Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Nanoparticles’ Perspective in Skin Tissue Engineering: Current Concepts and Future Outlook

In Press, (this is not the final "Version of Record"). Available online 26 January, 2024
Author(s): Maryam Kaviani and Bita Geramizadeh*
Published on: 26 January, 2024

DOI: 10.2174/011574888X291345240110102648

Price: $95

Abstract

Nanotechnology seems to provide solutions to the unresolved complications in skin tissue engineering. According to the broad function of nanoparticles, this review article is intended to build a perspective for future success in skin tissue engineering. In the present review, recent studies were reviewed, and essential benefits and challenging issues regarding the application of nanoparticles in skin tissue engineering were summarized. Previous studies indicated that nanoparticles can play essential roles in the improvement of engineered skin. Bio-inspired design of an engineered skin structure first needs to understand the native tissue and mimic that in laboratory conditions. Moreover, a fundamental comprehension of the nanoparticles and their related effects on the final structure can guide researchers in recruiting appropriate nanoparticles. Attention to essential details, including the designation of nanoparticle type according to the scaffold, how to prepare the nanoparticles, and what concentration to use, is critical for the application of nanoparticles to become a reality. In conclusion, nanoparticles were applied to promote scaffold characteristics and angiogenesis, improve cell behavior, provide antimicrobial conditions, and cell tracking.

[1]
Hasan A, Morshed M, Memic A, Hassan S, Webster T, Marei H. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int J Nanomed 2018; 13: 5637-55.
[http://dx.doi.org/10.2147/IJN.S153758] [PMID: 30288038]
[2]
Shafiqa A, Aziz AA, Mehrdel B. Nanoparticle optical properties: Size dependence of a single gold spherical nanoparticle. J Phys: Conf Series 2018; 1083(1): 012040.
[3]
Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 2010; 6(1): 27.
[http://dx.doi.org/10.1007/s11671-010-9772-1] [PMID: 27502650]
[4]
Brammer KS, Oh S, Cobb CJ, Bjursten LM, Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 2009; 5(8): 3215-23.
[http://dx.doi.org/10.1016/j.actbio.2009.05.008] [PMID: 19447210]
[5]
Moghimi SM, Hunter AC, Andresen TL. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective. Annu Rev Pharmacol Toxicol 2012; 52(1): 481-503.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134623] [PMID: 22035254]
[6]
Yuan T, Gao L, Zhan W, Dini D. Effect of particle size and surface charge on nanoparticles diffusion in the brain white matter. Pharm Res 2022; 39(4): 767-81.
[http://dx.doi.org/10.1007/s11095-022-03222-0] [PMID: 35314997]
[7]
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 2008; 105(38): 14265-70.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[8]
Nosrati H, Banitalebi-Dhkordi M, Khodaei M, et al. Preparation and in vitro characterization of electrospun scaffolds composed of chitosan, gelatin and 58S bioactive glass nanoparticles for skin tissue engineering. Shahrekord Univ Med Sci J 2022; 24(1): 1-6.
[http://dx.doi.org/10.34172/jsums.2022.01]
[9]
Verma N, Pramanik K, Singh AK, Biswas A. Design of magnesium oxide nanoparticle incorporated carboxy methyl cellulose/poly vinyl alcohol composite film with novel composition for skin tissue engineering. Mater Technol 2022; 37(8): 706-16.
[http://dx.doi.org/10.1080/10667857.2021.1873634]
[10]
Kamnoore D, Mukherjee D, Nayak Ammunje D, Parasuraman P, Teja BV, Radhika M. Hydroxyapatite nanoparticle-enriched thiolated polymer-based biocompatible scaffold can improve skin tissue regeneration. J Mater Res 2021; 36(21): 4287-306.
[http://dx.doi.org/10.1557/s43578-021-00405-0]
[11]
Johari N, Rafati F, Zohari F, Tabari PG, Samadikuchaksaraei A. Porous functionally graded scaffolds of poly (ε-caprolactone)/ZnO nanocomposite for skin tissue engineering: Morphological, mechanical and biological evaluation. Mater Chem Phys 2022; 280: 125786.
[http://dx.doi.org/10.1016/j.matchemphys.2022.125786]
[12]
Radwan-Pragłowska J, Janus Ł, Piątkowski M, Bogdał D, Matýsek D. Hybrid bilayer PLA/chitosan nanofibrous scaffolds doped with ZnO, Fe3O4, and Au nanoparticles with bioactive properties for skin tissue engineering. Polymers 2020; 12(1): 159.
[http://dx.doi.org/10.3390/polym12010159] [PMID: 31936229]
[13]
Chung E, Nam SY, Ricles LM, Emelianov S, Suggs L. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int J Nanomed 2013; 8: 325-36.
[http://dx.doi.org/10.2147/IJN.S36711] [PMID: 23345978]
[14]
Peng LH, Wei W, Shan YH, et al. β-cyclodextrin-linked polyethylenimine nanoparticles facilitate gene transfer and enhance the angiogenic capacity of mesenchymal stem cells for wound repair and regeneration. J Biomed Nanotechnol 2015; 11(4): 680-90.
[http://dx.doi.org/10.1166/jbn.2015.1970] [PMID: 26310074]
[15]
Jin G, Prabhakaran MP, Nadappuram BP, Singh G, Kai D, Ramakrishna S. Electrospun poly(L-Lactic Acid)-co-Poly( ϵ -caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering. J Biomater Sci Polym Ed 2012; 23(18): 2337-52.
[http://dx.doi.org/10.1163/156856211X617399] [PMID: 22244047]
[16]
Wang G, Qian G, Zan J, et al. A co-dispersion nanosystem of graphene oxide @silicon-doped hydroxyapatite to improve scaffold properties. Mater Des 2021; 199: 109399.
[http://dx.doi.org/10.1016/j.matdes.2020.109399]
[17]
Rezvaninia M, Bagheri F, Baheiraei N. Effects of kartogenin/PLGA nanoparticles on silk scaffold properties and stem cell fate. Bioinspired, Biomimet Nanobiomater 2021; 10(2): 45-53.
[http://dx.doi.org/10.1680/jbibn.20.00047]
[18]
Khalid H, Iqbal H, Zeeshan R, et al. Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration. Polym Bull 2021; 78(12): 7199-218.
[http://dx.doi.org/10.1007/s00289-020-03475-y]
[19]
Kumari S, Singh BN, Srivastava P. Effect of copper nanoparticles on physico-chemical properties of chitosan and gelatin-based scaffold developed for skin tissue engineering application. 3 Biotech 2019; 9(3): 102.
[20]
Nasiri G, Azarpira N, Alizadeh A, et al. Fabrication and evaluation of poly (vinyl alcohol)/gelatin fibrous scaffold containing ZnO nanoparticles for skin tissue engineering applications. Mater Today Commun 2022; 33: 104476.
[http://dx.doi.org/10.1016/j.mtcomm.2022.104476]
[21]
Peter M, Ganesh N, Selvamurugan N, et al. Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym 2010; 80(3): 687-94.
[http://dx.doi.org/10.1016/j.carbpol.2009.11.050]
[22]
Babitha S, Korrapati PS. Biodegradable zein–polydopamine polymeric scaffold impregnated with TiO2 nanoparticles for skin tissue engineering. Biomed Mater 2017; 12(5): 055008.
[http://dx.doi.org/10.1088/1748-605X/aa7d5a] [PMID: 28944761]
[23]
Pan A, Zhong M, Wu H, et al. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing. Nanomedicine 2018; 14(5): 1619-28.
[http://dx.doi.org/10.1016/j.nano.2018.04.007] [PMID: 29698728]
[24]
Losi P, Briganti E, Errico C, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 2013; 9(8): 7814-21.
[http://dx.doi.org/10.1016/j.actbio.2013.04.019] [PMID: 23603001]
[25]
Gu L, Li X, Jiang J, et al. Stem cell tracking using effective self-assembled peptide-modified superparamagnetic nanoparticles. Nanoscale 2018; 10(34): 15967-79.
[http://dx.doi.org/10.1039/C7NR07618E] [PMID: 29916501]
[26]
Meir R, Motiei M, Popovtzer R. Gold nanoparticles for in vivo cell tracking. Nanomedicine 2014; 9(13): 2059-69.
[http://dx.doi.org/10.2217/nnm.14.129] [PMID: 25343353]
[27]
Kim SH, Park JH, Kwon JS, et al. NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials 2020; 258: 120267.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120267] [PMID: 32781325]
[28]
Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv Mater 2021; 33(23): 1906539.
[http://dx.doi.org/10.1002/adma.201906539] [PMID: 32495404]
[29]
Cheng SH, Yu D, Tsai HM, et al. Dynamic in vivo SPECT imaging of neural stem cells functionalized with radiolabeled nanoparticles for tracking of glioblastoma. J Nucl Med 2016; 57(2): 279-84.
[http://dx.doi.org/10.2967/jnumed.115.163006] [PMID: 26564318]
[30]
Chhour P, Naha PC, O’Neill SM, et al. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials 2016; 87: 93-103.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.009] [PMID: 26914700]
[31]
Jin D, Xi P, Wang B, Zhang L, Enderlein J, van Oijen AM. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 2018; 15(6): 415-23.
[http://dx.doi.org/10.1038/s41592-018-0012-4] [PMID: 29808018]
[32]
Peserico A, Di Berardino C, Russo V, et al. Nanotechnology-assisted cell tracking. Nanomaterials 2022; 12(9): 1414.
[http://dx.doi.org/10.3390/nano12091414] [PMID: 35564123]
[33]
Sánchez-López E, Gomes D, Esteruelas G, et al. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020; 10(2): 292.
[http://dx.doi.org/10.3390/nano10020292] [PMID: 32050443]
[34]
Samberg ME, Mente P, He T, King MW, Monteiro-Riviere NA. In vitro biocompatibility and antibacterial efficacy of a degradable poly(L-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles. Ann Biomed Eng 2014; 42(7): 1482-93.
[http://dx.doi.org/10.1007/s10439-013-0929-9] [PMID: 24150238]
[35]
Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Skin tissue engineering for the infected wound site: Biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and Staphylococcus aureus. Tissue Eng Part C Methods 2014; 20(10): 790-7.
[http://dx.doi.org/10.1089/ten.tec.2013.0458] [PMID: 24494739]
[36]
Srivastava CM, Purwar R, Gupta AP. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering. Int J Biol Macromol 2019; 130: 437-53.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.255] [PMID: 30738903]
[37]
Radwan-Pragłowska J, Piątkowski M, Janus Ł, Bogdał D, Matysek D, Čablik V. Microwave-assisted synthesis and characterization of antibacterial O -crosslinked chitosan hydrogels doped with TiO 2 nanoparticles for skin regeneration. Int J Polym Mater 2019; 68(15): 881-90.
[http://dx.doi.org/10.1080/00914037.2018.1517351]
[38]
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett 2015; 7(3): 219-42.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[39]
Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 2020; 15: 2555-62.
[http://dx.doi.org/10.2147/IJN.S246764] [PMID: 32368040]
[40]
Ranjan S, Ramalingam C. Titanium dioxide nanoparticles induce bacterial membrane rupture by reactive oxygen species generation. Environ Chem Lett 2016; 14(4): 487-94.
[http://dx.doi.org/10.1007/s10311-016-0586-y]
[41]
Nguyen NYT, Grelling N, Wetteland CL, Rosario R, Liu H. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Sci Rep 2018; 8(1): 16260.
[http://dx.doi.org/10.1038/s41598-018-34567-5] [PMID: 30389984]
[42]
Azarpira N, Kaviani M, Sarvestani FS. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis. Tissue Cell 2021; 72: 101539.
[http://dx.doi.org/10.1016/j.tice.2021.101539] [PMID: 33838351]
[43]
Xie Z, Paras CB, Weng H, et al. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 2013; 9(12): 9351-9.
[http://dx.doi.org/10.1016/j.actbio.2013.07.030] [PMID: 23917148]
[44]
Guo G, Li X, Ye X, et al. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent. Int J Nanomedicine 2016; 11: 3993-4009.
[http://dx.doi.org/10.2147/IJN.S104350] [PMID: 27574428]
[45]
Feldman D, Osborne S. Fibrin as a tissue adhesive and scaffold with an angiogenic agent (FGF-1) to enhance burn graft healing in vivo and clinically. J Funct Biomater 2018; 9(4): 68.
[http://dx.doi.org/10.3390/jfb9040068] [PMID: 30486230]
[46]
Bai Y, Bai L, Zhou J, Chen H, Zhang L. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis. Cell Immunol 2018; 323: 19-32.
[http://dx.doi.org/10.1016/j.cellimm.2017.10.008] [PMID: 29111157]
[47]
Wagner ER, Parry J, Dadsetan M, et al. VEGF-mediated angiogenesis and vascularization of a fumarate-crosslinked polycaprolactone (PCLF) scaffold. Connect Tissue Res 2018; 59(6): 542-9.
[http://dx.doi.org/10.1080/03008207.2018.1424145] [PMID: 29513041]
[48]
Adibfar A, Amoabediny G, Baghaban Eslaminejad M, Mohamadi J, Bagheri F, Zandieh Doulabi B. VEGF delivery by smart polymeric PNIPAM nanoparticles affects both osteogenic and angiogenic capacities of human bone marrow stem cells. Mater Sci Eng C 2018; 93: 790-9.
[http://dx.doi.org/10.1016/j.msec.2018.08.037] [PMID: 30274113]
[49]
Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for angiogenesis in skin tissue engineering. Tissue Eng Part B Rev 2020; 26(3): 203-16.
[http://dx.doi.org/10.1089/ten.teb.2019.0337] [PMID: 31964266]
[50]
Khan RS, Rather AH, Wani TU, Rather S, Abdal-hay A, Sheikh FA. A comparative review on silk fibroin nanofibers encasing the silver nanoparticles as antimicrobial agents for wound healing applications. Mater Today Commun 2022; 32: 103914.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103914]
[51]
Pesaraklou A, Mahdavi-Shahri N, Hassanzadeh H, et al. Use of cerium oxide nanoparticles: A good candidate to improve skin tissue engineering. Biomed Mater 2019; 14(3): 035008.
[http://dx.doi.org/10.1088/1748-605X/ab0679] [PMID: 30754036]
[52]
Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J 2012; 14(2): 282-95.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy