Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis, Characterization, Molecular Docking Studies and Biological Evaluation of Some Novel 3,5-disubstituted-1-phenyl-4,5-dihydro-1H-pyrazole Derivatives

Author(s): Fatih Tok*, İlayda Rumeysa Bayrak, Elif Karakaraman, İrem Soysal, Cansel Çakır, Kübra Tuna, Serap Yılmaz Özgüven, Yusuf Sıcak, Mehmet Öztürk and Bedia Koçyiğit-Kaymakçıoğlu

Volume 28, Issue 3, 2024

Published on: 26 January, 2024

Page: [230 - 240] Pages: 11

DOI: 10.2174/0113852728287379231229102847

Price: $65

Abstract

In this study, some new pyrazoline derivatives bearing cyano or nitro groups were synthesized. The structures of the compounds were characterized by IR, 1H-NMR, 13C-NMR and elemental analysis data. The ABTS·+, DPPH·, CUPRAC and β-Carotene/linoleic acid assays were carried out to determine the antioxidant activity of the synthesized pyrazolines. Compound P14 showed higher antioxidant activity than the standard substance BHA with IC50 values of 1.71±0.31 μM and 0.29±0.04 μM in ABTS+ and β-carotene/linoleic acid assays, respectively. Compound P12 also exhibited higher antioxidant activities than BHA with an IC50 value of 0.36±0.14 μM in β-carotene/linoleic acid analysis. In activity studies of pyrazolines against cholinesterase (AChE and BChE), tyrosinase, α-amylase and α- glucosidase, compound P1 (IC50 = 39.51±3.80 μM) showed higher activity against α-amylase and compounds P5 and P12 displayed higher activity against α-glucosidase than acarbose with IC50 values of 14.09±0.62 and 83.26±2.57 μM, respectively. The drug-like properties such as Lipinski and Veber, bioavailability and toxicity risks of the synthesized compounds were also evaluated. The compounds were predicted to be compatible with Lipinski and Veber rules, have high bioavailability and low toxicity profiles. Moreover, molecular docking studies were performed to better understand the high activity of the compounds against a-amylase and a-glucosidase enzymes.

« Previous
Graphical Abstract

[1]
Yan, R.; Huang, X.; Deng, X.; Song, M. Synthesis and activity evaluation of some pyrazole–pyrazoline derivatives as dual Anti-inflammatory and antimicrobial agents. Polycycl. Aromat. Compd., 2022, 42(8), 5006-5019.
[http://dx.doi.org/10.1080/10406638.2021.1919156]
[2]
Turan-Zitouni, G.; Özdemir, A.; Kaplancikli, Z.A.; Chevallet, P.; Tunali, Y. Synthesis and antimicrobial activities of some 1-[(N, N-disubstitutedthiocarbamoylthio)acetyl]-3,5-diaryl-2-pyrazolines. Phosphorus Sulfur Silicon Relat. Elem., 2005, 180(12), 2717-2724.
[http://dx.doi.org/10.1080/104265090930452]
[3]
Acar Çevik, U.; Osmaniye, D.; Sağlik, B.N.; Levent, S.; Kaya Çavuşoğlu, B.; Özkay, Y.; Kaplancikli, Z.A. Synthesis and evaluation of new pyrazoline‐thiazole derivatives as monoamine oxidase inhibitors. J. Heterocycl. Chem., 2019, 56(11), 3000-3007.
[http://dx.doi.org/10.1002/jhet.3694]
[4]
Kaplancıklı, Z.A.; Özdemir, A.; Turan-Zitouni, G.; Altıntop, M.D.; Can, Ö.D. New pyrazoline derivatives and their antidepressant activity. Eur. J. Med. Chem., 2010, 45(9), 4383-4387.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.011] [PMID: 20587366]
[5]
Özkay, Ü.D.; Can, Ö.D.; Kaplancıklı, Z.A. Antinociceptive activities of some triazole and pyrazoline moieties-bearing compounds. Med. Chem. Res., 2012, 21(7), 1056-1061.
[http://dx.doi.org/10.1007/s00044-011-9619-z]
[6]
Asad, M.; Khan, S.A.; Arshad, M.N.; Asiri, A.M.; Rehan, M. Design and synthesis of novel pyrazoline derivatives for their spectroscopic, single crystal X-ray and biological studies. J. Mol. Struct., 2021, 1234, 130131.
[http://dx.doi.org/10.1016/j.molstruc.2021.130131]
[7]
Aqlan, F.M. Synthesis characterization and in vitro antibacterial activity of the N-substituted bis-pyrazoline derivative as polycyclic aromatic compounds. Polycycl. Aromat. Compd., 2022, 42(6), 3412-3421.
[http://dx.doi.org/10.1080/10406638.2020.1866040]
[8]
Sharma, K.; Kumar, A.; Prakash, R.; Tripathi, A.; Singh, R.; Bajpai, R.; Sahasrabuddhe, A.A.; Singh, D.; Narender, T. Pyrazoline analogues: Design, synthesis, and evaluation of anti-osteoporosis activity. Bioorg. Med. Chem. Lett., 2022, 60, 128585.
[http://dx.doi.org/10.1016/j.bmcl.2022.128585] [PMID: 35085723]
[9]
Ashraf, S.; Hameed, S.; Tahir, M.N.; Naseer, M.M. Synthesis and crystal structure of bis-chalcone-derived fused-ring pyrazoline having an unusual substitution pattern. Monatsh. Chem., 2017, 148(10), 1871-1875.
[http://dx.doi.org/10.1007/s00706-017-1995-8]
[10]
Salih, R.H.H.; Hasan, A.H.; Hussen, N.H.; Hawaiz, F.E.; Hadda, T.B.; Jamalis, J.; Almalki, F.A.; Adeyinka, A.S.; Coetzee, L.C.C.; Oyebamiji, A.K. Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis, biological evaluation, molecular docking, DFT studies and POM analysis. J. Mol. Struct., 2023, 1282, 135191.
[http://dx.doi.org/10.1016/j.molstruc.2023.135191]
[11]
Matiadis, D. Strategies and methods for the synthesis of 2-pyrazolines: Recent developments (2012–2022). Adv. Synth. Catal., 2023, 365(12), 1934-1969.
[http://dx.doi.org/10.1002/adsc.202300373]
[12]
Tok, F.; Koçyiğit-Kaymakçıoğlu, B.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg. Chem., 2019, 84, 41-50.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.016] [PMID: 30481645]
[13]
Tok, F.; Baltaş, N.; Tatar, G.; Koçyiğit-Kaymakçıoğlu, B. Synthesis, biological evaluation and in silico studies of new pyrazoline derivatives bearing benzo[d]thiazol-2(3H)-one moiety as potential urease inhibitors. Chem. Biodivers., 2022, 19(3), e202100826.
[http://dx.doi.org/10.1002/cbdv.202100826] [PMID: 35018718]
[14]
Tok, F.; Erdoğan, Ö.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis, in silico ADMET studies and anticancer activity of some new pyrazoline and benzodioxole derivatives. Acta Chim. Slov., 2022, 69(2), 293-303.
[http://dx.doi.org/10.17344/acsi.2021.7119] [PMID: 35861084]
[15]
Maleki, B.; Azarifar, D.; Moghaddam, K.; Hojati, F.; Gholizadeh, M.; Salehabadi, H. Synthesis and characterization of a series of 1,3,5-trisubstituted-2-pyrazolines derivatives using methanoic acid under thermal condition. J. Serb. Chem. Soc., 2009, 74(12), 1371-1376.
[http://dx.doi.org/10.2298/JSC0912371M]
[16]
Acharya, A.P.; Gaikwad, M.V.; Dawane, B.S. Synthesis, biological evaluations and molecular docking of novel pyrazolyl, dihydro-1H-inden-1-one derivatives. Chem. Methodol, 2022, 6(4), 339-346.
[http://dx.doi.org/10.22034/CHEMM.2022.329102.1441]
[17]
Azarifar, D.; Maleki, B. Silica-supported synthesis of some 1,3,5-trisubstituted 2-pyrazolines under solvent-free and microwave irradiation conditions. J. Heterocycl. Chem., 2005, 42(1), 157-159.
[http://dx.doi.org/10.1002/jhet.5570420125]
[18]
Al-Shammari, W.A.M.; Lateef, S.M. Structural, spectroscopic, thermal, and biological studies of new Schiff base ligand derived from anthrone and 3-amino-1-phenyl-2-pyrazoline-5-one and its complexes with metallic Ions. Chem. Methodol, 2023, 7(8), 637-649.
[19]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[20]
Can, N.; Çevik, U.A.; Sağlık, B.N.; Özkay, Y.; Atlı, Ö.; Baysal, M.; Özkay, Ü.D.; Can, Ö.D. Pharmacological and toxicological screening of novel benzimidazole-morpholine derivatives as dual-acting inhibitors. Molecules, 2017, 22(8), 1374.
[http://dx.doi.org/10.3390/molecules22081374] [PMID: 28825626]
[21]
Kurşun Aktar, B.S.; Sıcak, Y.; Tok, T.T.; Oruç-Emre, E.E.; Yağlıoğlu, A.Ş; Iyidoğan, A.K.; Öztürk, M.; Demirtaş, I. Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: An insight into their biological activities and molecular docking study. J. Mol. Struct., 2020, 1211, 128059.
[http://dx.doi.org/10.1016/j.molstruc.2020.128059]
[22]
Akdağ, K.; Tok, F.; Karakuş, S.; Erdoğan, Ö.; Çevik, Ö.; Kaymakçıoğlu, B. Synthesis and biological evaluation of some hydrazide-hydrazone derivatives as anticancer agents. Acta Chim. Slov., 2022, 69(4), 863-875.
[http://dx.doi.org/10.17344/acsi.2022.7614] [PMID: 36562164]
[23]
Azman, M.; Sabri, A.H.; Anjani, Q.K.; Mustaffa, M.F.; Hamid, K.A. Intestinal absorption study: Challenges and absorption enhancement strategies in improving oral drug delivery. Pharmaceuticals, 2022, 15(8), 975.
[http://dx.doi.org/10.3390/ph15080975] [PMID: 36015123]
[24]
Karaca Gençer, H.; Acar Çevik, U.; Levent, S.; Sağlık, B.; Korkut, B.; Özkay, Y.; Ilgın, S.; Öztürk, Y. New benzimidazole-1,2,4-triazole hybrid compounds: Synthesis, anticandidal activity and cytotoxicity evaluation. Molecules, 2017, 22(4), 507.
[http://dx.doi.org/10.3390/molecules22040507] [PMID: 28346364]
[25]
Tok, F.; Doğan, M.O.; Gürbüz, B.; Koçyi̇ği̇tkaymakçioğlu, B. Synthesis of novel pyrazoline derivatives and evaluation of their antimicrobial activity. J. Res. Pharm., 2022, 26(5), 1453-1460.
[http://dx.doi.org/10.29228/jrp.238]
[26]
Tok, F.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis and biological screening of novel 1,5-diphenyl-3-(4-(trifluoromethyl)phenyl)-2-pyrazoline derivatives. Acta Chim. Slov., 2020, 67(4), 1139-1147.
[http://dx.doi.org/10.17344/acsi.2020.6028] [PMID: 33533467]
[27]
Wang, Y.; Rivera Vera, C.I.; Lin, Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org. Lett., 2007, 9(21), 4155-4158.
[http://dx.doi.org/10.1021/ol7017328] [PMID: 17867694]
[28]
Miura, T.; Hagiwara, K.; Nakamuro, T.; Nagata, Y.; Oku, N.; Murakami, M. Regioselective 1,3-dipolar cycloaddition of nitriles with nitrile imines generated from tetrazoles. Chem. Lett., 2021, 50(1), 131-135.
[http://dx.doi.org/10.1246/cl.200634]
[29]
Ghorbani, P.; Nasr-Esfahani, M.; Eftekhari Far, B. Synthesis of chalcones and pyrazolines using NB-Fe3O4@SiO2@CPTMO@DEA-SO3H as an efficient and reusable nanocatalyst. Russ. J. Org. Chem., 2022, 58(12), 1812-1820.
[http://dx.doi.org/10.1134/S1070428022120107]
[30]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[31]
Sıcak, Y.; Şahin-Yağlıoğlu, A.; Öztürk, M. Bioactivities and phenolic constituents relationship of Muğla thyme and pine honey of Turkey with the chemometric approach. J. Food Meas. Charact., 2021, 15(4), 3694-3707.
[http://dx.doi.org/10.1007/s11694-021-00940-8]
[32]
Tok, F.; Çakir, C.; Çam, D.; Kirpat, M.M.; Sicak, Y. Synthesis, characterization and biological evaluation of novel thiourea derivatives. Clin. Exp. Health Sci., 2022, 12(2), 533-540.
[http://dx.doi.org/10.33808/clinexphealthsci.1062872]
[33]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[34]
Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 2004, 52(26), 7970-7981.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[35]
Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc., 1968, 45(9), 594-598.
[http://dx.doi.org/10.1007/BF02668958]
[36]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[37]
Hearing, V.J. Methods in enzymology; Academic Press: NewYork, 1987, 142, pp., 154-165.
[38]
Quan, N.; Xuan, T.; Tran, H.D.; Thuy, N.; Trang, L.; Huong, C.; Andriana, Y.; Tuyen, P. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of canarium tramdenum bark. Molecules, 2019, 24(3), 605.
[http://dx.doi.org/10.3390/molecules24030605] [PMID: 30744084]
[39]
Kim, J.S.; Kwon, C.S.; Son, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem., 2000, 64(11), 2458-2461.
[http://dx.doi.org/10.1271/bbb.64.2458] [PMID: 11193416]
[40]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AIDJCC10>3.0.CO;2-B]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy