Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics

Author(s): Ram Narayan Prajapati, Bharat Bhushan, Kuldeep Singh*, Himansu Chopra, Shivendra Kumar, Mehak Agrawal, Devender Pathak, Dilip Kumar Chanchal and Laxmikant

Volume 25, Issue 16, 2024

Published on: 29 January, 2024

Page: [2060 - 2077] Pages: 18

DOI: 10.2174/0113892010275850240102105033

Price: $65

Abstract

Pharmaceutical design has made significant advancements in recent years, leading to the development of novel therapeutics with unprecedented efficacy and safety profiles. This review highlights the potential of these innovations to revolutionize healthcare and improve patient outcomes. The application of cutting-edge technologies like artificial intelligence, machine learning, and data mining in drug discovery and design has made it easier to find potential drug candidates. Combining big data and omics has led to the discovery of new therapeutic targets and personalized medicine strategies. Nanoparticles, liposomes, and microneedles are examples of advanced drug delivery systems that allow precise control over drug release, better bioavailability, and targeted delivery to specific tissues or cells. This improves the effectiveness of the treatment while reducing side effects. Stimuli-responsive materials and smart drug delivery systems enable drugs to be released on demand when specific internal or external signals are sent. Biologics and gene therapies are promising approaches in pharmaceutical design, offering high specificity and potency for treating various diseases like cancer, autoimmune disorders, and infectious diseases. Gene therapies hold tremendous potential for correcting genetic abnormalities, with recent breakthroughs demonstrating successful outcomes in inherited disorders and certain types of cancer. Advancements in nanotechnology and nanomedicine have paved the way for innovative diagnostic tools and therapeutics, such as nanoparticle-based imaging agents, targeted drug delivery systems, gene editing technologies, and regenerative medicine strategies. Finally, the review emphasizes the importance of regulatory considerations, ethical challenges, and future directions in pharmaceutical design. Regulatory agencies are adapting to the rapid advancements in the field, ensuring the safety and efficacy of novel therapeutics while fostering innovation. Ethical considerations regarding the use of emerging technologies, patient privacy, and access to advanced therapies also require careful attention.

Graphical Abstract

[1]
Tariq, O.; Siddiqi, A.J. Vitamin C content of Indian medicinal plants- A literature review. Indian Drugs., 1985, 23(2), 72-83.
[2]
Butler, D. Translational research: Crossing the valley of death. Nature, 2008, 453(7197), 840-842.
[http://dx.doi.org/10.1038/453840a] [PMID: 18548043]
[3]
Maxmen, A. Translational research: The American way. Nature, 2011, 478(7368), S16-S18.
[http://dx.doi.org/10.1038/478S16a] [PMID: 21993821]
[4]
Pammolli, F.; Magazzini, L.; Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov., 2011, 10(6), 428-438.
[http://dx.doi.org/10.1038/nrd3405] [PMID: 21629293]
[5]
Bennani, Y.L. Drug discovery in the next decade: Innovation needed ASAP. Drug Discov. Today, 2011, 16(17-18), 779-792.
[http://dx.doi.org/10.1016/j.drudis.2011.06.004] [PMID: 21704185]
[6]
Stevens, A.J.; Jensen, J.J.; Wyller, K.; Kilgore, P.C.; Chatterjee, S.; Rohrbaugh, M.L. The role of public-sector research in the discovery of drugs and vaccines. N. Engl. J. Med., 2011, 364(6), 535-541.
[http://dx.doi.org/10.1056/NEJMsa1008268] [PMID: 21306239]
[7]
Kneller, R. The importance of new companies for drug discovery: Origins of a decade of new drugs. Nat. Rev. Drug Discov., 2010, 9(11), 867-882.
[http://dx.doi.org/10.1038/nrd3251] [PMID: 21031002]
[8]
Chanda, S.K.; Caldwell, J.S. Fulfilling the promise: Drug discovery in the post-genomic era. Drug Discov. Today, 2003, 8(4), 168-174.
[http://dx.doi.org/10.1016/S1359-6446(02)02595-3] [PMID: 12581711]
[9]
Van den Broeck, WM Drug targets, target identification, validation, and screening. The practice of medicinal chemistry, 2015, 45-70.
[http://dx.doi.org/10.1016/B978-0-12-417205-0.00003-1]
[10]
Bergauer, T.; Ruppert, T.; Essioux, L.; Spleiss, O. Drug target identification and validation: Global pharmaceutical industry experts on challenges, best strategies, innovative precompetitive collaboration concepts, and future areas of industry precompetitive research and development. Ther. Innov. Regul. Sci., 2016, 50(6), 769-776.
[http://dx.doi.org/10.1177/2168479016651298] [PMID: 30231745]
[11]
Titov, D.V.; Liu, J.O. Identification and validation of protein targets of bioactive small molecules. Bioorg. Med. Chem., 2012, 20(6), 1902-1909.
[http://dx.doi.org/10.1016/j.bmc.2011.11.070] [PMID: 22226983]
[12]
Goel, A.K.; Davies, J. Artificial intelligence. In: The Cambridge handbook of intelligence; Cambridge, 2019.
[13]
Harrer, S; Shah, P; Antony, B; Hu, J Artificial intelligence for clinical trial design. Sci, trends Pharmacol, 2019.
[http://dx.doi.org/10.1016/j.tips.2019.05.005]
[14]
Zhong, F.; Xing, J.; Li, X.; Liu, X.; Fu, Z.; Xiong, Z.; Lu, D.; Wu, X.; Zhao, J.; Tan, X.; Li, F.; Luo, X.; Li, Z.; Chen, K.; Zheng, M.; Jiang, H. Artificial intelligence in drug design. Sci. China Life Sci., 2018, 61(10), 1191-1204.
[http://dx.doi.org/10.1007/s11427-018-9342-2] [PMID: 30054833]
[15]
Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des., 2020, 34(7), 709-715.
[http://dx.doi.org/10.1007/s10822-020-00317-x] [PMID: 32468207]
[16]
McGaughey, G.B.; Sheridan, R.P.; Bayly, C.I.; Culberson, J.C.; Kreatsoulas, C.; Lindsley, S.; Maiorov, V.; Truchon, J.F.; Cornell, W.D. Comparison of topological, shape, and docking methods in virtual screening. J. Chem. Inf. Model., 2007, 47(4), 1504-1519.
[http://dx.doi.org/10.1021/ci700052x] [PMID: 17591764]
[17]
Ekins, S. The next era: Deep learning in pharmaceutical research. Pharm. Res., 2016, 33(11), 2594-2603.
[http://dx.doi.org/10.1007/s11095-016-2029-7] [PMID: 27599991]
[18]
Johnson, K.W.; Shameer, K.; Glicksberg, B.S.; Readhead, B.; Sengupta, P.P.; Björkegren, J.L.M.; Kovacic, J.C.; Dudley, J.T. Enabling precision cardiology through multiscale biology and systems medicine. JACC Basic Transl. Sci., 2017, 2(3), 311-327.
[http://dx.doi.org/10.1016/j.jacbts.2016.11.010] [PMID: 30062151]
[19]
Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; Sundberg, P.; Yee, H.; Zhang, K.; Zhang, Y.; Flores, G.; Duggan, G.E.; Irvine, J.; Le, Q.; Litsch, K.; Mossin, A.; Tansuwan, J.; Wang, D.; Wexler, J.; Wilson, J.; Ludwig, D.; Volchenboum, S.L.; Chou, K.; Pearson, M.; Madabushi, S.; Shah, N.H.; Butte, A.J.; Howell, M.D.; Cui, C.; Corrado, G.S.; Dean, J. Scalable and accurate deep learning with electronic health records. NPJ Digit. Med., 2018, 1(1), 18.
[http://dx.doi.org/10.1038/s41746-018-0029-1] [PMID: 31304302]
[20]
Lavecchia, A.; Cerchia, C. In silico methods to address polypharmacology: Current status, applications and future perspectives. Drug Discov. Today, 2016, 21(2), 288-298.
[http://dx.doi.org/10.1016/j.drudis.2015.12.007] [PMID: 26743596]
[21]
Jing, Y.; Bian, Y.; Hu, Z.; Wang, L.; Xie, X.Q.S. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J., 2018, 20(3), 58.
[http://dx.doi.org/10.1208/s12248-018-0210-0] [PMID: 29603063]
[22]
Powles, J.; Hodson, H. Google deep mind and healthcare in an age of algorithms. Health Technol., 2017, 7(4), 351-367.
[http://dx.doi.org/10.1007/s12553-017-0179-1] [PMID: 29308344]
[23]
Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792), 706-710.
[http://dx.doi.org/10.1038/s41586-019-1923-7] [PMID: 31942072]
[24]
AlQuraishi, M. End-to-End differentiable learning of protein structure. Cell Syst., 2019, 8(4), 292-301.e3.
[http://dx.doi.org/10.1016/j.cels.2019.03.006] [PMID: 31005579]
[25]
Franklin, R.; Gosling, R.G. Molecular configuration in sodium thymonucleate. Nature, 1953, 171(4356), 740-741.
[http://dx.doi.org/10.1038/171740a0] [PMID: 13054694]
[26]
Eisenberg, D. Max Perutz’s achievements: How did he do it? Protein Sci., 1994, 3(10), 1625-1628.
[http://dx.doi.org/10.1002/pro.5560031001] [PMID: 7849579]
[27]
Kendrew, J.C.; Dickerson, R.E.; Strandberg, B.E.; Hart, R.G.; Davies, D.R.; Phillips, D.C.; Shore, V.C. Structure of myoglobin: A three-dimensional Fourier synthesis at 2 A. resolution. Nature, 1960, 185(4711), 422-427.
[http://dx.doi.org/10.1038/185422a0] [PMID: 18990802]
[28]
Drews, J. Drug discovery: A historical perspective. Science, 2000, 287(5460), 1960-1964.
[http://dx.doi.org/10.1126/science.287.5460.1960] [PMID: 10720314]
[29]
Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; Schopfer, U.; Sittampalam, G.S. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov., 2011, 10(3), 188-195.
[http://dx.doi.org/10.1038/nrd3368] [PMID: 21358738]
[30]
Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: the deconstruction–reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
[31]
Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov., 2018, 17(2), 97-113.
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[32]
Samsdodd, F. Target-based drug discovery: Is something wrong? Drug Discov. Today, 2005, 10(2), 139-147.
[http://dx.doi.org/10.1016/S1359-6446(04)03316-1] [PMID: 15718163]
[33]
Moffat, J.G.; Vincent, F.; Lee, J.A.; Eder, J.; Prunotto, M. Opportunities and challenges in phenotypic drug discovery: An industry perspective. Nat. Rev. Drug Discov., 2017, 16(8), 531-543.
[http://dx.doi.org/10.1038/nrd.2017.111] [PMID: 28685762]
[34]
Haasen, D.; Schopfer, U.; Antczak, C.; Guy, C.; Fuchs, F.; Selzer, P. How phenotypic screening influenced drug discovery: Lessons from five years of practice. Assay Drug Dev. Technol., 2017, 15(6), 239-246.
[http://dx.doi.org/10.1089/adt.2017.796] [PMID: 28800248]
[35]
Jones, L.H.; Bunnage, M.E. Applications of chemogenomic library screening in drug discovery. Nat. Rev. Drug Discov., 2017, 16(4), 285-296.
[http://dx.doi.org/10.1038/nrd.2016.244] [PMID: 28104905]
[36]
Blundell, T.; Dodson, G.; Hodgkin, D.; Mercola, D. Insulin: the structure in the crystal and its reflection in chemistry and biology by. Adv. Protein Chem., 1972, 26, 279-402.
[http://dx.doi.org/10.1016/S0065-3233(08)60143-6]
[37]
Informa, U.K. Pharma R&D annual review 2017 2017. Available from: https://pharmaintelligence.informa.com/~/media/Informa‐Shop‐Window/Pharma/Files/PDFs/whitepapers/RD‐Review‐2017.pdf [accessed Oct 6 2018].
[38]
Urquhart, L. Top drugs and companies by sales in 2017. Nat. Rev. Drug Discov., 2018, 17(4), 232.
[http://dx.doi.org/10.1038/nrd.2018.42] [PMID: 29588516]
[39]
Padhi, A.; Sengupta, M.; Sengupta, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis, 2014, 94(4), 363-373.
[http://dx.doi.org/10.1016/j.tube.2014.03.011] [PMID: 24813349]
[40]
Buchwald, H.; Dorman, R.B.; Rasmus, N.F.; Michalek, V.N.; Landvik, N.M.; Ikramuddin, S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: Implications for ileal transposition. Surg. Obes. Relat. Dis., 2014, 10(5), 780-786.
[http://dx.doi.org/10.1016/j.soard.2014.01.032] [PMID: 24837556]
[41]
Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63.
[http://dx.doi.org/10.3389/fneur.2014.00063] [PMID: 24808888]
[42]
Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One, 2014, 9(2), e87648.
[http://dx.doi.org/10.1371/journal.pone.0087648] [PMID: 24505301]
[43]
Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817.
[http://dx.doi.org/10.1016/j.drudis.2013.05.011] [PMID: 23726889]
[44]
The peptide therapeutics market is projected to be worth around USD 41.7 Billion in 2030, claims roots analysis. Available from: https://www.rootsanalysis.com/press-releases/peptide-therapeutics-market.html
[45]
Finan, B.; Ma, T.; Ottaway, N.; Müller, T.D.; Habegger, K.M.; Heppner, K.M. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med., 2013, 5(209), 209ra151.
[http://dx.doi.org/10.1126/scitranslmed.3007218]
[46]
Wismann, P.; Pedersen, S.L.; Hansen, G.; Mannerstedt, K.; Pedersen, P.J.; Jeppesen, P.B.; Vrang, N.; Fosgerau, K.; Jelsing, J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav., 2018, 192, 72-81.
[http://dx.doi.org/10.1016/j.physbeh.2018.03.004] [PMID: 29540315]
[47]
Fosgerau, K.; Jessen, L.; Lind Tolborg, J.; Østerlund, T.; Schæffer Larsen, K.; Rolsted, K.; Brorson, M.; Jelsing, J.; Skovlund Ryge Neerup, T. The novel GLP ‐1‐gastrin dual agonist, ZP3022, increases β‐cell mass and prevents diabetes in db/db mice. Diabetes Obes. Metab., 2013, 15(1), 62-71.
[http://dx.doi.org/10.1111/j.1463-1326.2012.01676.x] [PMID: 22862961]
[48]
Pocai, A. Unraveling oxyntomodulin, GLP1's enigmatic brother. J. Endocrinol., 2012, 215(3), 335-346.
[http://dx.doi.org/10.1530/JOE-12-0368] [PMID: 23019069]
[49]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[50]
Doudna, J.A.; Charpentier, E. Genome editing. Science, 2018, 365(6443), 498-499.
[PMID: 25430774]
[51]
Barrangou, R.; Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol., 2016, 34(9), 933-941.
[http://dx.doi.org/10.1038/nbt.3659] [PMID: 27606440]
[52]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[53]
Liang, Z.; Chen, K.; Li, T.; Zhang, Y.; Wang, Y.; Zhao, Q.; Liu, J.; Zhang, H.; Liu, C.; Ran, Y.; Gao, C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun., 2017, 8(1), 14261.
[http://dx.doi.org/10.1038/ncomms14261] [PMID: 28098143]
[54]
Zhu, C.; Bortesi, L.; Baysal, C.; Twyman, R.M.; Fischer, R.; Capell, T.; Schillberg, S.; Christou, P. Characteristics of genome editing mutations in cereal crops. Trends Plant Sci., 2017, 22(1), 38-52.
[http://dx.doi.org/10.1016/j.tplants.2016.08.009] [PMID: 27645899]
[55]
National academies of sciences, engineering, and medicine. In: Human genome editing: Science, ethics, and governance; The National Academies Press: Washington, DC, 2017.
[56]
The white house office of the press secretary. National nanotechnology initiative: Leading to the next industrial revolution. White House., 2000. Available from: https://clintonwhitehouse4.archives. gov/WH/New/html/20000121_4.html
[57]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[58]
Mitragotri, S.; Lammers, T.; Bae, Y.H.; Schwendeman, S.; De Smedt, S.; Leroux, J.C.; Peer, D.; Kwon, I.C.; Harashima, H.; Kikuchi, A.; Oh, Y.K.; Torchilin, V.; Hennink, W.; Hanes, J.; Park, K. Drug delivery research for the future: Expanding the Nano horizons and beyond. J. Control. Release, 2017, 246, 183-184.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.011] [PMID: 28110715]
[59]
Kou, L.; Bhutia, Y.D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V. Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front. Pharmacol., 2018, 9, 27.
[http://dx.doi.org/10.3389/fphar.2018.00027] [PMID: 29434548]
[60]
Pinto Reis, C.; Neufeld, R.J.; Ribeiro, A.J.; Veiga, F.; Nanoencapsulation, I.; Nanoencapsulation, I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2006, 2(1), 8-21.
[http://dx.doi.org/10.1016/j.nano.2005.12.003] [PMID: 17292111]
[61]
Illum, L. Nanoparticulate systems for nasal delivery of drugs: A real improvement over simple systems? J. Pharm. Sci., 2007, 96(3), 473-483.
[http://dx.doi.org/10.1002/jps.20718] [PMID: 17117404]
[62]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[63]
Eschenhagen, T.; Force, T.; Ewer, M.S.; de Keulenaer, G.W.; Suter, T.M.; Anker, S.D.; Avkiran, M.; de Azambuja, E.; Balligand, J.L.; Brutsaert, D.L.; Condorelli, G.; Hansen, A.; Heymans, S.; Hill, J.A.; Hirsch, E.; Hilfiker-Kleiner, D.; Janssens, S.; de Jong, S.; Neubauer, G.; Pieske, B.; Ponikowski, P.; Pirmohamed, M.; Rauchhaus, M.; Sawyer, D.; Sugden, P.H.; Wojta, J.; Zannad, F.; Shah, A.M. Cardiovascular side effects of cancer therapies: A position statement from the heart failure association of the european society of cardiology. Eur. J. Heart Fail., 2011, 13(1), 1-10.
[http://dx.doi.org/10.1093/eurjhf/hfq213] [PMID: 21169385]
[64]
Collins, F.S.; Morgan, M.; Patrinos, A. The human genome project: Lessons from large-scale biology. Science, 2003, 300(5617), 286-290.
[http://dx.doi.org/10.1126/science.1084564] [PMID: 12690187]
[65]
1000 Genomes project consortium. A global reference for human genetic variation. Nature, 2015, 526(7571), 68-74.
[http://dx.doi.org/10.1038/nature15393]
[66]
Green, E.D.; Rubin, E.M.; Olson, M.V. The future of DNA sequencing. Nature, 2017, 550(7675), 179-181.
[http://dx.doi.org/10.1038/550179a] [PMID: 29022931]
[67]
Payne, K.; Gavan, S.P.; Wright, S.J.; Thompson, A.J. Cost-effectiveness analyses of genetic and genomic diagnostic tests. Nat. Rev. Genet., 2018, 19(4), 235-246.
[http://dx.doi.org/10.1038/nrg.2017.108] [PMID: 29353875]
[68]
Garraway, L.A.; Verweij, J.; Ballman, K.V. Precision oncology: An overview. J. Clin. Oncol., 2013, 31(15), 1803-1805.
[http://dx.doi.org/10.1200/JCO.2013.49.4799] [PMID: 23589545]
[69]
Tang, W.H.W.; Wilcox, J.D.; Jacob, M.S.; Rosenzweig, E.B.; Borlaug, B.A.; Frantz, R.P.; Hassoun, P.M.; Hemnes, A.R.; Hill, N.S.; Horn, E.M.; Singh, H.S.; Systrom, D.M.; Tedford, R.J.; Vanderpool, R.R.; Waxman, A.B.; Xiao, L.; Leopold, J.A.; Rischard, F.P. Comprehensive diagnostic evaluation of cardiovascular physiology in patients with pulmonary vascular disease: Insights from the PVDOMICS program. Circ. Heart Fail., 2020, 13(3), e006363.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.119.006363] [PMID: 32088984]
[70]
Strianese, O.; Rizzo, F.; Ciccarelli, M.; Galasso, G.; D’Agostino, Y.; Salvati, A.; Del Giudice, C.; Tesorio, P.; Rusciano, M.R. Precision and personalized medicine: How genomic approach improves the management of cardiovascular and neurodegenerative disease. Genes, 2020, 11(7), 747.
[http://dx.doi.org/10.3390/genes11070747] [PMID: 32640513]
[71]
Angwin, C.; Jenkinson, C.; Jones, A.; Jennison, C.; Henley, W.; Farmer, A. TriMaster: Randomised double-blind crossover study of a DPP4 inhibitor, SGLT2 inhibitor and thiazolidinedione as second-line or third-line therapy in patients with type 2 diabetes who have suboptimal glycaemic control on metformin treatment with or without a sulfonylurea-a MASTERMIND study protocol. BMJ, 2020, 10(12), e042784.
[http://dx.doi.org/10.1136/bmjopen-2020-042784]
[72]
Hampel, H.; Williams, C.; Etcheto, A.; Goodsaid, F.; Parmentier, F.; Sallantin, J.; Kaufmann, W.E.; Missling, C.U.; Afshar, M. A precision medicine framework using artificial intelligence for the identification and confirmation of genomic biomarkers of response to an alzheimer’s disease therapy: Analysis of the blarcamesine (ANAVEX2‐73) phase 2a clinical study. Alzheimers Dement., 2020, 6(1), e12013.
[http://dx.doi.org/10.1002/trc2.12013] [PMID: 32318621]
[73]
Morello, G.; Guarnaccia, M.; Spampinato, A.G.; Salomone, S.; D’Agata, V.; Conforti, F.L.; Aronica, E.; Cavallaro, S. Integrative multi-omic analysis identifies new drivers and pathways in molecularly distinct subtypes of ALS. Sci. Rep., 2019, 9(1), 9968.
[http://dx.doi.org/10.1038/s41598-019-46355-w] [PMID: 31292500]
[74]
Morello, G.; Salomone, S.; D’Agata, V.; Conforti, F.L.; Cavallaro, S. From multi-omics approaches to precision medicine in amyotrophic lateral sclerosis. Front. Neurosci., 2020, 14, 577755.
[http://dx.doi.org/10.3389/fnins.2020.577755] [PMID: 33192262]
[75]
Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrörs, B.; Omokoko, T.; Vormehr, M.; Albrecht, C.; Paruzynski, A.; Kuhn, A.N.; Buck, J.; Heesch, S.; Schreeb, K.H.; Müller, F.; Ortseifer, I.; Vogler, I.; Godehardt, E.; Attig, S.; Rae, R.; Breitkreuz, A.; Tolliver, C.; Suchan, M.; Martic, G.; Hohberger, A.; Sorn, P.; Diekmann, J.; Ciesla, J.; Waksmann, O.; Brück, A.K.; Witt, M.; Zillgen, M.; Rothermel, A.; Kasemann, B.; Langer, D.; Bolte, S.; Diken, M.; Kreiter, S.; Nemecek, R.; Gebhardt, C.; Grabbe, S.; Höller, C.; Utikal, J.; Huber, C.; Loquai, C.; Türeci, Ö. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662), 222-226.
[http://dx.doi.org/10.1038/nature23003] [PMID: 28678784]
[76]
Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; Shukla, S.A.; Hu, Z.; Li, L.; Le, P.M.; Allesøe, R.L.; Richman, A.R.; Kowalczyk, M.S.; Abdelrahman, S.; Geduldig, J.E.; Charbonneau, S.; Pelton, K.; Iorgulescu, J.B.; Elagina, L.; Zhang, W.; Olive, O.; McCluskey, C.; Olsen, L.R.; Stevens, J.; Lane, W.J.; Salazar, A.M.; Daley, H.; Wen, P.Y.; Chiocca, E.A.; Harden, M.; Lennon, N.J.; Gabriel, S.; Getz, G.; Lander, E.S.; Regev, A.; Ritz, J.; Neuberg, D.; Rodig, S.J.; Ligon, K.L.; Suvà, M.L.; Wucherpfennig, K.W.; Hacohen, N.; Fritsch, E.F.; Livak, K.J.; Ott, P.A.; Wu, C.J.; Reardon, D.A. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738), 234-239.
[http://dx.doi.org/10.1038/s41586-018-0792-9] [PMID: 30568305]
[77]
Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.; Lin, J.J.; Friedlander, T.; Bushway, M.E.; Balogh, K.N.; Sciuto, T.E.; Kohler, V.; Turnbull, S.J.; Besada, R.; Curran, R.R.; Trapp, B.; Scherer, J.; Poran, A.; Harjanto, D.; Barthelme, D.; Ting, Y.S.; Dong, J.Z.; Ware, Y.; Huang, Y.; Huang, Z.; Wanamaker, A.; Cleary, L.D.; Moles, M.A.; Manson, K.; Greshock, J.; Khondker, Z.S.; Fritsch, E.; Rooney, M.S.; DeMario, M.; Gaynor, R.B.; Srinivasan, L. A Phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. Cell, 2020, 183(2), 347-362.e24.
[http://dx.doi.org/10.1016/j.cell.2020.08.053] [PMID: 33064988]
[78]
Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668.
[http://dx.doi.org/10.1038/s41577-020-0306-5] [PMID: 32433532]
[79]
Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res., 2020, 48(W1), W449-W454.
[http://dx.doi.org/10.1093/nar/gkaa379] [PMID: 32406916]
[80]
Racle, J.; Michaux, J.; Rockinger, G.A.; Arnaud, M.; Bobisse, S.; Chong, C.; Guillaume, P.; Coukos, G.; Harari, A.; Jandus, C.; Bassani-Sternberg, M.; Gfeller, D. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol., 2019, 37(11), 1283-1286.
[http://dx.doi.org/10.1038/s41587-019-0289-6] [PMID: 31611696]
[81]
Vider-Shalit, T.; Raffaeli, S.; Louzoun, Y. Virus-epitope vaccine design: Informatic matching the HLA-I polymorphism to the virus genome. Mol. Immunol., 2007, 44(6), 1253-1261.
[http://dx.doi.org/10.1016/j.molimm.2006.06.003] [PMID: 16930710]
[82]
Schubert, B.; Kohlbacher, O. Designing string-of-beads vaccines with optimal spacers. Genome Med., 2016, 8(1), 9.
[http://dx.doi.org/10.1186/s13073-016-0263-6] [PMID: 26813686]
[83]
Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662), 217-221.
[http://dx.doi.org/10.1038/nature22991] [PMID: 28678778]
[84]
Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.; Carfrae, L.A.; Bloom-Ackermann, Z.; Tran, V.M.; Chiappino-Pepe, A.; Badran, A.H.; Andrews, I.W.; Chory, E.J.; Church, G.M.; Brown, E.D.; Jaakkola, T.S.; Barzilay, R.; Collins, J.J. A deep learning approach to antibiotic discovery. Cell, 2020, 180(4), 688-702.e13.
[http://dx.doi.org/10.1016/j.cell.2020.01.021] [PMID: 32084340]
[85]
Schubert, B.; Schärfe, C.; Dönnes, P.; Hopf, T.; Marks, D.; Kohlbacher, O. Population-specific design of de-immunized protein biotherapeutics. PLOS Comput. Biol., 2018, 14(3), e1005983.
[http://dx.doi.org/10.1371/journal.pcbi.1005983] [PMID: 29499035]
[87]
CBER does not regulate the transplantation of vascularized human organ transplants such as kidney, liver, heart, lung, or pancreas. In: The Health Resources Services Administration (HRSA) oversees the transplantation of vascularized human organs; 2018.
[88]
Centers for disease control and prevention. Antibiotic resistance threats in the United States 2019. Available from: https://www.cdc.gov/drugresistance/biggest-threats.html [cited Mar 18 2022].
[89]
Liu, Y.; Tong, Z.; Shi, J.; Li, R.; Upton, M.; Wang, Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics, 2021, 11(10), 4910-4928.
[http://dx.doi.org/10.7150/thno.56205] [PMID: 33754035]
[90]
Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular engineering of antimicrobial peptides: Microbial targets, peptide motifs and translation opportunities. Biophys. Rev., 2021, 13(1), 35-69.
[http://dx.doi.org/10.1007/s12551-021-00784-y] [PMID: 33495702]
[91]
Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic discovery: Where have we come from, where do we go? Antibiotics, 2019, 8(2), 45.
[http://dx.doi.org/10.3390/antibiotics8020045] [PMID: 31022923]
[92]
van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect. Dis. Clin. North Am., 2016, 30(2), 377-390.
[http://dx.doi.org/10.1016/j.idc.2016.02.004] [PMID: 27208764]
[93]
Gajdács, M.; Urbán, E.; Stájer, A.; Baráth, Z. Antimicrobial resistance in the context of the sustainable development goals: A brief review. Eur. J. Investig. Health Psychol. Educ., 2021, 11(1), 71-82.
[http://dx.doi.org/10.3390/ejihpe11010006] [PMID: 34542450]
[94]
Marquette, A.; Bechinger, B. Biophysical investigations elucidating the mechanisms of action of antimicrobial peptides and their synergism. Biomolecules, 2018, 8(2), 18.
[http://dx.doi.org/10.3390/biom8020018] [PMID: 29670065]
[95]
Haroun, M.; Tratrat, C.; Petrou, A.; Geronikaki, A.; Ivanov, M.; Ćirić, A.; Soković, M.; Nagaraja, S.; Venugopala, K.N.; Balachandran Nair, A.; Elsewedy, H.S.; Kochkar, H. Exploration of the antimicrobial effects of benzothiazolylthiazolidin-4-one and in silico mechanistic investigation. Molecules, 2021, 26(13), 4061.
[http://dx.doi.org/10.3390/molecules26134061] [PMID: 34279400]
[96]
Chaudhary, D.K.; Khulan, A.; Kim, J. Development of a novel cultivation technique for uncultured soil bacteria. Sci. Rep., 2019, 9(1), 6666.
[http://dx.doi.org/10.1038/s41598-019-43182-x] [PMID: 31040339]
[97]
Singh, V.; Haque, S.; Singh, H.; Verma, J.; Vibha, K.; Singh, R.; Jawed, A.; Tripathi, C.K.M. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Front. Microbiol., 2016, 7, 1921.
[http://dx.doi.org/10.3389/fmicb.2016.01921] [PMID: 27999566]
[98]
Van Goethem, M.W.; Makhalanyane, T.P.; Cowan, D.A.; Valverde, A. Cyanobacteria and alphaproteobacteria may facilitate cooperative interactions in niche communities. Front. Microbiol., 2017, 8, 2099.
[http://dx.doi.org/10.3389/fmicb.2017.02099] [PMID: 29118751]
[99]
Behie, S.W.; Bonet, B.; Zacharia, V.M.; McClung, D.J.; Traxler, M.F. Molecules to ecosystems: Actinomycete natural products in situ. Front. Microbiol., 2017, 7, 2149.
[http://dx.doi.org/10.3389/fmicb.2016.02149] [PMID: 28144233]
[100]
Pankhurst, C.E. Symbiotic effectiveness of antibiotic-resistant mutants of fast- and slow-growing strains of Rhizobium nodulating Lotus species. Can. J. Microbiol., 1977, 23(8), 1026-1033.
[http://dx.doi.org/10.1139/m77-152] [PMID: 890601]
[101]
Goodfellow, M.; Fiedler, H.P. A guide to successful bioprospecting: Informed by actinobacterial systematics. Antonie van Leeuwenhoek, 2010, 98(2), 119-142.
[http://dx.doi.org/10.1007/s10482-010-9460-2] [PMID: 20582471]
[102]
Marmann, A.; Aly, A.; Lin, W.; Wang, B.; Proksch, P. Co-cultivation--a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs, 2014, 12(2), 1043-1065.
[http://dx.doi.org/10.3390/md12021043] [PMID: 24549204]
[103]
Liu, Y.; Ding, S.; Shen, J.; Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep., 2019, 36(4), 573-592.
[http://dx.doi.org/10.1039/C8NP00031J] [PMID: 30324212]
[104]
Morsy, M.A.; Ali, E.M.; Kandeel, M.; Venugopala, K.N.; Nair, A.B.; Greish, K.; El-Daly, M. Screening and molecular docking of novel benzothiazole derivatives as potential antimicrobial agents. Antibiotics, 2020, 9(5), 221.
[http://dx.doi.org/10.3390/antibiotics9050221] [PMID: 32365587]
[105]
Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Tratrat, C.; Yousef Jaber, A.; Venugopala, R.; Mailavaram, R.P.; Al-Jaidi, B.A.; Kandeel, M.; Haroun, M.; Padmashali, B. Cytotoxicity and antimycobacterial properties of pyrrolo[1,2-a]quinoline derivatives: molecular target identification and molecular docking studies. Antibiotics, 2020, 9(5), 233.
[http://dx.doi.org/10.3390/antibiotics9050233] [PMID: 32392709]
[106]
Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; Greko, C.; So, A.D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A.Q.; Qamar, F.N.; Mir, F.; Kariuki, S.; Bhutta, Z.A.; Coates, A.; Bergstrom, R.; Wright, G.D.; Brown, E.D.; Cars, O. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis., 2013, 13(12), 1057-1098.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[107]
Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother., 2005, 55(3), 283-288.
[http://dx.doi.org/10.1093/jac/dkh546] [PMID: 15705644]
[108]
Peraman, R.; Sure, S.K.; Dusthackeer, V.N.A.; Chilamakuru, N.B.; Yiragamreddy, P.R.; Pokuri, C.; Kutagulla, V.K.; Chinni, S. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Future J. Pharm. Sci., 2021, 7(1), 56.
[http://dx.doi.org/10.1186/s43094-021-00196-5] [PMID: 33686369]
[109]
Iacobino, A.; Fattorini, L.; Giannoni, F. Drug-resistant tuberculosis 2020: Where we stand. Appl. Sci., 2020, 10(6), 2153.
[http://dx.doi.org/10.3390/app10062153]
[110]
Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(11), 1959-1972.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[111]
Yokel, R.A. Nanoparticle brain delivery: A guide to verification methods. Nanomedicine , 2020, 15(4), 409-432.
[http://dx.doi.org/10.2217/nnm-2019-0169] [PMID: 31999236]
[112]
Burgess, A.; Hynynen, K. Drug delivery across the blood–brain barrier using focused ultrasound. Expert Opin. Drug Deliv., 2014, 11(5), 711-721.
[http://dx.doi.org/10.1517/17425247.2014.897693] [PMID: 24650132]
[113]
Dhas, N.; Kudarha, R.; Garkal, A.; Ghate, V.; Sharma, S.; Panzade, P.; Khot, S.; Chaudhari, P.; Singh, A.; Paryani, M.; Lewis, S.; Garg, N.; Singh, N.; Bangar, P.; Mehta, T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J. Control. Release, 2021, 330, 257-283.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.015] [PMID: 33345832]
[114]
Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release, 2018, 270, 290-303.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.015] [PMID: 29269142]
[115]
Seven, E.S.; Zhou, Y.; Seven, Y.B.; Mitchell, G.S.; Leblanc, R.M. Crossing blood-brain barrier with carbon quantum dots. FASEB J., 2019, 33(S1), 785-788.
[http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.785.8]
[116]
Zhou, Y.; Liyanage, P.Y.; Devadoss, D.; Guevara, L.R.; Cheng, L.; Graham, R.M.; Chand, H.S.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Leblanc, R.M. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale, 2019, 11(46), 22387-22397.
[http://dx.doi.org/10.1039/C9NR08194A] [PMID: 31730144]
[117]
Tajik, S.; Dourandish, Z.; Zhang, K.; Beitollahi, H.; Le, Q.V.; Jang, H.W.; Shokouhimehr, M. Carbon and graphene quantum dots: A review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Advances, 2020, 10(26), 15406-15429.
[http://dx.doi.org/10.1039/D0RA00799D] [PMID: 35495425]
[118]
de Medeiros, T.V.; Manioudakis, J.; Noun, F.; Macairan, J.R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(24), 7175-7195.
[http://dx.doi.org/10.1039/C9TC01640F]
[119]
Sircar, N.N. Medicinal plants. East Pharm., 1982, 29(291), 49-52.
[120]
Rao, A.V.R.; Gurjar, M.K. Drugs from plant resources: An overview. Pharm. Times, 1990, 22(5), 19-20.
[121]
Farnsworth, N.R. A computerized data base for medicinal plants. East Pharm., 1985, 28(326), 53-55.
[122]
Littleton, J. The future of plant drug discovery. Expert Opin. Drug Discov., 2007, 2(5), 673-683.
[http://dx.doi.org/10.1517/17460441.2.5.673] [PMID: 23488957]
[123]
Mukherjee, P. Quality control of herbal drugs – An approach to evaluations of botanicals; 5th ed;, 2005, p. 2.
[124]
Bhatt, A. Evolution of clinical research: A history before and beyond james lind. Perspect. Clin. Res., 2010, 1(1), 6-10.
[http://dx.doi.org/10.4103/2229-3485.71839] [PMID: 21829774]
[125]
Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: Race-, sex-, and age-based disparities. JAMA, 2004, 291(22), 2720-2726.
[http://dx.doi.org/10.1001/jama.291.22.2720] [PMID: 15187053]
[126]
Anderson, D. Digital R&D: four ways to maximize patient engagement in clinical trials. In: Deloitte consulting LLP; , 2018.
[127]
National institutes of health, office of science. Policy. Clin Trials.,
[128]
Lauer, M.S.; Bonds, D. Eliminating the “expensive” adjective for clinical trials. Am. Heart J., 2014, 167(4), 419-420.
[http://dx.doi.org/10.1016/j.ahj.2013.12.003] [PMID: 24655687]
[129]
US food and drug administration. Prescription drug user fee act (PDUFA). Available from: https://www.fda.gov/forindustry/userfees/prescriptiondruguserfee/[cited Aug 4 2019].
[130]
Schuklenk, M.R. Critique of the CIOMS guidelines: All procedure, no substance. Indian J. Med. Ethics, 2017, 24, 1-3.
[http://dx.doi.org/10.20529/IJME.2017.067]
[131]
Morris, T.; Brostoff, J.M.; Stonier, P.D.; Boyd, A. Evolution of ethical principles in the practice of pharmaceutical medicine from a UK perspective. Front. Pharmacol., 2020, 10, 1525.
[http://dx.doi.org/10.3389/fphar.2019.01525] [PMID: 32009950]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy