Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Curcumin and Curcumin Derivatives for Therapeutic Applications: In vitro and In vivo Studies

Author(s): Babita Gupta, Pramod Kumar Sharma, Rishabha Malviya* and Prem Shankar Mishra

Volume 20, Issue 10, 2024

Published on: 29 January, 2024

Page: [1189 - 1204] Pages: 16

DOI: 10.2174/0115734013281379231228061438

Price: $65

Abstract

Curcumin is a naturally derived phytochemical compound obtained from the turmeric plant Curcuma longa L. (Zingiberaceae family), which is a popular spice and food color and has been actively researched for decades. It has been shown to have a variety of pharmacological properties both in vitro and in vivo. Several investigations have shown that curcumin's metabolites contribute to its pharmacological effectiveness. Curcumin has potent anti-inflammatory and anti-tumor activity when used alone or in conjunction with conventional treatments. There are various unique and diverse pharmacological effects of curcumin against various disease conditions like diabetes, inflammation, cancer, malaria, and Alzheimer's. The in vitro and in vivo mechanisms by which curcumin exerts its pharmacological effects are reviewed. Based on data from the clinical and experimental evaluation of curcumin in animal models and human subjects, the review summarizes the pharmacological effect of curcumin and its derivatives concerning anti-tumor property, their mechanism of action, and their cellular target. The current research focuses on identifying curcumin's function in the immune system's cascade and determining the ideal effective dose (ED50). Through in-vitro and in-vivo experiments, the current study aims to comprehend and establish the role of curcumin in the healing of disease conditions.

Graphical Abstract

[1]
Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[2]
Srinivasan KR. A chromatographic study of the curcuminoids in Curcuma longa, L. J Pharm Pharmacol 1953; 5(7): 448-57.
[PMID: 13070173]
[3]
Tønnesen HH, Karlsen J. High-performance liquid chromatography of curcumin and related compounds. J Chromatogr A 1983; 259: 367-71.
[http://dx.doi.org/10.1016/S0021-9673(01)88022-5]
[4]
Nurfina AN, Reksohadiprodjo MS, Timmerman H, Jenie UA, Sugiyanto D, van der Goot H. Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. Eur J Med Chem 1997; 32(4): 321-8.
[http://dx.doi.org/10.1016/S0223-5234(97)89084-8]
[5]
Pabon HJJ. A Synhtesis of curcumin and related compounds. Rec. Tray. Chim 1964; 83: 379-86.
[6]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[7]
Pawar H. Phytochemical evaluation and curcumin content determination of turmeric rhizomes collected from bhandara district of maharashtra. (India). Med Chem 2014; 4: 588-91.
[8]
Li J, Larregieu CA, Benet LZ. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med 2016; 14(12): 888-97.
[http://dx.doi.org/10.1016/S1875-5364(17)30013-4] [PMID: 28262115]
[9]
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J 2013; 15(1): 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[10]
Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011; 10(1): 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[11]
He Y, Yue Y, Zheng X, Zhang K, Chen S, Du Z. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 2015; 20(5): 9183-213.
[http://dx.doi.org/10.3390/molecules20059183] [PMID: 26007179]
[12]
Sharma RA, Gescher AJ, Steward WP. Curcumin: The story so far. Eur J Cancer 2005; 41(13): 1955-68.
[http://dx.doi.org/10.1016/j.ejca.2005.05.009] [PMID: 16081279]
[13]
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm 2007; 4(6): 807-18.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[14]
Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res 2003; 23(1A): 363-98.
[PMID: 12680238]
[15]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: The Indian solid gold. Adv Exp Med Biol 2007; 595: 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[16]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[17]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[18]
Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 2004; 74(8): 969-85.
[http://dx.doi.org/10.1016/j.lfs.2003.06.042] [PMID: 14672754]
[19]
Borik RM, Fawzy NM, Abu-Bakr SM, Aly MS. Design, synthesis, anticancer evaluation and docking studies of novel heterocyclic derivatives obtained via reactions involving curcumin. Mol 2018; 23: 1398.
[20]
Tripathi A, Misra K. Designing and development of novel curcumin analogs/congeners as inhibitors of breast cancer stem cells growth. Chem Eng Trans 2016; 49: 79-84.
[21]
Vallianou NG, Evangelopoulos A, Schizas N, Kazazis C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res 2015; 35(2): 645-51.
[PMID: 25667441]
[22]
Grynkiewicz G, Ślifirski P. Curcumin and curcuminoids in quest for medicinal status. Acta Biochim Pol 2012; 59(2): 201-12.
[http://dx.doi.org/10.18388/abp.2012_2139] [PMID: 22590694]
[23]
Hackler L Jr, Ózsvári B, Gyuris M, et al. The curcumin analog C-150, influencing NF-κB, UPR, and Akt/Notch pathways has potent anticancer activity in vitro and in vivo. PLoS One 2016; 11(3): e0149832.
[http://dx.doi.org/10.1371/journal.pone.0149832] [PMID: 26943907]
[24]
Shishodia S, Sethi G, Aggarwal BB. Curcumin: Getting back to the roots. Ann N Y Acad Sci 2005; 1056(1): 206-17.
[http://dx.doi.org/10.1196/annals.1352.010] [PMID: 16387689]
[25]
Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71(10): 1397-421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[26]
Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J Nat Prod 2007; 70(2): 143-6.
[http://dx.doi.org/10.1021/np060263s] [PMID: 17315954]
[27]
Somers-Edgar TJ, Taurin S, Larsen L, Chandramouli A, Nelson MA, Rosengren RJ. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines. Invest New Drugs 2011; 29(1): 87-97.
[http://dx.doi.org/10.1007/s10637-009-9339-0] [PMID: 19816657]
[28]
Sa G, Das T, Banerjee S, Chakraborty J. Curcumin: From exotic spice to modern anticancer drug. Al Ameen J Med Sci 2010; 3: 21-37.
[29]
Zhang Q, Li D, Liu Y, et al. Potential anticancer activity of curcumin analogs containing sulfone on human cancer cells. Arch Biol Sci 2016; 68(1): 125-33.
[http://dx.doi.org/10.2298/ABS150323134Z]
[30]
Nagahama K, Utsumi T, Kumano T, Maekawa S, Oyama N, Kawakami J. Discovery of a new function of curcumin which enhances its anticancer therapeutic potency. Sci Rep 2016; 6(1): 30962.
[http://dx.doi.org/10.1038/srep30962] [PMID: 27476814]
[31]
Tsukamoto M, Kuroda K, Ramamoorthy A, Yasuhara K. Modulation of raft domains in a lipid bilayer by boundary-active curcumin. Chem Commun 2014; 50(26): 3427-30.
[http://dx.doi.org/10.1039/c3cc47738j] [PMID: 24396862]
[32]
Zhao B, Li X, He R, Cheng S, Wenjuan X. Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 1989; 14(2): 175-85.
[http://dx.doi.org/10.1007/BF02797132] [PMID: 2472207]
[33]
Choi H, Chun YS, Kim SW, Kim MS, Park JW. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol 2006; 70(5): 1664-71.
[http://dx.doi.org/10.1124/mol.106.025817] [PMID: 16880289]
[34]
Chainoglou E, Hadjipavlou-Litina D. Curcumin in health and diseases: Alzheimer’s disease and curcumin analogues, derivatives, and hybrids. Int J Mol Sci 2020; 21(6): 1975.
[http://dx.doi.org/10.3390/ijms21061975] [PMID: 32183162]
[35]
Liao L, Shi J, Jiang C, et al. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 2019; 125: 82-90.
[http://dx.doi.org/10.1016/j.neuint.2019.01.026] [PMID: 30771374]
[36]
Hagl S, Kocher A, Schiborr C, Kolesova N, Frank J, Eckert GP. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – Impact on bioavailability. Neurochem Int 2015; 89: 234-42.
[http://dx.doi.org/10.1016/j.neuint.2015.07.026] [PMID: 26254982]
[37]
Gupta AP, Khan S, Manzoor MM, et al. Anticancer curcumin: Natural analogues and structure-activity relationship. In: Atta ur R, Ed. In Studies in Natural Products Chemistry 2017; 54: 355-401.
[38]
Chen WF, Deng SL, Zhou B, Yang L, Liu ZL. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med 2006; 40(3): 526-35.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.09.008] [PMID: 16443168]
[39]
Ohtsu H, Xiao Z, Ishida J, et al. Antitumor agents. 217. Curcumin analogues as novel androgen receptor antagonists with potential as anti-prostate cancer agents. J Med Chem 2002; 45(23): 5037-42.
[http://dx.doi.org/10.1021/jm020200g] [PMID: 12408714]
[40]
Koo HJ, Shin S, Choi JY, Lee KH, Kim BT, Choe YS. Introduction of methyl groups at C2 and C6 positions enhances the antiangiogenesis activity of curcumin. Sci Rep 2015; 5(1): 14205.
[http://dx.doi.org/10.1038/srep14205] [PMID: 26391485]
[41]
Qiu X, Du Y, Lou B, et al. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J Med Chem 2010; 53(23): 8260-73.
[http://dx.doi.org/10.1021/jm1004545] [PMID: 21070043]
[42]
Ferrari E, Lazzari S, Marverti G, Pignedoli F, Spagnolo F, Saladini M. Synthesis, cytotoxic and combined cDDP activity of new stable curcumin derivatives. Bioorg Med Chem 2009; 17(8): 3043-52.
[http://dx.doi.org/10.1016/j.bmc.2009.03.016] [PMID: 19329324]
[43]
Dairam A, Limson JL, Watkins GM, Antunes E, Daya S. Curcuminoids, curcumin, and demethoxycurcumin reduce lead-induced memory deficits in male Wistar rats. J Agric Food Chem 2007; 55(3): 1039-44.
[http://dx.doi.org/10.1021/jf063446t] [PMID: 17263510]
[44]
Chojnacki JE, Liu K, Yan X, et al. Discovery of 5-(4-hydroxyphenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]- amide as a neuroprotectant for Alzheimer’s disease by hybridization of curcumin and melatonin. ACS Chem Neurosci 2014; 5(8): 690-9.
[http://dx.doi.org/10.1021/cn500081s] [PMID: 24825313]
[45]
Noureddin SA, El-Shishtawy RM, Al-Footy KO. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem 2019; 182: 111631.
[http://dx.doi.org/10.1016/j.ejmech.2019.111631] [PMID: 31479974]
[46]
Mythri RB, Harish G, Dubey SK, Misra K, Srinivas Bharath MM. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: Implications for Parkinson’s disease. Mol Cell Biochem 2011; 347(1-2): 135-43.
[http://dx.doi.org/10.1007/s11010-010-0621-4] [PMID: 20972609]
[47]
Sugiyama Y, Kawakishi S, Osawa T. Involvement of the β-diketone moiety in the antioxidative Mechanism of Tetrahydrocurcumin. Biochem Pharmacol 1996; 52(4): 519-25.
[http://dx.doi.org/10.1016/0006-2952(96)00302-4] [PMID: 8759023]
[48]
Sandur SK, Pandey MK, Sung B, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 2007; 28(8): 1765-73.
[http://dx.doi.org/10.1093/carcin/bgm123] [PMID: 17522064]
[49]
Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 2007; 30(1): 74-8.
[http://dx.doi.org/10.1248/bpb.30.74] [PMID: 17202663]
[50]
Hahn YI, Kim SJ, Choi BY, et al. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci Rep 2018; 8(1): 6409.
[http://dx.doi.org/10.1038/s41598-018-23840-2] [PMID: 29686295]
[51]
Vellampatti S, Chandrasekaran G, Mitta SB, Lakshmanan VK, Park SH. Metallo-curcumin-conjugated DNA complexes induces preferential prostate cancer cells cytotoxicity and pause growth of bacterial cells. Sci Rep 2018; 8(1): 14929.
[http://dx.doi.org/10.1038/s41598-018-33369-z] [PMID: 30297802]
[52]
Cheng MA, Chou FJ, Wang K, et al. Androgen receptor (AR) degradation enhancer ASC-J9 ® in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth. Cancer Lett 2018; 417: 182-91.
[http://dx.doi.org/10.1016/j.canlet.2017.11.038] [PMID: 29203251]
[53]
Lin T-H, Izumi K, Lee SO, Lin W-J, Yeh S, Chang C. Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death Dis 2013; 4(8): e764.
[http://dx.doi.org/10.1038/cddis.2013.270] [PMID: 23928703]
[54]
Verderio P, Pandolfi L, Mazzucchelli S, et al. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells. Mol Pharm 2014; 11(8): 2864-75.
[http://dx.doi.org/10.1021/mp500222k] [PMID: 24945469]
[55]
Soh SF, Huang CK, Lee SO, Xu D. Determination of androgen receptor degradation enhancer ASC-J9((R)) in mouse sera and organs with liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2014; 88: 117-22.
[http://dx.doi.org/10.1016/j.jpba.2013.08.020] [PMID: 24042123]
[56]
Bhullar K, Jha A, Youssef D, Rupasinghe H. Curcumin and its carbocyclic analogs: Structure-activity in relation to antioxidant and selected biological properties. Molecules 2013; 18(5): 5389-404.
[http://dx.doi.org/10.3390/molecules18055389] [PMID: 23666006]
[57]
Thompson KH, Böhmerle K, Polishchuk E, et al. Complementary inhibition of synoviocyte, smooth muscle cell or mouse lymphoma cell proliferation by a vanadyl curcumin complex compared to curcumin alone. J Inorg Biochem 2004; 98(12): 2063-70.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.09.011] [PMID: 15541495]
[58]
Anand P, Thomas SG, Kunnumakkara AB, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 2008; 76(11): 1590-611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[59]
Dutta S, Padhye S, Priyadarsini KI, Newton C. Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg Med Chem Lett 2005; 15(11): 2738-44.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.001] [PMID: 15878268]
[60]
Youssef D, Nichols CE, Cameron TS, Balzarini J, De Clercq E, Jha A. Design, synthesis, and cytostatic activity of novel cyclic curcumin analogues. Bioorg Med Chem Lett 2007; 17(20): 5624-9.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.079] [PMID: 17768050]
[61]
Benassi R, Ferrari E, Grandi R, Lazzari S, Saladini M. Synthesis and characterization of new β-diketo derivatives with iron chelating ability. J Inorg Biochem 2007; 101(2): 203-13.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.09.020] [PMID: 17097145]
[62]
Mohammadi K, Thompson KH, Patrick BO, et al. Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications. J Inorg Biochem 2005; 99(11): 2217-25.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.08.001] [PMID: 16171869]
[63]
Shim JS, Kim DH, Jung HJ, et al. Hydrazinocurcumin, a novel synthetic curcumin derivative, is a potent inhibitor of endothelial cell proliferation. Bioorg Med Chem 2002; 10(9): 2987-92.
[http://dx.doi.org/10.1016/S0968-0896(02)00129-3] [PMID: 12110321]
[64]
Shim JS, Lee J, Park HJ, Park SJ, Kwon HJ. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function. Chem Biol 2004; 11(10): 1455-63.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.015] [PMID: 15489172]
[65]
Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 2006; 119(4): 757-64.
[http://dx.doi.org/10.1002/ijc.21932] [PMID: 16550606]
[66]
Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev 2010; 29(3): 405-34.
[http://dx.doi.org/10.1007/s10555-010-9235-2] [PMID: 20737283]
[67]
Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern Med Rev 2009; 14(2): 141-53.
[PMID: 19594223]
[68]
Damalas CA. Potential uses of turmeric (‘Curcuma longa’) products as alternative means of pest management in crop production. Plant Omics 2011; 4: 136-41.
[69]
Ding L, Ma S, Lou H, Sun L, Ji M. Synthesis and biological evaluation of curcumin derivatives with water-soluble groups as potential antitumor agents: An in vitro investigation using tumor cell lines. Molecules 2015; 20(12): 21501-14.
[http://dx.doi.org/10.3390/molecules201219772] [PMID: 26633344]
[70]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: From kitchen to clinic. Biochem Pharmacol 2008; 75(4): 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[71]
Strimpakos AS, Sharma RA. Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 2008; 10(3): 511-46.
[http://dx.doi.org/10.1089/ars.2007.1769] [PMID: 18370854]
[72]
Sharma RA, McLelland HR, Hill KA, et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 2001; 7(7): 1894-900.
[PMID: 11448902]
[73]
Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: A pilot study. Dig Dis Sci 2005; 50(11): 2191-3.
[http://dx.doi.org/10.1007/s10620-005-3032-8] [PMID: 16240238]
[74]
Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science 2004; 304(5670): 600-2.
[http://dx.doi.org/10.1126/science.1093941] [PMID: 15105504]
[75]
Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest 2008; 118(3): 879-93.
[http://dx.doi.org/10.1172/JCI32865] [PMID: 18292803]
[76]
Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 2008; 118(3): 868-78.
[http://dx.doi.org/10.1172/JCI33160] [PMID: 18292809]
[77]
Weisberg SP, Leibel R, Tortoriello DV. Dietary curcumin significantly improves obesity-associated inflammation and diabetes in mouse models of diabesity. Endocrinology 2008; 149(7): 3549-58.
[http://dx.doi.org/10.1210/en.2008-0262] [PMID: 18403477]
[78]
Steinbach G, Lynch PM, Phillips RKS, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 2000; 342(26): 1946-52.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[79]
Durgaprasad S, Pai CG, Vasanthkumar , Alvres JF, Namitha S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J Med Res 2005; 122(4): 315-8.
[PMID: 16394323]
[80]
Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14(14): 4491-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[81]
Sharma OP. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 1976; 25(15): 1811-2.
[http://dx.doi.org/10.1016/0006-2952(76)90421-4] [PMID: 942483]
[82]
Rathore S, Mukim M, Sharma P, Devi S, Nagar JC, Khalid M. Curcumin: A review for health benefits. Int J Res Rev 2020; 7: 273-390.
[83]
Celik H, Aydin T, Solak K, Khalid S, Farooqi AA. Curcumin on the “flying carpets” to modulate different signal transduction cascades in cancers: Next-generation approach to bridge translational gaps. J Cell Biochem 2018; 119(6): 4293-303.
[http://dx.doi.org/10.1002/jcb.26749] [PMID: 29384224]
[84]
Reda FM, El-Saadony MT, Elnesr SS, Alagawany M, Tufarelli V. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals 2020; 10(5): 754.
[http://dx.doi.org/10.3390/ani10050754] [PMID: 32357410]
[85]
Martins CVB, da Silva DL, Neres ATM, et al. Curcumin as a promising antifungal of clinical interest. J Antimicrob Chemother 2008; 63(2): 337-9.
[http://dx.doi.org/10.1093/jac/dkn488] [PMID: 19038979]
[86]
Pan K, Zhong Q, Baek SJ. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J Agric Food Chem 2013; 61(25): 6036-43.
[http://dx.doi.org/10.1021/jf400752a] [PMID: 23734864]
[87]
Amalraj A, Pius A, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J Tradit Complement Med 2017; 7(2): 205-33.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[88]
Wang T, Chen J. Effects of curcumin on vessel formation insight into the pro-and antiangiogenesis of curcumin. Evid Based Complement Alternat Med 2019; 2019: 1-9.
[http://dx.doi.org/10.1155/2019/1390795] [PMID: 31320911]
[89]
Mošovská S, Petáková P, Kaliňák M, Mikulajová A. Antioxidant properties of curcuminoids isolated from Curcuma longa L. Acta Chim Slov 2016; 9(2): 130-5.
[http://dx.doi.org/10.1515/acs-2016-0022]
[90]
Dovigo LN, Pavarina AC, Ribeiro APD, et al. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem Photobiol 2011; 87(4): 895-903.
[http://dx.doi.org/10.1111/j.1751-1097.2011.00937.x] [PMID: 21517888]
[91]
Garcia-Gomes AS, Curvelo JAR, Soares RMA, Ferreira-Pereira A. Curcumin acts synergistically with fluconazole to sensitize a clinical isolate of Candida albicans showing a MDR phenotype. Med Mycol 2012; 50(1): 26-32.
[http://dx.doi.org/10.3109/13693786.2011.578156] [PMID: 21539505]
[92]
Bourne KZ, Bourne N, Reising SF, Stanberry LR. Plant products as topical microbicide candidates: assessment of in vitro and in vivo activity against herpes simplex virus type 2. Antiviral Res 1999; 42(3): 219-26.
[http://dx.doi.org/10.1016/S0166-3542(99)00020-0] [PMID: 10443534]
[93]
Jiang MC, Yang-Yen HF, Lin JK, Yen JJ. Differential regulation of p53, c-Myc, Bcl-2 and Bax protein expression during apoptosis induced by widely divergent stimuli in human hepatoblastoma cells. Oncogene 1996; 13(3): 609-16.
[PMID: 8760302]
[94]
Liu JY, Lin SJ, Lin JK. Inhibitory effects of curcumin on protein kinase C activity induced by 12- O -tetradecanoyl-phorbol-13-acetate in NIH 3T3 cells. Carcinogenesis 1993; 14(5): 857-61.
[http://dx.doi.org/10.1093/carcin/14.5.857] [PMID: 8504477]
[95]
Artico M, Di Santo R, Costi R, et al. Geometrically and conformationally restrained cinnamoyl compounds as inhibitors of HIV-1 integrase: synthesis, biological evaluation, and molecular modeling. J Med Chem 1998; 41(21): 3948-60.
[http://dx.doi.org/10.1021/jm9707232] [PMID: 9767632]
[96]
Parasuraman S, Zhen K, Banik U, Christapher P. Ameliorative effect of curcumin on olanzapine-induced obesity in Sprague-Dawley rats. Pharmacognosy Res 2017; 9(3): 247-52.
[http://dx.doi.org/10.4103/pr.pr_8_17] [PMID: 28827965]
[97]
Rasmussen H, Christensen S, Kvist L, Karazmi A. A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 2000; 66(4): 396-8.
[http://dx.doi.org/10.1055/s-2000-8533] [PMID: 10865470]
[98]
Mukhopadhyay A, Basu N, Ghatak N, Gujral PK. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 1982; 12(4): 508-15.
[http://dx.doi.org/10.1007/BF01965935] [PMID: 7180736]
[99]
Ghatak N, Basu N. Sodium curcuminate as an effective anti-inflammatory agent. Indian J Exp Biol 1972; 10(3): 235-6.
[PMID: 4651248]
[100]
Swingle KF. In: Medicinal chemistry, a series of monographs. New York: Academic Press 1974.
[101]
Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Exp Biol Med 1962; 111(3): 544-7.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[102]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[103]
He Y, Li W, Hu G, Sun H, Kong Q. Bioactivities of EF24, a novel curcumin analog: A review. Front Oncol 2018; 8: 614.
[http://dx.doi.org/10.3389/fonc.2018.00614] [PMID: 30619754]
[104]
Lal B, Kapoor AK, Asthana OP, et al. Efficacy of curcumin in the management of chronic anterior uveitis. Phytother Res 1999; 13(4): 318-22.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199906)13:4<318::AID-PTR445>3.0.CO;2-7] [PMID: 10404539]
[105]
Mahal A, Wu P, Jiang ZH, Wei X. Schiff bases of tetrahydrocurcumin as potential anticancer agents. ChemistrySelect 2019; 4(1): 366-9.
[http://dx.doi.org/10.1002/slct.201803159]
[106]
Zhang J, Feng Z, Wang C, et al. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis. Am J Cancer Res 2017; 7(2): 275-88.
[PMID: 28337376]
[107]
Liu Y, Zhou J, Hu Y, Wang J, Yuan C. Curcumin inhibits growth of human breast cancer cells through demethylation of DLC1 promoter. Mol Cell Biochem 2017; 425(1-2): 47-58.
[http://dx.doi.org/10.1007/s11010-016-2861-4] [PMID: 27830358]
[108]
Pröhl M, Schubert US, Weigand W, Gottschaldt M. Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coord Chem Rev 2016; 307: 32-41.
[http://dx.doi.org/10.1016/j.ccr.2015.09.001]
[109]
Kumar AP, Garcia GE, Ghosh R, Rajnarayanan RV, Alworth WL, Slaga TJ. 4-Hydroxy-3-methoxybenzoic acid methyl ester: A curcumin derivative targets Akt/NF κ B cell survival signaling pathway: potential for prostate cancer management. Neoplasia 2003; 5(3): 255-66.
[http://dx.doi.org/10.1016/S1476-5586(03)80057-X] [PMID: 12869308]
[110]
Shehzad A, Khan S, Shehzad O, Lee YS. Curcumin therapeutic promises and bioavailability in colorectal cancer. Drugs Today 2010; 46(7): 523-32.
[http://dx.doi.org/10.1358/dot.2010.46.7.1509560] [PMID: 20683505]
[111]
Chen D, Dai F, Chen Z, et al. Dimethoxy curcumin induces apoptosis by suppressing survivin and inhibits invasion by enhancing E-cadherin in colon cancer cells. Med Sci Monit 2016; 22: 3215-22.
[http://dx.doi.org/10.12659/MSM.900802] [PMID: 27614381]
[112]
Howells LM, Mitra A, Manson MM. Comparison of oxaliplatin- and curcumin-mediated antiproliferative effects in colorectal cell lines. Int J Cancer 2007; 121(1): 175-83.
[http://dx.doi.org/10.1002/ijc.22645] [PMID: 17330230]
[113]
Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 2001; 21(4B): 2895-900.
[PMID: 11712783]
[114]
Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin Cancer Res 2004; 10(20): 6847-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[115]
Sahu RP, Batra S, Srivastava SK. Activation of ATM/Chk1 by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer 2009; 100(9): 1425-33.
[http://dx.doi.org/10.1038/sj.bjc.6605039] [PMID: 19401701]
[116]
Jee SH, Shen SC, Kuo M-L, Tseng C-R, Chiu H-C. Curcumin induces a p53-dependent apoptosis in human basal cell carcinoma cells. J Invest Dermatol 1998; 111(4): 656-61.
[http://dx.doi.org/10.1046/j.1523-1747.1998.00352.x] [PMID: 9764849]
[117]
Kawamori T, Lubet R, Steele VE, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 1999; 59(3): 597-601.
[PMID: 9973206]
[118]
Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle 2007; 6(23): 2953-61.
[http://dx.doi.org/10.4161/cc.6.23.4951] [PMID: 18156803]
[119]
Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 2005; 70(5): 700-13.
[http://dx.doi.org/10.1016/j.bcp.2005.04.043] [PMID: 16023083]
[120]
Sa G, Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div 2008; 3(1): 14.
[http://dx.doi.org/10.1186/1747-1028-3-14] [PMID: 18834508]
[121]
Balasubramanian S, Eckert RL. Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J Biol Chem 2007; 282(9): 6707-15.
[http://dx.doi.org/10.1074/jbc.M606003200] [PMID: 17148446]
[122]
Du Q, Hu B, an HM, et al. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol Rep 2013; 29(5): 1851-8.
[http://dx.doi.org/10.3892/or.2013.2310] [PMID: 23446753]
[123]
Subramaniam D, May R, Sureban SM, et al. Diphenyl difluoroketone: A curcumin derivative with potent in vivo anticancer activity. Cancer Res 2008; 68(6): 1962-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6011] [PMID: 18339878]
[124]
Yang MY, Chang KC, Chen LY, Hu A. Low-dose blue light irradiation enhances the antimicrobial activities of curcumin against Propionibacterium acnes. J Photochem Photobiol B 2018; 189: 21-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.09.021] [PMID: 30273795]
[125]
Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45(3): 304-17.
[http://dx.doi.org/10.1002/biof.1504] [PMID: 31018024]
[126]
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10(3): e0121313.
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[127]
Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol 2003; 57(1): 395-418.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090938] [PMID: 14527285]
[128]
Itzia Azucena RC, José Roberto CL, Martin ZR, et al. Drug susceptibility testing and synergistic antibacterial activity of curcumin with antibiotics against enterotoxigenic Escherichia Coli. Antibiotics 2019; 8(2): 43.
[http://dx.doi.org/10.3390/antibiotics8020043] [PMID: 31003468]
[129]
Shabangu SM, Babu B, Soy RC, Oyim J, Amuhaya E, Nyokong T. Susceptibility of Staphylococcus aureus to porphyrin-silver nanoparticle mediated photodynamic antimicrobial chemotherapy. J Lumin 2020; 222: 117158.
[http://dx.doi.org/10.1016/j.jlumin.2020.117158]
[130]
Reddy N, Han S, Zhao Y, Yang Y. Antimicrobial activity of cotton fabrics treated with curcumin. J Appl Polym Sci 2013; 127(4): 2698-702.
[http://dx.doi.org/10.1002/app.37613]
[131]
Krausz AE, Adler BL, Cabral V, et al. Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 2015; 11(1): 195-206.
[http://dx.doi.org/10.1016/j.nano.2014.09.004] [PMID: 25240595]
[132]
Mathew D, Hsu WL. Antiviral potential of curcumin. J Funct Foods 2018; 40: 692-9.
[http://dx.doi.org/10.1016/j.jff.2017.12.017]
[133]
Lee W, Lee DG. An antifungal mechanism of curcumin lies in membrane-targeted action within C andida albicans. IUBMB Life 2014; 66(11): 780-5.
[http://dx.doi.org/10.1002/iub.1326] [PMID: 25380239]
[134]
Ribeiro APD, Pavarina AC, Dovigo LN, et al. Phototoxic effect of curcumin on methicillin-resistant Staphylococcus aureus and L929 fibroblasts. Lasers Med Sci 2013; 28(2): 391-8.
[http://dx.doi.org/10.1007/s10103-012-1064-9] [PMID: 22358772]
[135]
Wang J, Zhou X, Li W, Deng X, Deng Y, Niu X. Curcumin protects mice from Staphylococcus aureus pneumonia by interfering with the self-assembly process of α-hemolysin. Sci Rep 2016; 6(1): 28254.
[http://dx.doi.org/10.1038/srep28254] [PMID: 27345357]
[136]
Mun SH, Joung DK, Kim YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013; 20(8-9): 714-8.
[http://dx.doi.org/10.1016/j.phymed.2013.02.006] [PMID: 23537748]
[137]
Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin. Toxicol Ind Health 2016; 32(2): 246-50.
[http://dx.doi.org/10.1177/0748233713498458] [PMID: 24097361]
[138]
Khudhayer Oglah M, Fakri Mustafa Y. Curcumin analogs: Synthesis and biological activities. Med Chem Res 2020; 29(3): 479-86.
[http://dx.doi.org/10.1007/s00044-019-02497-0]
[139]
Tajbakhsh S, Mohammadi K, Deilami I, et al. Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr J Biotechnol 2008; 7(21.)
[140]
Belkacemi A, Doggui S, Dao L, Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev Mol Med 2011; 13: e34.
[http://dx.doi.org/10.1017/S1462399411002055] [PMID: 22051121]
[141]
Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F000Research 2018; 7: 1-9.
[142]
Ferrari E, Benassi R, Sacchi S, Pignedoli F, Asti M, Saladini M. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications. J Inorg Biochem 2014; 139: 38-48.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.06.002] [PMID: 24968097]
[143]
Sun Q, Liu F, Sang J, et al. 9-Methylfascaplysin is a more potent aβ aggregation inhibitor than the marine-derived alkaloid, fascaplysin, and produces nanomolar neuroprotective effects in SH-SY5Y Cells. Mar Drugs 2019; 17(2): 121.
[http://dx.doi.org/10.3390/md17020121] [PMID: 30781608]
[144]
Ooko E, Alsalim T, Saeed B, Saeed MEM. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrugresistant T-cell acute lymphoblastic leukemia cell lines. Toxicol Appl Pharmacol 2016; 305: 216-33.
[http://dx.doi.org/10.1016/j.taap.2016.06.002] [PMID: 27318188]
[145]
Sanei M, Saberi-Demneh A. Effect of curcumin on memory impairment: A systematic review. Phytomedicine 2019; 52: 98-106.
[http://dx.doi.org/10.1016/j.phymed.2018.06.016] [PMID: 30599917]
[146]
Banerjee R. Spectroscopy Effect of Curcumin on the metal ion induced fibrillization of Amyloid- b peptide. Spectrochim. Acta, Part A Mol. Biomol Spectrosc 2014; 117: 798-800.
[http://dx.doi.org/10.1016/j.saa.2013.09.064]
[147]
Chittigori J, Kumar A, Li L, et al. Synthesis of a self organizable curcumin derivative and investigation of its interaction with metals in 100% aqueous media. Tetrahedron 2014; 70(4): 991-5.
[http://dx.doi.org/10.1016/j.tet.2013.11.071]
[148]
Zhang X, Tian Y, Li Z, et al. Design and synthesis of curcumin analogues for in vivo fluorescence imaging and inhibiting copper-induced cross-linking of amyloid beta species in Alzheimer’s disease. J Am Chem Soc 2013; 135(44): 16397-409.
[http://dx.doi.org/10.1021/ja405239v] [PMID: 24116384]
[149]
Zhang L, Fiala M, Cashman J, et al. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2006; 10(1): 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[150]
Llano S, Gómez S, Londoño J, Restrepo A. Antioxidant activity of curcuminoids. Phys Chem Chem Phys 2019; 21(7): 3752-60.
[http://dx.doi.org/10.1039/C8CP06708B] [PMID: 30702098]
[151]
Sökmen M, Akram Khan M. The antioxidant activity of some curcuminoids and chalcones. Inflammopharmacology 2016; 24(2-3): 81-6.
[http://dx.doi.org/10.1007/s10787-016-0264-5] [PMID: 27188988]
[152]
Squillaro T, Cimini A, Peluso G, Giordano A, Melone MAB. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 2018; 154: 303-17.
[http://dx.doi.org/10.1016/j.bcp.2018.05.016] [PMID: 29803506]
[153]
Kocher A, Schiborr C, Behnam D, Frank J. The oral bioavailability of curcuminoids in healthy humans is markedly enhanced by micellar solubilisation but not further improved by simultaneous ingestion of sesamin, ferulic acid, naringenin and xanthohumol. J Funct Foods 2015; 14: 183-91.
[http://dx.doi.org/10.1016/j.jff.2015.01.045]
[154]
Zhang J, Han H, Shen M, Zhang L, Wang T. Comparative studies on the antioxidant profiles of curcumin and bisdemethoxycurcumin in erythrocytes and broiler chickens. Animals 2019; 9(11): 953.
[http://dx.doi.org/10.3390/ani9110953] [PMID: 31718006]
[155]
Kou MC, Chiou SY, Weng CY, Wang L, Ho CT, Wu MJ. Curcuminoids distinctly exhibit antioxidant activities and regulate expression of scavenger receptors and heme oxygenase-1. Mol Nutr Food Res 2013; 57(9): 1598-610.
[http://dx.doi.org/10.1002/mnfr.201200227] [PMID: 23386263]
[156]
Panahi Y, Khalili N, Sahebi E, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology 2017; 25(1): 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[157]
Kalaycıoğlu Z, Gazioğlu I, Erim FB. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat Prod Res 2017; 31(24): 2914-7.
[http://dx.doi.org/10.1080/14786419.2017.1299727] [PMID: 28287280]
[158]
Li X, Xie Y, Xie H. J. and D. YangChen, π-π Conjugation enhances oligostilbene’s antioxidant capacity: Evidence from α-viniferin and caraphenol A. Molecules 2018; 23(3): 649.
[159]
Sharma S, Kulkarni SK, Chopra K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2006; 33(10): 940-5.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04468.x] [PMID: 17002671]
[160]
Bongomin F, Gago S, Oladele R, Denning D. Global and multinational prevalence of fungal diseases-estimate precision. J Fungi 2017; 3(4): 57.
[http://dx.doi.org/10.3390/jof3040057] [PMID: 29371573]
[161]
Karkowska-Kuleta J, Rapala-Kozik M, Kozik A. Fungi pathogenic to humans: Molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 2009; 56(2): 211-24.
[http://dx.doi.org/10.18388/abp.2009_2452] [PMID: 19543556]
[162]
Leroy O, Gangneux JP, Montravers P, et al. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: A multicenter, prospective, observational study in France (2005–2006). Crit Care Med 2009; 37(5): 1612-8.
[http://dx.doi.org/10.1097/CCM.0b013e31819efac0] [PMID: 19325476]
[163]
Thomachan S, Sindhu S, John VD. Synthesis, characterization, antibacterial, antifungal and cytotoxic activity of curcuminoid analogues with trisubstituted phenyl and anthracenyl ring and their zinc (II), copper (II) and vanadyl (IV) chelates. Int J Pharm Chem 2016; 6(3): 78-86.
[164]
Ungphaiboon S, Supavita T, Singchangchai P, Sungkarak S, Rattanasuwan P, Itharat A. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin J Sci Technol 2005; 27(2): 269-578.
[165]
Chowdhury H, Banerjee T, Walia S. In vitro screening of Curcuma longa L and its derivatives as antifungal agents against Helminthosporrum oryzae and Fusarium solani. Pestic Res J 2008; 20(1): 6-9.
[166]
Sharma M, Manoharlal R, Puri N, Prasad R. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep 2010; 30(6): 391-404.
[http://dx.doi.org/10.1042/BSR20090151] [PMID: 20017731]
[167]
Neelofar K, Shreaz S, Rimple B, Muralidhar S, Nikhat M, Khan LA. Curcumin as a promising anticandidal of clinical interest. Can J Microbiol 2011; 57(3): 204-10.
[http://dx.doi.org/10.1139/W10-117] [PMID: 21358761]
[168]
Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 2010; 10(5): no.
[http://dx.doi.org/10.1111/j.1567-1364.2010.00637.x] [PMID: 20528949]
[169]
Kudva AK, Manoj MN, Swamy BM, Ramadoss CS. Complexation of amphotericin B and curcumin with serum albumins: Solubility and effect on erythrocyte membrane damage. J Exp Pharmacol 2010; 3: 1-6.
[PMID: 27186104]
[170]
Tomei L, Altamura S, Paonessa G, De Francesco R, Migliaccio G. HCV antiviral resistance: The impact of in vitro studies on the development of antiviral agents targeting the viral NS5B polymerase. Antivir Chem Chemother 2005; 16(4): 225-45.
[http://dx.doi.org/10.1177/095632020501600403] [PMID: 16130521]
[171]
Lemoine M, Nayagam S, Thursz M. Viral hepatitis in resource-limited countries and access to antiviral therapies: Current and future challenges. Future Virology 2013; 4: 371-80.
[http://dx.doi.org/10.2217/fvl.13.11]
[172]
Clercq ED. The design of drugs for HIV and HCV. Nat Rev Drug Discov 2007; 6(12): 1001-18.
[http://dx.doi.org/10.1038/nrd2424] [PMID: 18049474]
[173]
Jassim SAA, Naji MA. Novel antiviral agents: A medicinal plant perspective. J Appl Microbiol 2003; 95(3): 412-27.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02026.x] [PMID: 12911688]
[174]
Zorofchian Moghadamtousi S, Hajrezaei M, Abdul Kadir H, Zandi K. Loranthus micranthus Linn.: Biological activities and phytochemistry. Evid Based Complement Alternat Med 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/273712]
[175]
Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 2008; 373(2): 239-47.
[http://dx.doi.org/10.1016/j.virol.2007.11.028] [PMID: 18191976]
[176]
Arlı M, Çelik H. The biological importance of curcumin. EAJS 2020; 6: 21-34.
[177]
Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CAD. Curcumin and curcumin-loaded nanoparticles: Antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther 2020; 18(4): 367-79.
[http://dx.doi.org/10.1080/14787210.2020.1730815] [PMID: 32067524]
[178]
Cui L, Miao J, Furuya T, Li X, Su X, Cui L. PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 2007; 6(7): 1219-27.
[http://dx.doi.org/10.1128/EC.00062-07] [PMID: 17449656]
[179]
Shahiduzzamanand M, Daugschies A. Curcumin: A natural herb extract with antiparasitic properties, In: Nature Helps. Springer. Berlin 2011; pp. 141-52.
[180]
Burt SA, Tersteeg-Zijderveld MHG, Jongerius-Gortemaker BGM, Vervelde L, Vernooij JCM. In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals. Vet Parasitol 2013; 191(3-4): 374-8.
[http://dx.doi.org/10.1016/j.vetpar.2012.09.001]
[181]
Sarika PR, James NR, Nishna N, Anil Kumar PR, Raj DK. Galactosylated pullulan–curcumin conjugate micelles for site specific anticancer activity to hepatocarcinoma cells. Colloids Surf B Biointerfaces 2015; 133(347): 347-55.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.020] [PMID: 26133239]
[182]
Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019; 859: 172513.
[http://dx.doi.org/10.1016/j.ejphar.2019.172513] [PMID: 31260654]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy