http://dx.doi.org/10.1016/S0378-5173(00)00674-8] [PMID: 11250092]
[35]
Fang, J.Y.; Sung, K.C.; Wang, J.J.; Chu, C.C.; Chen, K.T. The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels. J. Pharm. Pharmacol., 2010, 54(10), 1329-1337.
[http://dx.doi.org/10.1211/002235702760345392] [PMID: 12396293]
[36]
Bouchemal, K.; Aka-Any-Grah, A.; Dereuddre-Bosquet, N.; Martin, L.; Lievin-Le-Moal, V.; Le Grand, R.; Nicolas, V.; Gibellini, D.; Lembo, D.; Poüs, C.; Koffi, A.; Ponchel, G. Thermosensitive and mucoadhesive pluronic-hydroxypropylmethylcellulose hydrogel containing the mini-CD4 M48U1 is a promising efficient barrier against HIV diffusion through macaque cervicovaginal mucus. Antimicrob. Agents Chemother., 2015, 59(4), 2215-2222.
[http://dx.doi.org/10.1128/AAC.03503-14] [PMID: 25645853]
[37]
Perinelli, D.; Campana, R.; Skouras, A.; Bonacucina, G.; Cespi, M.; Mastrotto, F.; Baffone, W.; Casettari, L. Chitosan loaded into a hydrogel delivery system as a strategy to treat vaginal co-infection. Pharmaceutics, 2018, 10(1), 23.
[http://dx.doi.org/10.3390/pharmaceutics10010023] [PMID: 29401648]
[38]
Bahram, M.; Mohseni, N.; Moghtader, M. An introduction to hydrogels and some recent applications. In: Emerging concepts in analysis and applications of hydrogels; IntechOpen, 2016.
[http://dx.doi.org/10.5772/64301]
[39]
Champeau, M.; Heinze, D.A.; Viana, T.N.; de Souza, E.R.; Chinellato, A.C.; Titotto, S. 4D printing of hydrogels: A review. Adv. Funct. Mater., 2020, 30(31), 1910606.
[http://dx.doi.org/10.1002/adfm.201910606]
[40]
Ferraris, S.; Spriano, S.; Scalia, A.C.; Cochis, A.; Rimondini, L.; Cruz-Maya, I.; Guarino, V.; Varesano, A.; Vineis, C. Topographical and biomechanical guidance of electrospun fibers for biomedical applications. Polymers, 2020, 12(12), 2896.
[http://dx.doi.org/10.3390/polym12122896] [PMID: 33287236]
[41]
Yu, Y.; Zheng, X.; Liu, X.; Zhao, J.; Wang, S. Injectable carboxymethyl chitosan-based hydrogel for simultaneous anti-tumor recurrence and anti-bacterial applications. Int. J. Biol. Macromol., 2023, 230, 123196.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123196] [PMID: 36634799]
[42]
Morgado, P.I.; Lisboa, P.F.; Ribeiro, M.P.; Miguel, S.P.; Simões, P.C.; Correia, I.J.; Aguiar-Ricardo, A. Poly(vinyl alcohol)/chitosan asymmetrical membranes: Highly controlled morphology toward the ideal wound dressing. J. Membr. Sci., 2014, 469, 262-271.
[http://dx.doi.org/10.1016/j.memsci.2014.06.035]
[43]
Heilmann, S.; Küchler, S.; Wischke, C.; Lendlein, A.; Stein, C.; Schäfer-Korting, M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int. J. Pharm., 2013, 444(1-2), 96-102.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.027] [PMID: 23352858]
[44]
Du, L.; Tong, L.; Jin, Y.; Jia, J.; Liu, Y.; Su, C.; Yu, S.; Li, X. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen., 2012, 20(6), 904-910.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00848.x] [PMID: 23110551]
[45]
Qi, X.; Cai, E.; Xiang, Y.; Zhang, C.; Ge, X.; Wang, J.; Lan, Y.; Xu, H.; Hu, R.; Shen, J. An immunomodulatory hydrogel by hyperthermia‐assisted self‐cascade glucose depletion and ROS scavenging for diabetic foot ulcer wound therapeutics. Adv. Mater., 2023, 35(48), 2306632.
[http://dx.doi.org/10.1002/adma.202306632] [PMID: 37803944]
[46]
Sannino, A.; Demitri, C.; Madaghiele, M. Biodegradable cellulose-based hydrogels: Design and applications. Materials, 2009, 2(2), 353-373.
[http://dx.doi.org/10.3390/ma2020353]
[47]
Kang, J.; Yun, S.I. Double-network hydrogel films based on cellulose derivatives and κ-carrageenan with enhanced mechanical strength and superabsorbent properties. Gels, 2022, 9(1), 20.
[http://dx.doi.org/10.3390/gels9010020] [PMID: 36661788]
[48]
Bachra, Y.; Grouli, A.; Damiri, F.; Zhu, X.X.; Talbi, M.; Berrada, M. Synthesis, characterization, and swelling properties of a new highly absorbent hydrogel based on carboxymethyl guar gum reinforced with bentonite and Silica particles for disposable hygiene products. ACS Omega, 2022, 7(43), 39002-39018.
[http://dx.doi.org/10.1021/acsomega.2c04744] [PMID: 36340181]
[49]
Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[50]
Zhao, J.; Wang, L.; Zhang, H.; Liao, B.; Li, Y. Progress of research in in situ smart hydrogels for local antitumor therapy: A review. Pharmaceutics, 2022, 14(10), 2028.
[http://dx.doi.org/10.3390/pharmaceutics14102028] [PMID: 36297463]
[51]
Gao, B.; Luo, J.; Liu, Y.; Su, S.; Fu, S.; Yang, X.; Li, B. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int. J. Nanomedicine, 2021, 16, 4073-4085.
[http://dx.doi.org/10.2147/IJN.S308057] [PMID: 34163160]
[52]
Yao, J.; Zhu, C.; Peng, T.; Ma, Q.; Gao, S. Injectable and temperature-sensitive titanium carbide-loaded hydrogel system for photothermal therapy of breast cancer. Front. Bioeng. Biotechnol., 2021, 9, 791891.
[http://dx.doi.org/10.3389/fbioe.2021.791891] [PMID: 35004650]
[53]
Yang, X.; Gao, L.; Wei, Y.; Tan, B.; Wu, Y.; Yi, C.; Liao, J. Photothermal hydrogel platform for prevention of post-surgical tumor recurrence and improving breast reconstruction. J. Nanobiotechnology, 2021, 19(1), 307.
[http://dx.doi.org/10.1186/s12951-021-01041-w] [PMID: 34620160]
[54]
Li, R.; Shan, L.; Yao, Y.; Peng, F.; Jiang, S.; Yang, D.; Ling, G.; Zhang, P. Black phosphorus nanosheets and docetaxel micelles co-incorporated thermoreversible hydrogel for combination chemo-photodynamic therapy. Drug Deliv. Transl. Res., 2021, 11(3), 1133-1143.
[http://dx.doi.org/10.1007/s13346-020-00836-y] [PMID: 32776211]
[55]
Jo, Y.J.; Gulfam, M.; Jo, S.H.; Gal, Y.S.; Oh, C.W.; Park, S.H.; Lim, K.T. Multi-stimuli responsive hydrogels derived from hyaluronic acid for cancer therapy application. Carbohydr. Polym., 2022, 286, 119303.
[http://dx.doi.org/10.1016/j.carbpol.2022.119303] [PMID: 35337532]
[56]
Parisi, O.I.; Morelli, C.; Scrivano, L.; Sinicropi, M.S.; Cesario, M.G.; Candamano, S.; Puoci, F.; Sisci, D. Controlled release of sunitinib in targeted cancer therapy: Smart magnetically responsive hydrogels as restricted access materials. RSC Advances, 2015, 5(80), 65308-65315.
[http://dx.doi.org/10.1039/C5RA12229E]
[57]
Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Ding, J.; Chen, X. Antibacterial hydrogels. Adv. Sci., 2018, 5(5), 1700527.
[http://dx.doi.org/10.1002/advs.201700527] [PMID: 29876202]
[58]
Gupta, A.; Briffa, S.M.; Swingler, S.; Gibson, H.; Kannappan, V.; Adamus, G.; Kowalczuk, M.; Martin, C.; Radecka, I. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules, 2020, 21(5), 1802-1811.
[http://dx.doi.org/10.1021/acs.biomac.9b01724] [PMID: 31967794]
[59]
Zumbuehl, A.; Ferreira, L.; Kuhn, D.; Astashkina, A.; Long, L.; Yeo, Y.; Iaconis, T.; Ghannoum, M.; Fink, G.R.; Langer, R.; Kohane, D.S. Antifungal hydrogels. Proc. Natl. Acad. Sci., 2007, 104(32), 12994-12998.
[http://dx.doi.org/10.1073/pnas.0705250104] [PMID: 17664427]
[60]
AbouSamra, M.M.; Basha, M.; Awad, G.E.A.; Mansy, S.S. A promising nystatin nanocapsular hydrogel as an antifungal polymeric carrier for the treatment of topical candidiasis. J. Drug Deliv. Sci. Technol., 2019, 49, 365-374.
[http://dx.doi.org/10.1016/j.jddst.2018.12.014]
[61]
Shchelik, I.S.; Sieber, S.; Gademann, K. Green algae as a drug delivery system for the controlled release of antibiotics. Chemistry, 2020, 26(70), 16644-16648.
[http://dx.doi.org/10.1002/chem.202003821] [PMID: 32910832]
[62]
ElFeky, D.S.; Awad, A.R.; Elshobaky, M.A.; Elawady, B.A. Effect of ceftaroline, vancomycin, gentamicin, macrolides, and ciprofloxacin against methicillin-resistant Staphylococcus aureus isolates: An in vitro study. Surg. Infect., 2020, 21(2), 150-157.
[http://dx.doi.org/10.1089/sur.2019.229] [PMID: 31513456]
[63]
Li, Y.; Cheng, C.; Gao, X.; Wang, S.; Ye, H.; Han, X. Aminoglycoside hydrogels based on dynamic covalent bonds with PH sensitivity, biocompatibility, self‐healing, and antibacterial ability. J. Appl. Polym. Sci., 2020, 137(41), 49250.
[http://dx.doi.org/10.1002/app.49250]
[64]
Zhang, J.; Tan, W.; Li, Q.; Liu, X.; Guo, Z. Preparation of cross-linked chitosan quaternary ammonium salt hydrogel films loading drug of gentamicin sulfate for antibacterial wound dressing. Mar. Drugs, 2021, 19(9), 479.
[http://dx.doi.org/10.3390/md19090479] [PMID: 34564141]
[65]
Gupta, P.; Purwar, R. Influence of cross-linkers on the properties of cotton grafted poly (acrylamide-co-acrylic acid) hydrogel composite: Swelling and drug release kinetics. Iran. Polym. J., 2021, 30(4), 381-391.
[http://dx.doi.org/10.1007/s13726-020-00897-3]
[66]
Bai, J.; Chen, C.; Wang, J.; Zhang, Y.; Cox, H.; Zhang, J.; Wang, Y.; Penny, J.; Waigh, T.; Lu, J.R.; Xu, H. Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces, 2016, 8(24), 15093-15102.
[http://dx.doi.org/10.1021/acsami.6b03770] [PMID: 27243270]
[67]
Gunes, O.C.; Ziylan Albayrak, A. Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym. Bull., 2021, 78(11), 6409-6428.
[http://dx.doi.org/10.1007/s00289-020-03429-4]
[68]
Yang, S.; Zhou, Y.; Zhao, Y.; Wang, D.; Luan, Y. Microwave synthesis of graphene oxide decorated with silver nanoparticles for slow-release antibacterial hydrogel. Mater. Today Commun., 2022, 31, 103663.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103663]
[69]
Kang, W.; Liang, J.; Liu, T.; Long, H.; Huang, L.; Shi, Q.; Zhang, J.; Deng, S.; Tan, S. Preparation of silane-dispersed graphene crosslinked vinyl carboxymethyl chitosan temperature-responsive hydrogel with antibacterial properties. Int. J. Biol. Macromol., 2022, 200, 99-109.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.050] [PMID: 34953806]
[70]
Fathollahipour, S.; Koosha, M.; Tavakoli, J.; Maziarfar, S.; Fallah Mehrabadi, J. Erythromycin releasing PVA/sucrose and PVA/honey hydrogels as wound dressings with antibacterial activity and enhanced bio-adhesion. Iran. J. Pharm. Res., 2020, 19(1), 448-464.
[PMID: 32922500]
[71]
Baretta, R.; Raucci, A.; Cinti, S.; Frasconi, M. Porous hydrogel scaffolds integrating Prussian Blue nanoparticles: A versatile strategy for electrochemical (bio)sensing. Sens. Actuators B Chem., 2023, 376, 132985.
[http://dx.doi.org/10.1016/j.snb.2022.132985]
[72]
Gill, E.L.; Wang, W.; Liu, R.; Huang, Y.Y.S. Additive batch electrospinning patterning of tethered gelatin hydrogel fibres with swelling-induced fibre curling. Addit. Manuf., 2020, 36, 101456.
[http://dx.doi.org/10.1016/j.addma.2020.101456]
[73]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001] [PMID: 27134415]
[74]
Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes, 2012, 2(1), 40-69.
[http://dx.doi.org/10.3390/membranes2010040] [PMID: 24957962]
[75]
Sánchez-Tirado, E.; Agüí, L.; González-Cortés, A.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical (bio)sensing devices for human-microbiome-related biomarkers. Sensors, 2023, 23(2), 837.
[http://dx.doi.org/10.3390/s23020837] [PMID: 36679633]
[76]
Nair, R.R.; Debnath, S.; Das, S.; Wakchaure, P.; Ganguly, B.; Chatterjee, P.B. A highly selective turn-on biosensor for measuring spermine/spermidine in human urine and blood. ACS Appl. Bio Mater., 2019, 2(6), 2374-2387.
[http://dx.doi.org/10.1021/acsabm.9b00084] [PMID: 35030730]
[77]
Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and their role in biosensing applications. Adv. Healthc. Mater., 2021, 10(11), 2100062.
[http://dx.doi.org/10.1002/adhm.202100062] [PMID: 33939333]
[78]
Mao, X.; Chen, G.; Wang, Z.; Zhang, Y.; Zhu, X.; Li, G. Surface-immobilized and self-shaped DNA hydrogels and their application in biosensing. Chem. Sci., 2018, 9(4), 811-818.
[http://dx.doi.org/10.1039/C7SC03716C] [PMID: 29629148]
[79]
Pedrosa, V.A.; Yan, J.; Simonian, A.L.; Revzin, A. Micropatterned nanocomposite hydrogels for biosensing applications. Electroanalysis, 2011, 23(5), 1142-1149.
[http://dx.doi.org/10.1002/elan.201000654]
[80]
Osouli-Bostanabad, K.; Masalehdan, T.; Kapsa, R.M.I.; Quigley, A.; Lalatsa, A.; Bruggeman, K.F.; Franks, S.J.; Williams, R.J.; Nisbet, D.R. Traction of 3D and 4D printing in the healthcare industry: From drug delivery and analysis to regenerative medicine. ACS Biomater. Sci. Eng., 2022, 8(7), 2764-2797.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00094] [PMID: 35696306]
[81]
Hou, C.; Zheng, J.; Li, Z.; Qi, X.; Tian, Y.; Zhang, M.; Zhang, J.; Huang, X. Printing 3D vagina tissue analogues with vagina decellularized extracellular matrix bioink. Int. J. Biol. Macromol., 2021, 180, 177-186.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.070] [PMID: 33737175]
[82]
Fei, Z.; Xin, X.; Fei, H.; Yuechong, C. Meta-analysis of the use of hyaluronic acid gel to prevent intrauterine adhesions after miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 244, 1-4.
[http://dx.doi.org/10.1016/j.ejogrb.2019.10.018] [PMID: 31731019]
[83]
Wenbo, Q.; Lijian, X.; Shuangdan, Z.; Jiahua, Z.; Yanpeng, T.; Xuejun, Q.; Xianghua, H.; Jingkun, Z. Controlled releasing of SDF-1α in chitosan-heparin hydrogel for endometrium injury healing in rat model. Int. J. Biol. Macromol., 2020, 143, 163-172.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.184] [PMID: 31765745]
[84]
Cascone, S.; Lamberti, G. Hydrogel-based commercial products for biomedical applications: A review. Int. J. Pharm., 2020, 573, 118803.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118803] [PMID: 31682963]
[85]
Sun, Y.; Yang, C.; Zhu, X.; Wang, J.J.; Liu, X.Y.; Yang, X.P.; An, X.W.; Liang, J.; Dong, H.J.; Jiang, W.; Chen, C.; Wang, Z.G.; Sun, H.T.; Tu, Y.; Zhang, S.; Chen, F.; Li, X.H. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury. J. Biomed. Mater. Res. A, 2019, 107(9), 1898-1908.
[http://dx.doi.org/10.1002/jbm.a.36675] [PMID: 30903675]
[86]
Jeon, M.S.; Jeon, Y.; Hwang, J.H.; Heu, C.S.; Jin, S.; Shin, J.; Song, Y.; Chang Kim, S.; Cho, B.K.; Lee, J.K.; Kim, D.R. Fabrication of three-dimensional porous carbon scaffolds with tunable pore sizes for effective cell confinement. Carbon, 2018, 130, 814-821.
[http://dx.doi.org/10.1016/j.carbon.2018.01.050]
[87]
Wang, X.; Salick, M.R.; Gao, Y.; Jiang, J.; Li, X.; Liu, F.; Cordie, T.; Li, Q.; Turng, L.S. Interconnected porous poly(ɛ-caprolactone) tissue engineering scaffolds fabricated by microcellular injection molding. J. Cell. Plast., 2018, 54(2), 379-397.
[http://dx.doi.org/10.1177/0021955X16681470]
[88]
Bordini, E.A.F.; Ferreira, J.A.; Dubey, N.; Ribeiro, J.S.; de Souza Costa, C.A.; Soares, D.G.; Bottino, M.C. Injectable multifunctional drug delivery system for hard tissue regeneration under inflammatory microenvironments. ACS Appl. Bio Mater., 2021, 4(9), 6993-7006.
[http://dx.doi.org/10.1021/acsabm.1c00620] [PMID: 35006932]
[89]
Liu, C.; Qin, W.; Wang, Y.; Ma, J.; Liu, J.; Wu, S.; Zhao, H. 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int. J. Nanomedicine, 2021, 16, 8417-8432.
[http://dx.doi.org/10.2147/IJN.S339500] [PMID: 35002236]
[90]
Vidović E.; Klee, D.; Höcker, H. Evaluation of water uptake and mechanical properties of biomedical polymers. J. Appl. Polym. Sci., 2013, 130(5), 3682-3688.
[http://dx.doi.org/10.1002/app.39624]
[91]
P B. S.; S, G.; J, P.; Muthusamy, S.; R, N.; Krishnakumar, G.S.; R, S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int. J. Biol. Macromol., 2022, 195, 179-189.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.11.184] [PMID: 34863969]
[92]
Killion, J.A.; Geever, L.M.; Devine, D.M.; Kennedy, J.E.; Higginbotham, C.L. Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application. J. Mech. Behav. Biomed. Mater., 2011, 4(7), 1219-1227.
[http://dx.doi.org/10.1016/j.jmbbm.2011.04.004] [PMID: 21783130]
[93]
Tozzi, G.; De Mori, A.; Oliveira, A.; Roldo, M. Composite hydrogels for bone regeneration. Materials, 2016, 9(4), 267.
[http://dx.doi.org/10.3390/ma9040267] [PMID: 28773392]
[94]
Wang, X.; Yu, Y.; Yang, C.; Shao, C.; Shi, K.; Shang, L.; Ye, F.; Zhao, Y. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv. Funct. Mater., 2021, 31(40), 2105190.
[http://dx.doi.org/10.1002/adfm.202105190]
[95]
Blatchley, M.R.; Gerecht, S. Acellular implantable and injectable hydrogels for vascular regeneration. Biomed. Mater., 2015, 10(3), 034001.
[http://dx.doi.org/10.1088/1748-6041/10/3/034001] [PMID: 25775039]
[96]
Li, Z.; Qu, T.; Ding, C.; Ma, C.; Sun, H.; Li, S.; Liu, X. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis. Acta Biomater., 2015, 13, 88-100.
[http://dx.doi.org/10.1016/j.actbio.2014.11.002] [PMID: 25462840]
[97]
Zheng, Z.; Tan, Y.; Li, Y.; Liu, Y.; Yi, G.; Yu, C.Y.; Wei, H. Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J. Control. Release, 2021, 335, 216-236.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.023] [PMID: 34022323]
[98]
Mao, L.; Lu, Y.; Cui, M.; Miao, S.; Gao, Y. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Crit. Rev. Food Sci. Nutr., 2020, 60(10), 1651-1666.
[http://dx.doi.org/10.1080/10408398.2019.1587737] [PMID: 30892058]
[99]
Shit, S.C. Shah, PM Edible polymers: Challenges and opportunities. J. Polym., 2014, 2014, 427259.
[http://dx.doi.org/10.1155/2014/427259]
[100]
Chen, L.; Remondetto, G.E.; Subirade, M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci. Technol., 2006, 17(5), 272-283.
[http://dx.doi.org/10.1016/j.tifs.2005.12.011]
[101]
Farris, S.; Schaich, K.M.; Liu, L.; Piergiovanni, L.; Yam, K.L. Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review. Trends Food Sci. Technol., 2009, 20(8), 316-332.
[http://dx.doi.org/10.1016/j.tifs.2009.04.003]
[102]
Parente, M.E.; Ochoa Andrade, A.; Ares, G.; Russo, F.; Jiménez-Kairuz, Á. Bioadhesive hydrogels for cosmetic applications. Int. J. Cosmet. Sci., 2015, 37(5), 511-518.
[http://dx.doi.org/10.1111/ics.12227] [PMID: 25854849]
[103]
Kim, S.J.; Kwon, S.S.; Jeon, S.H.; Yu, E.R.; Park, S.N. Enhanced skin delivery of liquiritigenin and liquiritin‐loaded liposome‐in‐hydrogel complex system. Int. J. Cosmet. Sci., 2014, 36(6), 553-560.
[http://dx.doi.org/10.1111/ics.12156] [PMID: 25074560]
[104]
Purohit, P.; Bhatt, A.; Mittal, R.K.; Abdellattif, M.H.; Farghaly, T.A. Polymer Grafting and its chemical reactions. Front. Bioeng. Biotechnol., 2023, 10, 1044927.
[http://dx.doi.org/10.3389/fbioe.2022.1044927] [PMID: 36714621]
[105]
Herrero, C.; Ayoob, A.; Hanes, J.; Peris, H. Spiral Therapeutics Inc, assignee. Apoptosis inhibitor formulations for prevention of hearing loss. U.S. Patent 16/740,181, 2020.
[106]
Florek, C.; Armbruster, D.A.; Kerr, S.H.; Jain, S.; Julien, J.; Bikram-Liles, M. Biocompatible organogel matrices for intraoperative preparation of a drug delivery depot. U.S. Patent 16/851,177, 2020.
[107]
Gu, Z.; Yu, J.; Zhang, Y.; Gallippi, C. Thrombin-responsive hydrogels and devices for auto-anticoagulant regulation. U.S. Patent 17/019,707, 2021.
[108]
Naheed, S. Medication. U.S. Patent 20200282062A1, 2020.
[109]
Clayman, R.V.; Jiang, P.; Schoenberg, M.; Tsipori, O. Thermosensitive bio-adhesive hydrogel for removal of ureteral and renal stones. U.S. Patent 11,576,744, 2023.
[110]
Spiegel, A.J. Methodist Hospital System, assignee. Hydrogel devices and methods of making and use thereof. U.S. Patent 11,730,861, 2023.
[111]
Pan, Y.; Hao, Z.; Zhao, X. Three-dimensional hydrogel-graphenebased biosensor and preparation method thereof. U.S. Patent 11,619,602, 2023.
[112]
Kubota, R.; MacCabee, G.F.; Widjaja, F.; Gupta, A. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens. U.S. Patent 11,409,136, 2022.
[113]
Ruptured Aneurysms Treated with Hydrogel Coils. NCT03252314, 2023.
[114]
Comparative Clinical Performance of 59% Hioxifilcon a Contact Lenses vs. Marketed Hydrogel Contact Lens. NCT04671108 2023.
[115]
MucoLox Formulation to Mitigate Mucositis Symptoms in Head/Neck Cancer. NCT03461354, 2023.
[116]
Treatment of Knee Osteoarthritis with PAAG-OA. NCT04045431, 2023.
[117]
Prostate-Rectal Separation with PEG Hydrogel and Its Effect on Decreasing Rectal Dose. NCT02212548, 2023.
[118]
Clinical Performance of a Daily Disposable Toric Silicone Hydrogel Contact Lens. NCT04464044, 2023.
[119]
TracelT Hydrogel in Localizing Bladder Tumors in Patients Undergoing Radiation Therapy for Bladder. NCT03125226, 2023.
[120]
Performance of Toric Hydrogel Lenses Following a Refit with Toric Silicone Hydrogel Lenses for 1 Month. NCT03835221, 2023.
[121]
Vijayasekaran, S.; Chirila, T.V.; Robertson, T.A.; Lou, X.; Fitton, J.H.; Hicks, C.R.; Constable, I.J. Calcification of poly(2-hydroxyethyl methacrylate) hydrogel sponges implanted in the rabbit cornea: a 3-month study. J. Biomater. Sci. Polym. Ed., 2000, 11(6), 599-615.
[http://dx.doi.org/10.1163/156856200743896] [PMID: 10981676]
[122]
Vegas, A.J.; Veiseh, O.; Doloff, J.C.; Ma, M.; Tam, H.H.; Bratlie, K.; Li, J.; Bader, A.R.; Langan, E.; Olejnik, K.; Fenton, P.; Kang, J.W.; Hollister-Locke, J.; Bochenek, M.A.; Chiu, A.; Siebert, S.; Tang, K.; Jhunjhunwala, S.; Aresta-Dasilva, S.; Dholakia, N.; Thakrar, R.; Vietti, T.; Chen, M.; Cohen, J.; Siniakowicz, K.; Qi, M.; McGarrigle, J.; Graham, A.C.; Lyle, S.; Harlan, D.M.; Greiner, D.L.; Oberholzer, J.; Weir, G.C.; Langer, R.; Anderson, D.G. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol., 2016, 34(3), 345-352.
[http://dx.doi.org/10.1038/nbt.3462] [PMID: 26807527]
[123]
Yin, Y.; Jiang, X.; Sun, L.; Li, H.; Su, C.; Zhang, Y.; Xu, G.; Li, X.; Zhao, C.; Chen, Y.; Xu, H.; Zhang, K. Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and immunogenic cell death against breast carcinoma. Nano Today, 2021, 36, 101009.
[http://dx.doi.org/10.1016/j.nantod.2020.101009]
[124]
Wuschko, S.; Gugerell, A.; Chabicovsky, M.; Hofbauer, H.; Laggner, M.; Erb, M.; Ostler, T.; Peterbauer, A.; Suessner, S.; Demyanets, S.; Leuschner, J.; Moser, B.; Mildner, M.; Ankersmit, H.J. Toxicological testing of allogeneic secretome derived from peripheral mononuclear cells (APOSEC): A novel cell-free therapeutic agent in skin disease. Sci. Rep., 2019, 9(1), 5598.
[http://dx.doi.org/10.1038/s41598-019-42057-5] [PMID: 30944367]
[125]
Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426.
[http://dx.doi.org/10.1038/s41392-021-00830-x] [PMID: 34916490]
[126]
Bai, Q.; Zheng, C.; Chen, W.; Sun, N.; Gao, Q.; Liu, J.; Hu, F.; Pimpi, S.; Yan, X.; Zhang, Y.; Lu, T. Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Mater. Adv., 2022, 3(17), 6707-6727.
[http://dx.doi.org/10.1039/D2MA00695B]
[127]
Wang, Y.; Yuan, X.; Yao, B.; Zhu, S.; Zhu, P.; Huang, S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact. Mater., 2022, 17, 178-194.
[http://dx.doi.org/10.1016/j.bioactmat.2022.01.024] [PMID: 35386443]
[128]
Jain, P.; Kathuria, H.; Dubey, N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials, 2022, 287, 121639.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121639] [PMID: 35779481]
[129]
Kasai, R.D.; Radhika, D.; Archana, S.; Shanavaz, H.; Koutavarapu, R.; Lee, D.Y.; Shim, J. A review on hydrogels classification and recent developments in biomedical applications. Int. J. Polym. Mater., 2023, 72(13), 1059-1069.
[http://dx.doi.org/10.1080/00914037.2022.2075872]
[130]
Liu, X.; Steiger, C.; Lin, S.; Parada, G.A.; Liu, J.; Chan, H.F.; Yuk, H.; Phan, N.V.; Collins, J.; Tamang, S.; Traverso, G.; Zhao, X. Ingestible hydrogel device. Nat. Commun., 2019, 10(1), 493.
[http://dx.doi.org/10.1038/s41467-019-08355-2] [PMID: 30700712]
[131]
Danyuo, Y.; Ani, C.J.; Salifu, A.A.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Obanawu, V.O.; Akpan, U.M.; Odusanya, O.S.; Abade-Abugre, M.; McBagonluri, F.; Soboyejo, W.O. Anomalous release kinetics of prodigiosin from poly-N-isopropyl-acrylamid based hydrogels for the treatment of triple negative breast cancer. Sci. Rep., 2019, 9(1), 3862.
[http://dx.doi.org/10.1038/s41598-019-39578-4] [PMID: 30846795]
[132]
O’Connell, C.D.; Di Bella, C.; Thompson, F.; Augustine, C.; Beirne, S.; Cornock, R.; Richards, C.J.; Chung, J.; Gambhir, S.; Yue, Z.; Bourke, J.; Zhang, B.; Taylor, A.; Quigley, A.; Kapsa, R.; Choong, P.; Wallace, G.G. Development of the Biopen: A handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication, 2016, 8(1), 015019.
[http://dx.doi.org/10.1088/1758-5090/8/1/015019] [PMID: 27004561]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy