Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis

Author(s): Yifan Zhang, Chengshi Jiang* and Ning Meng*

Volume 24, Issue 13, 2024

Published on: 26 January, 2024

Page: [1262 - 1276] Pages: 15

DOI: 10.2174/0113895575273164231130070920

Price: $65

Abstract

Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.

Graphical Abstract

[1]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[2]
Wang, D.; Tang, L.; Zhang, Y.; Ge, G.; Jiang, X.; Mo, Y.; Wu, P.; Deng, X.; Li, L.; Zuo, S.; Yan, Q.; Zhang, S.; Wang, F.; Shi, L.; Li, X.; Xiang, B.; Zhou, M.; Liao, Q.; Guo, C.; Zeng, Z.; Xiong, W.; Gong, Z. Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis., 2022, 13(6), 544.
[http://dx.doi.org/10.1038/s41419-022-04927-1] [PMID: 35688814]
[3]
Reed, J.C.; Pellecchia, M. Ironing out cell death mechanisms. Cell, 2012, 149(5), 963-965.
[http://dx.doi.org/10.1016/j.cell.2012.05.009] [PMID: 22632964]
[4]
Yu, X.; Long, Y.C. Crosstalk between cystine and glutathione is critical for the regulation of amino acid signaling pathways and ferroptosis. Sci. Rep., 2016, 6(1), 30033.
[http://dx.doi.org/10.1038/srep30033] [PMID: 27425006]
[5]
Palabıyık, E.; Sulumer, A.N.; Uguz, H.; Avcı B.; Askın, S.; Askın, H.; Demir, Y. Assessment of hypolipidemic and anti‐inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR‐1339‐INDUCED hyperlipidemia in rat kidney, liver, and heart. J. Mol. Recognit., 2023, 36(3), e3004.
[http://dx.doi.org/10.1002/jmr.3004] [PMID: 36537558]
[6]
Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy, 2021, 17(9), 2054-2081.
[http://dx.doi.org/10.1080/15548627.2020.1810918] [PMID: 32804006]
[7]
Türkeş, C.; Demir, Y.; Beydemir, Ş. Infection medications: Assessment in‐vitro glutathione s‐transferase inhibition and molecular docking study. ChemistrySelect, 2021, 6(43), 11915-11924.
[http://dx.doi.org/10.1002/slct.202103197]
[8]
Türkeş, C.; Kesebir, A.Ö.; Demir, Y.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Calcium channel blockers: The effect of glutathione s‐transferase enzyme activity and molecular docking studies. ChemistrySelect, 2021, 6(40), 11137-11143.
[http://dx.doi.org/10.1002/slct.202103100]
[9]
Yuan, W.; Xia, H.; Xu, Y.; Xu, C.; Chen, N.; Shao, C.; Dai, Z.; Chen, R.; Tao, A. The role of ferroptosis in endothelial cell dysfunction. Cell Cycle, 2022, 21(18), 1897-1914.
[http://dx.doi.org/10.1080/15384101.2022.2079054] [PMID: 35579940]
[10]
Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell, 2022, 185(10), 1630-1645.
[http://dx.doi.org/10.1016/j.cell.2022.04.004] [PMID: 35504280]
[11]
Türkeş, C.; Demir, Y.; Beydemir, Ş. Some calcium-channel blockers: kinetic and in silico studies on paraoxonase-I. J. Biomol. Struct. Dyn., 2022, 40(1), 77-85.
[http://dx.doi.org/10.1080/07391102.2020.1806927] [PMID: 32783605]
[12]
Eckel, R.H.; Bornfeldt, K.E.; Goldberg, I.J. Cardiovascular disease in diabetes, beyond glucose. Cell Metab., 2021, 33(8), 1519-1545.
[http://dx.doi.org/10.1016/j.cmet.2021.07.001] [PMID: 34289375]
[13]
Demir, Y.; Köksal, Z. The inhibition effects of some sulfonamides on human serum paraoxonase-1 (hPON1). Pharmacol. Rep., 2019, 71(3), 545-549.
[http://dx.doi.org/10.1016/j.pharep.2019.02.012] [PMID: 31109643]
[14]
Tuenter, A.; Selwaness, M.; Arias Lorza, A.; Schuurbiers, J.C.H.; Speelman, L.; Cibis, M.; van der Lugt, A.; de Bruijne, M.; van der Steen, A.F.W.; Franco, O.H.; Vernooij, M.W.; Wentzel, J.J. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques. Atherosclerosis, 2016, 251, 348-354.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.05.018] [PMID: 27263078]
[15]
Winkel, L.C.; Hoogendoorn, A.; Xing, R.; Wentzel, J.J.; Van der Heiden, K. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis, 2015, 241(1), 100-110.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.04.796] [PMID: 25969893]
[16]
Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P.; Xiong, Y. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov., 2021, 7(1), 193.
[http://dx.doi.org/10.1038/s41420-021-00579-w] [PMID: 34312370]
[17]
Ouyang, S.; You, J.; Zhi, C.; Li, P.; Lin, X.; Tan, X.; Ma, W.; Li, L.; Xie, W. Ferroptosis: The potential value target in atherosclerosis. Cell Death Dis., 2021, 12(8), 782.
[http://dx.doi.org/10.1038/s41419-021-04054-3] [PMID: 34376636]
[18]
Habib, A.; Finn, A.V. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol., 2014, 5, 195.
[http://dx.doi.org/10.3389/fphar.2014.00195] [PMID: 25221512]
[19]
Meng, Z.; Liang, H.; Zhao, J.; Gao, J.; Liu, C.; Ma, X.; Liu, J.; Liang, B.; Jiao, X.; Cao, J.; Wang, Y. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci., 2021, 284, 119935.
[http://dx.doi.org/10.1016/j.lfs.2021.119935] [PMID: 34508760]
[20]
Anil, D.A.; Aydin, B.O.; Demir, Y.; Turkmenoglu, B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J. Mol. Struct., 2022, 1257, 132613.
[http://dx.doi.org/10.1016/j.molstruc.2022.132613]
[21]
Demir, Y.; Tokalı, F.S.; Kalay, E.; Türkeş, C.; Tokalı , P.; Aslan, O.N.; Şendil, K.; Beydemir, Ş. Synthesis and characterization of novel acyl hydrazones derived from vanillin as potential aldose reductase inhibitors. Mol. Divers., 2023, 27(4), 1713-1733.
[http://dx.doi.org/10.1007/s11030-022-10526-1] [PMID: 36103032]
[22]
Li, X.; Wang, T.X.; Huang, X.; Li, Y.; Sun, T.; Zang, S.; Guan, K.L.; Xiong, Y.; Liu, J.; Yuan, H.X. Targeting ferroptosis alleviates methionine‐choline deficient (MCD)‐diet induced NASH by suppressing liver lipotoxicity. Liver Int., 2020, 40(6), 1378-1394.
[http://dx.doi.org/10.1111/liv.14428] [PMID: 32145145]
[23]
Fang, S.; Yu, X.; Ding, H.; Han, J.; Feng, J. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Biochem. Biophys. Res. Commun., 2018, 503(1), 297-303.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.019] [PMID: 29890135]
[24]
Fan, G.; Li, Y.; Xu, G.; Zhao, A.; Jin, H.; Sun, S.; Qi, S. Propofol inhibits ferroptotic cell death through the Nrf2/Gpx4 signaling pathway in the mouse model of cerebral ischemia–reperfusion injury. Neurochem. Res., 2023, 48(3), 956-966.
[http://dx.doi.org/10.1007/s11064-022-03822-7] [PMID: 36402927]
[25]
Li, X.; Zeng, J.; Liu, Y.; Liang, M.; Liu, Q.; Li, Z.; Zhao, X.; Chen, D. Inhibitory effect and mechanism of action of quercetin and quercetin diels-alder anti-dimer on erastin-induced ferroptosis in bone marrow-derived mesenchymal stem cells. Antioxidants, 2020, 9(3), 205.
[http://dx.doi.org/10.3390/antiox9030205] [PMID: 32131401]
[26]
Yang, Y.; Zuo, S.; Li, L.; Kuang, X.; Li, J.; Sun, B.; Wang, S.; He, Z.; Sun, J. Iron-doxorubicin prodrug loaded liposome nanogenerator programs multimodal ferroptosis for efficient cancer therapy. Asian J. Pharma. Sci., 2021, 16(6), 784-793.
[http://dx.doi.org/10.1016/j.ajps.2021.05.001] [PMID: 35027953]
[27]
Chen, W.; Xie, L.; Lv, C.; Song, E.; Zhu, X.; Song, Y. Transferrin-targeted cascade nanoplatform for inhibiting transcription factor nuclear factor erythroid 2-related factor 2 and enhancing ferroptosis anticancer therapy. ACS Appl. Mater. Interfaces, 2023, 15(24), 28879-28890.
[http://dx.doi.org/10.1021/acsami.3c01499] [PMID: 37249181]
[28]
Xie, J.; Lv, H.; Liu, X.; Xia, Z.; Li, J.; Hong, E.; Ding, B.; Zhang, W.; Chen, Y. Nox4-and Tf/TfR-mediated peroxidation and iron overload exacerbate neuronal ferroptosis after intracerebral hemorrhage: Involvement of EAAT3 dysfunction. Free Radic. Biol. Med., 2023, 199, 67-80.
[http://dx.doi.org/10.1016/j.freeradbiomed.2023.02.015] [PMID: 36805044]
[29]
Kuang, Y.; Wang, Q. Iron and lung cancer. Cancer Lett., 2019, 464, 56-61.
[http://dx.doi.org/10.1016/j.canlet.2019.08.007] [PMID: 31437477]
[30]
Xiong, L.; Bin, Zhou.; Young, J.L.; Wintergerst, K.; Cai, L. Exposure to low-dose cadmium induces testicular ferroptosis. Ecotoxicol. Environ. Saf., 2022, 234, 113373.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113373] [PMID: 35272187]
[31]
Namgaladze, D.; Fuhrmann, D.C.; Brüne, B. Interplay of Nrf2 and BACH1 in inducing ferroportin expression and enhancing resistance of human macrophages towards ferroptosis. Cell Death Discov., 2022, 8(1), 327.
[http://dx.doi.org/10.1038/s41420-022-01117-y] [PMID: 35853860]
[32]
Nebert, D.W.; Liu, Z. SLC39A8 gene encoding a metal ion transporter: Discovery and bench to bedside. Hum. Genomics, 2019, 13(1), 51.
[http://dx.doi.org/10.1186/s40246-019-0233-3] [PMID: 31521203]
[33]
Ryu, M.S.; Zhang, D.; Protchenko, O.; Shakoury-Elizeh, M.; Philpott, C.C. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J. Clin. Invest., 2017, 127(5), 1786-1797.
[http://dx.doi.org/10.1172/JCI90519] [PMID: 28375153]
[34]
Li, X.; Wang, P.; Wu, Q.; Xie, L.; Cui, Y.; Li, H.; Yu, P.; Chang, Y.Z. The construction and characterization of mitochondrial ferritin overexpressing mice. Int. J. Mol. Sci., 2017, 18(7), 1518.
[http://dx.doi.org/10.3390/ijms18071518] [PMID: 28703745]
[35]
Hettiarachchi, N.; Dallas, M.; Al-Owais, M.; Griffiths, H.; Hooper, N.; Scragg, J.; Boyle, J.; Peers, C. Heme oxygenase-1 protects against Alzheimer’s amyloid-β1-42-induced toxicity via carbon monoxide production. Cell Death Dis., 2014, 5(12), e1569.
[http://dx.doi.org/10.1038/cddis.2014.529] [PMID: 25501830]
[36]
Xu, X.; Chen, Y.; Zhang, Y.; Yao, Y.; Ji, P. Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe 2+ induced ferroptosis in breast cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(39), 9129-9138.
[http://dx.doi.org/10.1039/D0TB01616K]
[37]
Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol., 2023, 97(6), 1439-1451.
[http://dx.doi.org/10.1007/s00204-023-03476-6] [PMID: 37127681]
[38]
Huang, Y.; Dai, Z.; Barbacioru, C.; Sadée, W. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res., 2005, 65(16), 7446-7454.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4267] [PMID: 16103098]
[39]
Wang, W.; Green, M.; Choi, J.E.; Gijón, M.; Kennedy, P.D.; Johnson, J.K.; Liao, P.; Lang, X.; Kryczek, I.; Sell, A.; Xia, H.; Zhou, J.; Li, G.; Li, J.; Li, W.; Wei, S.; Vatan, L.; Zhang, H.; Szeliga, W.; Gu, W.; Liu, R.; Lawrence, T.S.; Lamb, C.; Tanno, Y.; Cieslik, M.; Stone, E.; Georgiou, G.; Chan, T.A.; Chinnaiyan, A.; Zou, W. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569(7755), 270-274.
[http://dx.doi.org/10.1038/s41586-019-1170-y] [PMID: 31043744]
[40]
Li, Z.; Li, Y.; Yang, Y.; Gong, Z.; Zhu, H.; Qian, Y. In vivo tracking cystine/glutamate antiporter-mediated cysteine/cystine pool under ferroptosis. Anal. Chim. Acta, 2020, 1125, 66-75.
[http://dx.doi.org/10.1016/j.aca.2020.05.049] [PMID: 32674782]
[41]
Franklin, C.C.; Backos, D.S.; Mohar, I.; White, C.C.; Forman, H.J.; Kavanagh, T.J. Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol. Aspects Med., 2009, 30(1-2), 86-98.
[http://dx.doi.org/10.1016/j.mam.2008.08.009] [PMID: 18812186]
[42]
Zhang, R.; Lei, J.; Chen, L.; Wang, Y.; Yang, G.; Yin, Z.; Luo, L. γ-Glutamylcysteine exerts neuroprotection effects against cerebral ischemia/reperfusion injury through inhibiting lipid peroxidation and ferroptosis. Antioxidants, 2022, 11(9), 1653.
[http://dx.doi.org/10.3390/antiox11091653] [PMID: 36139727]
[43]
Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione‐dependent enzymes. Chem. Biodivers., 2023, 20(1), e202200656.
[http://dx.doi.org/10.1002/cbdv.202200656] [PMID: 36538730]
[44]
Özaslan, M.S.; Demir, Y.; Aksoy, M. Küfrevioğlu, Ö.I.; Beydemir, Ş. Inhibition effects of pesticides on glutathione‐ S ‐transferase enzyme activity of Van Lake fish liver. J. Biochem. Mol. Toxicol., 2018, 32(9), e22196.
[http://dx.doi.org/10.1002/jbt.22196] [PMID: 30015991]
[45]
Nagasaki, T.; Schuyler, A.J.; Zhao, J.; Samovich, S.N.; Yamada, K.; Deng, Y.; Ginebaugh, S.P.; Christenson, S.A.; Woodruff, P.G.; Fahy, J.V.; Trudeau, J.B.; Stoyanovsky, D.; Ray, A.; Tyurina, Y.Y.; Kagan, V.E.; Wenzel, S.E. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J. Clin. Invest., 2022, 132(1), e151685.
[http://dx.doi.org/10.1172/JCI151685] [PMID: 34762602]
[46]
Lee, J.Y.; Nam, M.; Son, H.Y.; Hyun, K.; Jang, S.Y.; Kim, J.W.; Kim, M.W.; Jung, Y.; Jang, E.; Yoon, S.J.; Kim, J.; Kim, J.; Seo, J.; Min, J.K.; Oh, K.J.; Han, B.S.; Kim, W.K.; Bae, K.H.; Song, J.; Kim, J.; Huh, Y.M.; Hwang, G.S.; Lee, E.W.; Lee, S.C. Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proc. Natl. Acad. Sci., 2020, 117(51), 32433-32442.
[http://dx.doi.org/10.1073/pnas.2006828117] [PMID: 33288688]
[47]
Calder, P.C. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot. Essent. Fatty Acids, 2008, 79(3-5), 101-108.
[http://dx.doi.org/10.1016/j.plefa.2008.09.016] [PMID: 18951005]
[48]
Vossen, R.C.R.M.; van Dam-Mieras, M.C.E.; Lemmens, P.J.M.R.; Hornstra, G.; Zwaal, R.F.A. Membrane fatty acid composition and endothelial cell functional properties. Biochim. Biophys. Acta Lipids Lipid Metab., 1991, 1083(3), 243-251.
[http://dx.doi.org/10.1016/0005-2760(91)90078-V] [PMID: 2049388]
[49]
Turolo, S.; Edefonti, A.; Mazzocchi, A.; Syren, M.L.; Morello, W.; Agostoni, C.; Montini, G. Role of arachidonic acid and its metabolites in the biological and clinical manifestations of idiopathic nephrotic syndrome. Int. J. Mol. Sci., 2021, 22(11), 5452.
[http://dx.doi.org/10.3390/ijms22115452] [PMID: 34064238]
[50]
Golej, D.L.; Askari, B.; Kramer, F.; Barnhart, S.; Vivekanandan-Giri, A.; Pennathur, S.; Bornfeldt, K.E. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells. J. Lipid Res., 2011, 52(4), 782-793.
[http://dx.doi.org/10.1194/jlr.M013292] [PMID: 21242590]
[51]
Kazachkov, M.; Chen, Q.; Wang, L.; Zou, J. Substrate preferences of a lysophosphatidylcholine acyltransferase highlight its role in phospholipid remodeling. Lipids, 2008, 43(10), 895-902.
[http://dx.doi.org/10.1007/s11745-008-3233-y] [PMID: 18781350]
[52]
Cai, W.; Liu, L.; Shi, X.; Liu, Y.; Wang, J.; Fang, X.; Chen, Z.; Ai, D.; Zhu, Y.; Zhang, X. Alox15/15-HpETE aggravates myocardial ischemia-reperfusion injury by promoting cardiomyocyte ferroptosis. Circulation, 2023, 147(19), 1444-1460.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.122.060257] [PMID: 36987924]
[53]
Okamura, E.; Tomita, T.; Sawa, R.; Nishiyama, M.; Kuzuyama, T. Unprecedented acetoacetyl-coenzyme A synthesizing enzyme of the thiolase superfamily involved in the mevalonate pathway. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11265-11270.
[http://dx.doi.org/10.1073/pnas.1000532107] [PMID: 20534558]
[54]
Liao, P.; Hemmerlin, A.; Bach, T.J.; Chye, M.L. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv., 2016, 34(5), 697-713.
[http://dx.doi.org/10.1016/j.biotechadv.2016.03.005] [PMID: 26995109]
[55]
Ingold, I.; Berndt, C.; Schmitt, S.; Doll, S.; Poschmann, G.; Buday, K.; Roveri, A.; Peng, X.; Porto Freitas, F.; Seibt, T.; Mehr, L.; Aichler, M.; Walch, A.; Lamp, D.; Jastroch, M.; Miyamoto, S.; Wurst, W.; Ursini, F.; Arnér, E.S.J.; Fradejas-Villar, N.; Schweizer, U.; Zischka, H.; Friedmann Angeli, J.P.; Conrad, M. Selenium utilization by GPX4 Is required to prevent hydroperoxide-induced ferroptosis. Cell, 2018, 172(3), 409-422.e21.
[http://dx.doi.org/10.1016/j.cell.2017.11.048] [PMID: 29290465]
[56]
Haas, D.; Niklowitz, P.; Hörster, F.; Baumgartner, E.R.; Prasad, C.; Rodenburg, R.J.; Hoffmann, G.F.; Menke, T.; Okun, J.G. Coenzyme Q 10 is decreased in fibroblasts of patients with methylmalonic aciduria but not in mevalonic aciduria. J. Inherit. Metab. Dis., 2009, 32(4), 570-575.
[http://dx.doi.org/10.1007/s10545-009-1150-8] [PMID: 19504350]
[57]
Wang, X.J.; Yu, J.; Wong, S.H.; Cheng, A.S.L.; Chan, F.K.L.; Ng, S.S.M.; Cho, C.H.; Sung, J.J.Y.; Wu, W.K.K. A novel crosstalk between two major protein degradation systems. Autophagy, 2013, 9(10), 1500-1508.
[http://dx.doi.org/10.4161/auto.25573] [PMID: 23934082]
[58]
Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ., 2013, 20(1), 21-30.
[http://dx.doi.org/10.1038/cdd.2012.72] [PMID: 22722335]
[59]
Yorimitsu, T.; Klionsky, D.J. Endoplasmic reticulum stress: A new pathway to induce autophagy. Autophagy, 2007, 3(2), 160-162.
[http://dx.doi.org/10.4161/auto.3653] [PMID: 17204854]
[60]
Shibutani, S.T.; Yoshimori, T. A current perspective of autophagosome biogenesis. Cell Res., 2014, 24(1), 58-68.
[http://dx.doi.org/10.1038/cr.2013.159] [PMID: 24296784]
[61]
Liu, J.; Kuang, F.; Kroemer, G.; Klionsky, D.J.; Kang, R.; Tang, D. Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem. Biol., 2020, 27(4), 420-435.
[http://dx.doi.org/10.1016/j.chembiol.2020.02.005] [PMID: 32160513]
[62]
Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis is an autophagic cell death process. Cell Res., 2016, 26(9), 1021-1032.
[http://dx.doi.org/10.1038/cr.2016.95] [PMID: 27514700]
[63]
Hou, W.; Xie, Y.; Song, X.; Sun, X.; Lotze, M.T.; Zeh, H.J., III; Kang, R.; Tang, D. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016, 12(8), 1425-1428.
[http://dx.doi.org/10.1080/15548627.2016.1187366] [PMID: 27245739]
[64]
Li, W.; Li, W.; Wang, Y.; Leng, Y.; Xia, Z. Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury. Cell Death Discov., 2021, 7(1), 267.
[http://dx.doi.org/10.1038/s41420-021-00656-0] [PMID: 34588431]
[65]
Fang, Y.; Chen, X.; Tan, Q.; Zhou, H.; Xu, J.; Gu, Q. Inhibiting ferroptosis through disrupting the NCOA4–FTH1 interaction: A new mechanism of action. ACS Cent. Sci., 2021, 7(6), 980-989.
[http://dx.doi.org/10.1021/acscentsci.0c01592] [PMID: 34235259]
[66]
Chen, X.; Yu, C.; Kang, R.; Kroemer, G.; Tang, D. Cellular degradation systems in ferroptosis. Cell Death Differ., 2021, 28(4), 1135-1148.
[http://dx.doi.org/10.1038/s41418-020-00728-1] [PMID: 33462411]
[67]
Martinez-Lopez, N.; Singh, R. Autophagy and lipid droplets in the liver. Annu. Rev. Nutr., 2015, 35(1), 215-237.
[http://dx.doi.org/10.1146/annurev-nutr-071813-105336] [PMID: 26076903]
[68]
Bai, Y.; Meng, L.; Han, L.; Jia, Y.; Zhao, Y.; Gao, H.; Kang, R.; Wang, X.; Tang, D.; Dai, E. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun., 2019, 508(4), 997-1003.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.039] [PMID: 30545638]
[69]
Luzio, J.P.; Pryor, P.R.; Bright, N.A. Lysosomes: Fusion and function. Nat. Rev. Mol. Cell Biol., 2007, 8(8), 622-632.
[http://dx.doi.org/10.1038/nrm2217] [PMID: 17637737]
[70]
Schibler, U.; Sassone-Corsi, P. A web of circadian pacemakers. Cell, 2002, 111(7), 919-922.
[http://dx.doi.org/10.1016/S0092-8674(02)01225-4] [PMID: 12507418]
[71]
Yang, M.; Chen, P.; Liu, J.; Zhu, S.; Kroemer, G.; Klionsky, D.J.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci. Adv., 2019, 5(7), eaaw2238.
[http://dx.doi.org/10.1126/sciadv.aaw2238] [PMID: 31355331]
[72]
Liu, J.; Yang, M.; Kang, R.; Klionsky, D.J.; Tang, D. Autophagic degradation of the circadian clock regulator promotes ferroptosis. Autophagy, 2019, 15(11), 2033-2035.
[http://dx.doi.org/10.1080/15548627.2019.1659623] [PMID: 31441366]
[73]
Zhu, L.; He, S.; Huang, L.; Ren, D.; Nie, T.; Tao, K.; Xia, L.; Lu, F.; Mao, Z.; Yang, Q. Chaperone‐mediated autophagy degrades Keap1 and promotes Nrf2‐mediated antioxidative response. Aging Cell, 2022, 21(6), e13616.
[http://dx.doi.org/10.1111/acel.13616] [PMID: 35535673]
[74]
Wu, Z.; Geng, Y.; Lu, X.; Shi, Y.; Wu, G.; Zhang, M.; Shan, B.; Pan, H.; Yuan, J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci., 2019, 116(8), 2996-3005.
[http://dx.doi.org/10.1073/pnas.1819728116] [PMID: 30718432]
[75]
Yu, S.; Li, Z.; Zhang, Q.; Wang, R.; Zhao, Z.; Ding, W.; Wang, F.; Sun, C.; Tang, J.; Wang, X.; Zhang, H.; Huang, R.; Wu, Q.; Jiang, J.; Zhao, X. GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. Ecotoxicol. Environ. Saf., 2022, 234, 113413.
[http://dx.doi.org/10.1016/j.ecoenv.2022.113413] [PMID: 35305351]
[76]
Wirawan, E.; Lippens, S.; Vanden Berghe, T.; Romagnoli, A.; Fimia, G.M.; Piacentini, M.; Vandenabeele, P. Beclin1: A role in membrane dynamics and beyond. Autophagy, 2012, 8(1), 6-17.
[http://dx.doi.org/10.4161/auto.8.1.16645] [PMID: 22170155]
[77]
Liang, C.; Feng, Z.; Manthari, R.K.; Wang, C.; Han, Y.; Fu, W.; Wang, J.; Zhang, J. Arsenic induces dysfunctional autophagy via dual regulation of mTOR pathway and Beclin1-Vps34/PI3K complex in MLTC-1 cells. J. Hazard. Mater., 2020, 391, 122227.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122227] [PMID: 32044640]
[78]
Liu, R.; Li, X.; Zhao, G. Beclin1-mediated ferroptosis activation is associated with isoflurane-induced toxicity in SH-SY5Y neuroblastoma cells. Acta Biochim. Biophys. Sin., 2019, 51(11), 1134-1141.
[http://dx.doi.org/10.1093/abbs/gmz104] [PMID: 31650158]
[79]
Li, J.; Liu, J.; Xu, Y.; Wu, R.; Chen, X.; Song, X.; Zeh, H.; Kang, R.; Klionsky, D.J.; Wang, X.; Tang, D. Tumor heterogeneity in autophagy-dependent ferroptosis. Autophagy, 2021, 17(11), 3361-3374.
[http://dx.doi.org/10.1080/15548627.2021.1872241] [PMID: 33404288]
[80]
Poznyak, A.V.; Sukhorukov, V.N.; Eremin, I.I.; Nadelyaeva, I.I.; Orekhov, A.N. Diagnostics of atherosclerosis: Overview of the existing methods. Front. Cardiovasc. Med., 2023, 10, 1134097.
[http://dx.doi.org/10.3389/fcvm.2023.1134097] [PMID: 37229223]
[81]
Alım, Z.; Kılıç, D.; Demir, Y. Some indazoles reduced the activity of human serum paraoxonase 1, an antioxidant enzyme: in vitro inhibition and molecular modeling studies. Arch. Physiol. Biochem., 2019, 125(5), 387-395.
[http://dx.doi.org/10.1080/13813455.2018.1470646] [PMID: 29741961]
[82]
Korkmaz, I.N.; Türkeş, C.; Demir, Y.; Öztekin, A.; Özdemir, H.; Beydemir, Ş. Biological evaluation and in silico study of benzohydrazide derivatives as paraoxonase 1 inhibitors. J. Biochem. Mol. Toxicol., 2022, 36(11), e23180.
[http://dx.doi.org/10.1002/jbt.23180] [PMID: 35916346]
[83]
Thim, T.; Hagensen, M.K.; Bentzon, J.F.; Falk, E. From vulnerable plaque to atherothrombosis. J. Intern. Med., 2008, 263(5), 506-516.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01947.x] [PMID: 18410594]
[84]
Adams, H.P., Jr Secondary prevention of atherothrombotic events after ischemic stroke. Mayo Clin. Proc., 2009, 84(1), 43-51.
[http://dx.doi.org/10.4065/84.1.43] [PMID: 19121254]
[85]
Goldstein, L.J.; Brown, S.M. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem., 1977, 46(1), 897-930.
[http://dx.doi.org/10.1146/annurev.bi.46.070177.004341] [PMID: 197883]
[86]
Kattoor, A.J.; Goel, A.; Mehta, J.L. LOX-1: Regulation, signaling and its role in atherosclerosis. Antioxidants, 2019, 8(7), 218.
[http://dx.doi.org/10.3390/antiox8070218] [PMID: 31336709]
[87]
Kita, T; Kume, N; Minami, M; Hayashida, K; Murayama, T; Sano, H Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci,, 2001, 947, 199-205.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03941.x]
[88]
Chistiakov, D.A.; Bobryshev, Y.V.; Orekhov, A.N. Macrophage mediated cholesterol handling in atherosclerosis. J. Cell. Mol. Med., 2016, 20(1), 17-28.
[http://dx.doi.org/10.1111/jcmm.12689] [PMID: 26493158]
[89]
Liao, J.K. Endothelium and acute coronary syndromes. Clin. Chem., 1998, 44(8), 1799-1808.
[http://dx.doi.org/10.1093/clinchem/44.8.1799] [PMID: 9702989]
[90]
Chiu, J.J.; Usami, S.; Chien, S. Vascular endothelial responses to altered shear stress: Pathologic implications for atherosclerosis. Ann. Med., 2009, 41(1), 19-28.
[http://dx.doi.org/10.1080/07853890802186921] [PMID: 18608132]
[91]
Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 1999, 282(21), 2035-2042.
[http://dx.doi.org/10.1001/jama.282.21.2035] [PMID: 10591386]
[92]
Zakkar, M.; D Angelini, G.; Emanueli, C. Regulation of vascular endothelium inflammatory signalling by shear stress. Curr. Vasc. Pharmacol., 2016, 14(2), 181-186.
[http://dx.doi.org/10.2174/1570161114666151202205139] [PMID: 26638798]
[93]
Wang, W.; Ha, C.H.; Jhun, B.S.; Wong, C.; Jain, M.K.; Jin, Z.G. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood, 2010, 115(14), 2971-2979.
[http://dx.doi.org/10.1182/blood-2009-05-224824] [PMID: 20042720]
[94]
Chiu, J.J.; Chien, S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol. Rev., 2011, 91(1), 327-387.
[http://dx.doi.org/10.1152/physrev.00047.2009] [PMID: 21248169]
[95]
Niu, N.; Xu, S.; Xu, Y.; Little, P.J.; Jin, Z.G. Targeting mechanosensitive transcription factors in atherosclerosis. Trends Pharmacol. Sci., 2019, 40(4), 253-266.
[http://dx.doi.org/10.1016/j.tips.2019.02.004] [PMID: 30826122]
[96]
Nagel, T.; Resnick, N.; Dewey, C.F., Jr; Gimbrone, M.A., Jr Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol., 1999, 19(8), 1825-1834.
[http://dx.doi.org/10.1161/01.ATV.19.8.1825] [PMID: 10446060]
[97]
Jiang, L.; Kon, N.; Li, T.; Wang, S.J.; Su, T.; Hibshoosh, H.; Baer, R.; Gu, W. Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 2015, 520(7545), 57-62.
[http://dx.doi.org/10.1038/nature14344] [PMID: 25799988]
[98]
Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med., 2020, 160, 92-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.026] [PMID: 32768568]
[99]
Vinchi, F.; Porto, G.; Simmelbauer, A.; Altamura, S.; Passos, S.T.; Garbowski, M.; Silva, A.M.N.; Spaich, S.; Seide, S.E.; Sparla, R.; Hentze, M.W.; Muckenthaler, M.U. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur. Heart J., 2020, 41(28), 2681-2695.
[http://dx.doi.org/10.1093/eurheartj/ehz112] [PMID: 30903157]
[100]
Hu, X.; Cai, X.; Ma, R.; Fu, W.; Zhang, C.; Du, X. Iron‐load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. J. Cell. Physiol., 2019, 234(10), 18792-18800.
[http://dx.doi.org/10.1002/jcp.28518] [PMID: 30927265]
[101]
Xu, S. Iron and atherosclerosis: The link revisited. Trends Mol. Med., 2019, 25(8), 659-661.
[http://dx.doi.org/10.1016/j.molmed.2019.05.012] [PMID: 31230908]
[102]
Ma, J.; Ma, H.M.; Shen, M.Q.; Wang, Y.Y.; Bao, Y.X.; Liu, Y.; Ke, Y.; Qian, Z.M. The role of iron in atherosclerosis in apolipoprotein e deficient mice. Front. Cardiovasc. Med., 2022, 9, 857933.
[http://dx.doi.org/10.3389/fcvm.2022.857933] [PMID: 35669479]
[103]
Wu, Z.; Chen, T.; Qian, Y.; Luo, G.; Liao, F.; He, X.; Xu, W.; Pu, J.; Ding, S. High-dose ionizing radiation accelerates atherosclerotic plaque progression by regulating p38/ncoa4-mediated ferritinophagy/ferroptosis of endothelial cells. Int. J. Radiat. Oncol. Biol. Phys., 2023, 117(1), 223-236.
[http://dx.doi.org/10.1016/j.ijrobp.2023.04.004] [PMID: 37059236]
[104]
Puddu, P.; Puddu, G.M.; Cravero, E.; De Pascalis, S.; Muscari, A. The putative role of mitochondrial dysfunction in hypertension. Clin. Exp. Hypertens., 2007, 29(7), 427-434.
[http://dx.doi.org/10.1080/10641960701613852] [PMID: 17994352]
[105]
Kirkinezos, I.G.; Moraes, C.T. Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol., 2001, 12(6), 449-457.
[http://dx.doi.org/10.1006/scdb.2001.0282] [PMID: 11735379]
[106]
Cui, J.; Ren, Z.; Zou, W.; Jiang, Y. miR‐497 accelerates oxidized low‐density lipoprotein‐induced lipid accumulation in macrophages by repressing the expression of apelin. Cell Biol. Int., 2017, 41(9), 1012-1019.
[http://dx.doi.org/10.1002/cbin.10808] [PMID: 28653788]
[107]
van Tits, L.J.H.; Stienstra, R.; van Lent, P.L.; Netea, M.G.; Joosten, L.A.B.; Stalenhoef, A.F.H. Oxidized LDL enhances proinflammatory responses of alternatively activated M2 macrophages: A crucial role for Krüppel-like factor 2. Atherosclerosis, 2011, 214(2), 345-349.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.11.018] [PMID: 21167486]
[108]
Lin, L.S.; Song, J.; Song, L.; Ke, K.; Liu, Y.; Zhou, Z.; Shen, Z.; Li, J.; Yang, Z.; Tang, W.; Niu, G.; Yang, H.H.; Chen, X. Simultaneous fenton‐like ion delivery and glutathione depletion by MnO 2 ‐based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed., 2018, 57(18), 4902-4906.
[http://dx.doi.org/10.1002/anie.201712027] [PMID: 29488312]
[109]
Tsunada, S.; Iwakiri, R.; Noda, T.; Fujimoto, K.; Fuseler, J.; Rhoads, C.A.; Aw, T.Y. Chronic exposure to subtoxic levels of peroxidized lipids suppresses mucosal cell turnover in rat small intestine and reversal by glutathione. Dig. Dis. Sci., 2003, 48(1), 210-222.
[http://dx.doi.org/10.1023/A:1021775524062] [PMID: 12645813]
[110]
Xiao, W.; Jia, Z.; Zhang, Q.; Wei, C.; Wang, H.; Wu, Y. Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol. Med. Rep., 2015, 12(3), 3315-3322.
[http://dx.doi.org/10.3892/mmr.2015.3800] [PMID: 25997826]
[111]
Puylaert, P.; Roth, L.; Van Praet, M.; Pintelon, I.; Dumitrascu, C.; van Nuijs, A.; Klejborowska, G.; Guns, P.J.; Berghe, T.V.; Augustyns, K.; De Meyer, G.R.Y.; Martinet, W. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis, 2023, 26(4), 505-522.
[http://dx.doi.org/10.1007/s10456-023-09877-6] [PMID: 37120604]
[112]
Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol., 2017, 12, 18-34.
[http://dx.doi.org/10.1016/j.redox.2017.01.007] [PMID: 28212521]
[113]
Parma, L.; Baganha, F.; Quax, P.H.A.; de Vries, M.R. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur. J. Pharmacol., 2017, 816, 107-115.
[http://dx.doi.org/10.1016/j.ejphar.2017.04.028] [PMID: 28435093]
[114]
Chistiakov, D.A.; Melnichenko, A.A.; Myasoedova, V.A.; Grechko, A.V.; Orekhov, A.N. Role of lipids and intraplaque hypoxia in the formation of neovascularization in atherosclerosis. Ann. Med., 2017, 49(8), 661-677.
[http://dx.doi.org/10.1080/07853890.2017.1366041] [PMID: 28797175]
[115]
Lei, G.; Zhuang, L.; Gan, B. Targeting ferroptosis as a vulnerability in cancer. Nat. Rev. Cancer, 2022, 22(7), 381-396.
[http://dx.doi.org/10.1038/s41568-022-00459-0] [PMID: 35338310]
[116]
Mao, C.; Liu, X.; Zhang, Y.; Lei, G.; Yan, Y.; Lee, H.; Koppula, P.; Wu, S.; Zhuang, L.; Fang, B.; Poyurovsky, M.V.; Olszewski, K.; Gan, B. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 2021, 593(7860), 586-590.
[http://dx.doi.org/10.1038/s41586-021-03539-7] [PMID: 33981038]
[117]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[118]
Zuo, S.; Yu, J.; Pan, H.; Lu, L. Novel insights on targeting ferroptosis in cancer therapy. Biomark. Res., 2020, 8(1), 50.
[http://dx.doi.org/10.1186/s40364-020-00229-w] [PMID: 33024562]
[119]
Arvapalli, R.K.; Paturi, S.; Laurino, J.P.; Katta, A.; Kakarla, S.K.; Gadde, M.K.; Wu, M.; Rice, K.M.; Walker, E.M.; Wehner, P.; Blough, E.R. Deferasirox decreases age-associated iron accumulation in the aging F344XBN rat heart and liver. Cardiovasc. Toxicol., 2010, 10(2), 108-116.
[http://dx.doi.org/10.1007/s12012-010-9068-9] [PMID: 20229123]
[120]
Ibrahim, A.S.; Gebermariam, T.; Fu, Y.; Lin, L.; Husseiny, M.I.; French, S.W.; Schwartz, J.; Skory, C.D.; Edwards, J.E., Jr; Spellberg, B.J. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J. Clin. Invest., 2007, 117(9), 2649-2657.
[http://dx.doi.org/10.1172/JCI32338] [PMID: 17786247]
[121]
Jansová, H.; Macháček, M.; Wang, Q.; Hašková, P.; Jirkovská, A.; Potůčková, E.; Kielar, F.; Franz, K.J.; Šimůnek, T. Comparison of various iron chelators and prochelators as protective agents against cardiomyocyte oxidative injury. Free Radic. Biol. Med., 2014, 74, 210-221.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.019] [PMID: 24992833]
[122]
Wood, J.C.; Otto-Duessel, M.; Gonzalez, I.; Aguilar, M.I.; Shimada, H.; Nick, H.; Nelson, M.; Moats, R. Deferasirox and deferiprone remove cardiac iron in the iron-overloaded gerbil. Transl. Res., 2006, 148(5), 272-280.
[http://dx.doi.org/10.1016/j.trsl.2006.05.005] [PMID: 17145573]
[123]
Zhang, J.; Huang, Y.; Xu, J.; Zhao, R.; Xiong, C.; Habu, J.; Wang, Y.; Luo, X. Global publication trends and research hotspots of curcumin application in tumor: A 20-year bibliometric approach. Front. Oncol., 2022, 12, 1033683.
[http://dx.doi.org/10.3389/fonc.2022.1033683] [PMID: 36300100]
[124]
Yang, C.; Ma, X.; Wang, Z.; Zeng, X.; Hu, Z.; Ye, Z.; Shen, G. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation. Drug Des. Devel. Ther., 2017, 11, 431-439.
[http://dx.doi.org/10.2147/DDDT.S126964] [PMID: 28243065]
[125]
Chen, Y.; Li, X.; Wang, S.; Miao, R.; Zhong, J. Targeting iron metabolism and ferroptosis as novel therapeutic approaches in cardiovascular diseases. Nutrients, 2023, 15(3), 591.
[http://dx.doi.org/10.3390/nu15030591] [PMID: 36771298]
[126]
Feng, S-Q.; Yao, X.; Zhang, Y.; Hao, J.; Duan, H-Q.; Zhao, C-X.; Sun, C.; Li, B.; Fan, B-Y.; Wang, X.; Li, W-X.; Fu, X-H.; Hu, Y.; Liu, C.; Kong, X-H. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen. Res., 2019, 14(3), 532-541.
[http://dx.doi.org/10.4103/1673-5374.245480] [PMID: 30539824]
[127]
Skouta, R.; Dixon, S.J.; Wang, J.; Dunn, D.E.; Orman, M.; Shimada, K.; Rosenberg, P.A.; Lo, D.C.; Weinberg, J.M.; Linkermann, A.; Stockwell, B.R. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc., 2014, 136(12), 4551-4556.
[http://dx.doi.org/10.1021/ja411006a] [PMID: 24592866]
[128]
Li, S.; Zhou, C.; Zhu, Y.; Chao, Z.; Sheng, Z.; Zhang, Y.; Zhao, Y. Ferrostatin-1 alleviates angiotensin II (Ang II)- induced inflammation and ferroptosis in astrocytes. Int. Immunopharmacol., 2021, 90, 107179.
[http://dx.doi.org/10.1016/j.intimp.2020.107179] [PMID: 33278745]
[129]
Liu, P.; Feng, Y.; Li, H.; Chen, X.; Wang, G.; Xu, S.; Li, Y.; Zhao, L. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell. Mol. Biol. Lett., 2020, 25(1), 10.
[http://dx.doi.org/10.1186/s11658-020-00205-0] [PMID: 32161620]
[130]
Miotto, G.; Rossetto, M.; Di Paolo, M.L.; Orian, L.; Venerando, R.; Roveri, A.; Vučković, A.M.; Bosello Travain, V.; Zaccarin, M.; Zennaro, L.; Maiorino, M.; Toppo, S.; Ursini, F.; Cozza, G. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol., 2020, 28, 101328.
[http://dx.doi.org/10.1016/j.redox.2019.101328] [PMID: 31574461]
[131]
Sheng, X.; Shan, C.; Liu, J.; Yang, J.; Sun, B.; Chen, D. Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Phys. Chem. Chem. Phys., 2017, 19(20), 13153-13159.
[http://dx.doi.org/10.1039/C7CP00804J] [PMID: 28489094]
[132]
Feng, Y.; Madungwe, N.B.; Imam Aliagan, A.D.; Tombo, N.; Bopassa, J.C. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem. Biophys. Res. Commun., 2019, 520(3), 606-611.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.006] [PMID: 31623831]
[133]
Li, X.; Duan, L.; Yuan, S.; Zhuang, X.; Qiao, T.; He, J. Ferroptosis inhibitor alleviates Radiation-induced lung fibrosis (RILF) via down-regulation of TGF-β1. J. Inflamm., 2019, 16(1), 11.
[http://dx.doi.org/10.1186/s12950-019-0216-0] [PMID: 31160885]
[134]
Krainz, T.; Gaschler, M.M.; Lim, C.; Sacher, J.R.; Stockwell, B.R.; Wipf, P. A mitochondrial-targeted nitroxide is a potent inhibitor of ferroptosis. ACS Cent. Sci., 2016, 2(9), 653-659.
[http://dx.doi.org/10.1021/acscentsci.6b00199] [PMID: 27725964]
[135]
Zhao, Z.; Wu, J.; Xu, H.; Zhou, C.; Han, B.; Zhu, H.; Hu, Z.; Ma, Z.; Ming, Z.; Yao, Y.; Zeng, R.; Xu, G. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia−reperfusion injury. Cell Death Dis., 2020, 11(8), 629.
[http://dx.doi.org/10.1038/s41419-020-02871-6] [PMID: 32796819]
[136]
Rodríguez-Graciani, K.M.; Chapa-Dubocq, X.R.; Ayala-Arroyo, E.J.; Chaves-Negrón, I.; Jang, S.; Chorna, N.; S Maskrey, T.; Wipf, P.; Javadov, S. Effects of ferroptosis on the metabolome in cardiac cells: The role of glutaminolysis. Antioxidants, 2022, 11(2), 278.
[http://dx.doi.org/10.3390/antiox11020278] [PMID: 35204160]
[137]
Sagach, V.F.; Scrosati, M.; Fielding, J.; Rossoni, G.; Galli, C.; Visioli, F. The water-soluble vitamin E analogue Trolox protects against ischaemia/reperfusion damage in vitro and ex vivo. A comparison with vitamin E. Pharmacol. Res., 2002, 45(6), 435-439.
[http://dx.doi.org/10.1006/phrs.2002.0993] [PMID: 12162942]
[138]
Theodosis-Nobelos, P.; Papagiouvannis, G.; Rekka, E.A. A review on vitamin e natural analogues and on the design of synthetic vitamin e derivatives as cytoprotective agents. Mini Rev. Med. Chem., 2021, 21(1), 10-22.
[http://dx.doi.org/10.2174/1389557520666200807132617] [PMID: 32767937]
[139]
Mabile, L.; Fitoussi, G.; Periquet, B.; Schmitt, A.; Salvayre, R.; Nègre-Salvayre, A. α-tocopherol and trolox block the early intracellular events (TBARS and calcium rises) elicited by oxidized low density lipoproteins in cultured endothelial cells. Free Radic. Biol. Med., 1995, 19(2), 177-187.
[http://dx.doi.org/10.1016/0891-5849(95)00006-J] [PMID: 7649489]
[140]
Valgimigli, M.; Agnoletti, L.; Curello, S.; Comini, L.; Francolini, G.; Mastrorilli, F.; Merli, E.; Pirani, R.; Guardigli, G.; Grigolato, P.G.; Ferrari, R. Serum from patients with acute coronary syndromes displays a proapoptotic effect on human endothelial cells: A possible link to pan-coronary syndromes. Circulation, 2003, 107(2), 264-270.
[http://dx.doi.org/10.1161/01.CIR.0000045665.57256.86] [PMID: 12538426]
[141]
Chen, G.H.; Song, C.C.; Pantopoulos, K.; Wei, X.L.; Zheng, H.; Luo, Z. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic. Biol. Med., 2022, 180, 95-107.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.01.012] [PMID: 35045311]
[142]
Wu, Q.Q.; Deng, W.; Xiao, Y.; Chen, J.J.; Liu, C.; Wang, J.; Guo, Y.; Duan, M.; Cai, Z.; Xie, S.; Yuan, Y.; Tang, Q. The 5-lipoxygenase inhibitor zileuton protects pressure overload-induced cardiac remodeling via activating PPAR α. Oxid. Med. Cell. Longev., 2019, 2019, 1-17.
[http://dx.doi.org/10.1155/2019/7536803] [PMID: 31781348]
[143]
Liu, Y.; Wang, W.; Li, Y.; Xiao, Y.; Cheng, J.; Jia, J. The 5-Lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol. Pharm. Bull., 2015, 38(8), 1234-1239.
[http://dx.doi.org/10.1248/bpb.b15-00048] [PMID: 26235588]
[144]
Brogliato, A.R.; Moor, A.N.; Kesl, S.L.; Guilherme, R.F.; Georgii, J.L.; Peters-Golden, M.; Canetti, C.; Gould, L.J.; Benjamim, C.F. Critical role of 5-lipoxygenase and heme oxygenase-1 in wound healing. J. Invest. Dermatol., 2014, 134(5), 1436-1445.
[http://dx.doi.org/10.1038/jid.2013.493] [PMID: 24226420]
[145]
Bocan, T.M.A.; Rosebury, W.S.; Mueller, S.B.; Susan Kuchera; Welch, K.; Daugherty, A.; Cornicelli, J.A. A specific 15-lipoxygenase inhibitor limits the progression and monocyte–macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis, 1998, 136(2), 203-216.
[http://dx.doi.org/10.1016/S0021-9150(97)00204-9] [PMID: 9543090]
[146]
Song, L.; Yang, H.; Wang, H.X.; Tian, C.; Liu, Y.; Zeng, X.J.; Gao, E.; Kang, Y.M.; Du, J.; Li, H.H. Inhibition of 12/15 lipoxygenase by baicalein reduces myocardial ischemia/reperfusion injury via modulation of multiple signaling pathways. Apoptosis, 2014, 19(4), 567-580.
[http://dx.doi.org/10.1007/s10495-013-0946-z] [PMID: 24248985]
[147]
van Leyen, K.; Kim, H.Y.; Lee, S.R.; Jin, G.; Arai, K.; Lo, E.H. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke, 2006, 37(12), 3014-3018.
[http://dx.doi.org/10.1161/01.STR.0000249004.25444.a5] [PMID: 17053180]
[148]
Li, M.; Meng, Z.; Yu, S.; Li, J.; Wang, Y.; Yang, W.; Wu, H. Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem. Biol. Interact., 2022, 366, 110137.
[http://dx.doi.org/10.1016/j.cbi.2022.110137] [PMID: 36055377]
[149]
Hinman, A.; Holst, C.R.; Latham, J.C.; Bruegger, J.J.; Ulas, G.; McCusker, K.P.; Amagata, A.; Davis, D.; Hoff, K.G.; Kahn-Kirby, A.H.; Kim, V.; Kosaka, Y.; Lee, E.; Malone, S.A.; Mei, J.J.; Richards, S.J.; Rivera, V.; Miller, G.; Trimmer, J.K.; Shrader, W.D. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One, 2018, 13(8), e0201369.
[http://dx.doi.org/10.1371/journal.pone.0201369] [PMID: 30110365]
[150]
Hu, Q.; Zhang, Y.; Lou, H.; Ou, Z.; Liu, J.; Duan, W.; Wang, H.; Ge, Y.; Min, J.; Wang, F.; Ju, Z. GPX4 and vitamin E cooperatively protect hematopoietic stem and progenitor cells from lipid peroxidation and ferroptosis. Cell Death Dis., 2021, 12(7), 706.
[http://dx.doi.org/10.1038/s41419-021-04008-9] [PMID: 34267193]
[151]
Zhang, X.; Wu, S.; Guo, C.; Guo, K.; Hu, Z.; Peng, J.; Zhang, Z.; Li, J. Vitamin E exerts neuroprotective effects in pentylenetetrazole kindling epilepsy via suppression of ferroptosis. Neurochem. Res., 2022, 47(3), 739-747.
[http://dx.doi.org/10.1007/s11064-021-03483-y] [PMID: 34779994]
[152]
Eto, K.; Ohya, Y.; Nakamura, Y.; Abe, I.; Fujishima, M. Comparative actions of insulin sensitizers on ion channels in vascular smooth muscle. Eur. J. Pharmacol., 2001, 423(1), 1-7.
[http://dx.doi.org/10.1016/S0014-2999(01)01047-0] [PMID: 11438300]
[153]
Ji, Q.; Fu, S.; Zuo, H.; Huang, Y.; Chu, L.; Zhu, Y.; Hu, J.; Wu, Y.; Chen, S.; Wang, Y.; Ren, Y.; Pu, X.; Liu, N.; Li, R.; Wang, X.; Dai, C. ACSL4 is essential for radiation-induced intestinal injury by initiating ferroptosis. Cell Death Discov., 2022, 8(1), 332.
[http://dx.doi.org/10.1038/s41420-022-01127-w] [PMID: 35869042]
[154]
Kung, Y.A.; Chiang, H.J.; Li, M.L.; Gong, Y.N.; Chiu, H.P.; Hung, C.T.; Huang, P.N.; Huang, S.Y.; Wang, P.Y.; Hsu, T.A.; Brewer, G.; Shih, S.R. Acyl-Coenzyme a synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis. MBio, 2022, 13(1), e02717-21.
[http://dx.doi.org/10.1128/mbio.02717-21] [PMID: 35038927]
[155]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.F.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[156]
Kumar, S.; Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett., 2005, 157(3), 175-188.
[http://dx.doi.org/10.1016/j.toxlet.2005.03.004] [PMID: 15917143]
[157]
Sawicki, K.T.; Shang, M.; Wu, R.; Chang, H.C.; Khechaduri, A.; Sato, T.; Kamide, C.; Liu, T.; Naga Prasad, S.V.; Ardehali, H. Increased heme levels in the heart lead to exacerbated ischemic injury. J. Am. Heart Assoc., 2015, 4(8), e002272.
[http://dx.doi.org/10.1161/JAHA.115.002272] [PMID: 26231844]
[158]
Duvigneau, J.C.; Esterbauer, H.; Kozlov, A.V. Role of heme oxygenase as a modulator of heme-mediated pathways. Antioxidants, 2019, 8(10), 475.
[http://dx.doi.org/10.3390/antiox8100475] [PMID: 31614577]
[159]
Ingoglia, G.; Sag, C.M.; Rex, N.; De Franceschi, L.; Vinchi, F.; Cimino, J.; Petrillo, S.; Wagner, S.; Kreitmeier, K.; Silengo, L.; Altruda, F.; Maier, L.S.; Hirsch, E.; Ghigo, A.; Tolosano, E. Hemopexin counteracts systolic dysfunction induced by hemedriven oxidative stress. Free Radic. Biol. Med., 2017, 108, 452-464.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.003] [PMID: 28400318]
[160]
Alvarado, G.; Jeney, V.; Tóth, A.; Csősz, É.; Kalló, G.; Huynh, A.T.; Hajnal, C.; Kalász, J.; Pásztor, E.T.; Édes, I.; Gram, M.; Akerström, B.; Smith, A.; Eaton, J.W.; Balla, G.; Papp, Z.; Balla, J. Heme-induced contractile dysfunction in Human cardiomyocytes caused by oxidant damage to thick filament proteins. Free Radic. Biol. Med., 2015, 89, 248-262.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.07.158] [PMID: 26409224]
[161]
Maruhashi, T.; Kihara, Y.; Higashi, Y. Bilirubin and endothelial function. J. Atheroscler. Thromb., 2019, 26(8), 688-696.
[http://dx.doi.org/10.5551/jat.RV17035] [PMID: 31270300]
[162]
Peyton, K.J.; Shebib, A.R.; Azam, M.A.; Liu, X.; Tulis, D.A.; Durante, W. Bilirubin inhibits neointima formation and vascular smooth muscle cell proliferation and migration. Front. Pharmacol., 2012, 3, 48.
[http://dx.doi.org/10.3389/fphar.2012.00048] [PMID: 22470341]
[163]
Chen, W.; Tumanov, S.; Stanley, C.P.; Kong, S.M.Y.; Nadel, J.; Vigder, N.; Newington, D.L.; Wang, X.S.; Dunn, L.L.; Stocker, R. Destabilization of atherosclerotic plaque by bilirubin deficiency. Circ. Res., 2023, 132(7), 812-827.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.322418] [PMID: 36876485]
[164]
Hewett, P.W.; Fujisawa, T.; Sissaoui, S.; Cai, M.; Gueron, G.; Al-Ani, B.; Cudmore, M.; Ahmed, F.S.; Wong, M.K.K.; Wegiel, B.; Otterbein, L.E.; Vítek, L.; Ramma, W.; Wang, K.; Ahmed, A.; Ahmad, S. Carbon monoxide inhibits sprouting angiogenesis and vascular endothelial growth factor receptor-2 phosphorylation. Thromb. Haemost., 2015, 113(2), 329-337.
[http://dx.doi.org/10.1160/TH14-01-0002] [PMID: 25354586]
[165]
Dulak, J.; Deshane, J.; Jozkowicz, A.; Agarwal, A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: Focus on angiogenesis. Circulation, 2008, 117(2), 231-241.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.698316] [PMID: 18195184]
[166]
Lin, H.H.; Chen, Y.H.; Chang, P.F.; Lee, Y.T.; Yet, S.F.; Chau, L.Y. Heme oxygenase-1 promotes neovascularization in ischemic heart by coinduction of VEGF and SDF-1. J. Mol. Cell. Cardiol., 2008, 45(1), 44-55.
[http://dx.doi.org/10.1016/j.yjmcc.2008.04.011] [PMID: 18534615]
[167]
Meng, N.; Xie, H.X.; Hou, J.R.; Chen, Y.B.; Wu, M.J.; Guo, Y.W.; Jiang, C.S. Design and semisynthesis of oleanolic acid derivatives as VEGF inhibitors: Inhibition of VEGF-induced proliferation, angiogenesis, and VEGFR2 activation in HUVECs. Chin. J. Nat. Med., 2022, 20(3), 229-240.
[http://dx.doi.org/10.1016/S1875-5364(22)60159-6] [PMID: 35369968]
[168]
Hou, J.R.; Wang, Y.H.; Zhong, Y.N.; Che, T.T.; Hu, Y.; Bao, J.; Meng, N. Protective effect of flavonoids from a deep-sea-derived arthrinium sp. against ox-ldl-induced oxidative injury through activating the AKT/Nrf2/HO-1 pathway in vascular endothelial cells. Mar. Drugs, 2021, 19(12), 712.
[http://dx.doi.org/10.3390/md19120712] [PMID: 34940711]
[169]
Meng, N.; Chen, K.; Wang, Y.; Hou, J.; Chu, W.; Xie, S.; Yang, F.; Sun, C. Dihydrohomoplantagin and homoplantaginin, major flavonoid glycosides from salvia plebeia R. Br. Inhibit Oxldl-induced Endothelial Cell Injury and Restrict Atherosclerosis via Activating Nrf2 Anti-Oxidation Signal Pathway. Molecules, 2022, 27(6), 1990.
[http://dx.doi.org/10.3390/molecules27061990] [PMID: 35335352]
[170]
Soma, M.R.; Corsini, A.; Paoletti, R. Cholesterol and mevalonic acid modulation in cell metabolism and multiplication. Toxicol. Lett., 1992, 64-65(Spec No), 1-15.
[http://dx.doi.org/10.1016/0378-4274(92)90167-I] [PMID: 1471162]
[171]
Devaraj, S.; Rogers, J.; Jialal, I. Statins and biomarkers of inflammation. Curr. Atheroscler. Rep., 2007, 9(1), 33-41.
[http://dx.doi.org/10.1007/BF02693938] [PMID: 17169243]
[172]
Massaro, M.; Zampolli, A.; Scoditti, E.; Carluccio, M.A.; Storelli, C.; Distante, A.; De Caterina, R. Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: Anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc. Res., 2010, 86(2), 311-320.
[http://dx.doi.org/10.1093/cvr/cvp375] [PMID: 19946014]
[173]
Beltowski, J. Statins and modulation of oxidative stress. Toxicol. Mech. Methods, 2005, 15(2), 61-92.
[http://dx.doi.org/10.1080/15376520590918766] [PMID: 20021068]
[174]
Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; Kim, M.; Nishito, Y.; Iemura, S.; Natsume, T.; Ueno, T.; Kominami, E.; Motohashi, H.; Tanaka, K.; Yamamoto, M. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol., 2010, 12(3), 213-223.
[http://dx.doi.org/10.1038/ncb2021] [PMID: 20173742]
[175]
Gureev, A.P.; Sadovnikova, I.S.; Starkov, N.N.; Starkov, A.A.; Popov, V.N. p62-Nrf2-p62 mitophagy regulatory loop as a target for preventive therapy of neurodegenerative diseases. Brain Sci., 2020, 10(11), 847.
[http://dx.doi.org/10.3390/brainsci10110847] [PMID: 33198234]
[176]
Duran, A.; Amanchy, R.; Linares, J.F.; Joshi, J.; Abu-Baker, S.; Porollo, A.; Hansen, M.; Moscat, J.; Diaz-Meco, M.T. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell, 2011, 44(1), 134-146.
[http://dx.doi.org/10.1016/j.molcel.2011.06.038] [PMID: 21981924]
[177]
Liao, Y.; Hao, Y.; Chen, H.; He, Q.; Yuan, Z.; Cheng, J. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death. Protein Cell, 2015, 6(6), 434-442.
[http://dx.doi.org/10.1007/s13238-015-0144-6] [PMID: 25753332]
[178]
Schaefer, C.A.; Kuhlmann, C.R.W.; Weiterer, S.; Fehsecke, A.; Abdallah, Y.; Schaefer, C.; Schaefer, M.B.; Mayer, K.; Tillmanns, H.; Erdogan, A. Statins inhibit hypoxia-induced endothelial proliferation by preventing calcium-induced ROS formation. Atherosclerosis, 2006, 185(2), 290-296.
[http://dx.doi.org/10.1016/j.atherosclerosis.2005.06.035] [PMID: 16112121]
[179]
Zhang, L.; Zhang, Y.; Jiang, Y.; Dou, X.; Li, S.; Chai, H.; Qian, Q.; Wang, M. Upregulated SOCC and IP3R calcium channels and subsequent elevated cytoplasmic calcium signaling promote nonalcoholic fatty liver disease by inhibiting autophagy. Mol. Cell. Biochem., 2021, 476(8), 3163-3175.
[http://dx.doi.org/10.1007/s11010-021-04150-0] [PMID: 33864571]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy