Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Application of Nanocomposites and Nanoparticles in Treating Neurodegenerative Disorders

Author(s): Javeria Fatima and Yasir Hasan Siddique*

Volume 23, Issue 10, 2024

Published on: 29 January, 2024

Page: [1217 - 1233] Pages: 17

DOI: 10.2174/0118715273283338240104112106

Price: $65

Abstract

Neurodegenerative diseases represent a formidable global health challenge, affecting millions and imposing substantial burdens on healthcare systems worldwide. Conditions, like Alzheimer's, Parkinson's, and Huntington's diseases, among others, share common characteristics, such as neuronal loss, misfolded protein aggregation, and nervous system dysfunction. One of the major obstacles in treating these diseases is the presence of the blood-brain barrier, limiting the delivery of therapeutic agents to the central nervous system. Nanotechnology offers promising solutions to overcome these challenges. In Alzheimer's disease, NPs loaded with various compounds have shown remarkable promise in preventing amyloid-beta (Aβ) aggregation and reducing neurotoxicity. Parkinson's disease benefits from improved dopamine delivery and neuroprotection. Huntington's disease poses its own set of challenges, but nanotechnology continues to offer innovative solutions. The promising developments in nanoparticle-based interventions for neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), have offered new avenues for effective treatment. Nanotechnology represents a promising frontier in biomedical research, offering tailored solutions to the complex challenges posed by neurodegenerative diseases. While much progress has been made, ongoing research is essential to optimize nanomaterial designs, improve targeting, and ensure biocompatibility and safety. Nanomaterials possess unique properties that make them excellent candidates for targeted drug delivery and neuroprotection. They can effectively bypass the blood-brain barrier, opening doors to precise drug delivery strategies. This review explores the extensive research on nanoparticles (NPs) and nanocomposites in diagnosing and treating neurodegenerative disorders. These nanomaterials exhibit exceptional abilities to target neurodegenerative processes and halt disease progression.

Graphical Abstract

[1]
Kuchik AR, Doke RR, Bhor PP, Matade RR, Gosavi PP, Shinde AR. Recent advances in nanotherapeutics for epilepsy and neurodegenerative diseases. J Pharm Biol Sci 2023; 11(1): 30-4.
[http://dx.doi.org/10.18231/j.jpbs.2023.006]
[2]
Babazadeh A, Mohammadi Vahed F, Jafari SM. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J Control Release 2020; 321: 211-21.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.015] [PMID: 32035189]
[3]
Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res 2014; 45(8): 687-97.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.013] [PMID: 25431839]
[4]
Kuo YC, Wang CC. Cationic solid lipid nanoparticles with cholesterol‐mediated surface layer for transporting saquinavir to the brain. Biotechnol Prog 2014; 30(1): 198-206.
[http://dx.doi.org/10.1002/btpr.1834] [PMID: 24167123]
[5]
Wei M, Li S, Le W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J Nanobiotechnology 2017; 15(1): 75.
[http://dx.doi.org/10.1186/s12951-017-0310-5] [PMID: 29065876]
[6]
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 2016; 235: 34-47.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.044] [PMID: 27208862]
[7]
Vissers C, Ming G, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev 2019; 148: 239-51.
[http://dx.doi.org/10.1016/j.addr.2019.02.007] [PMID: 30797953]
[8]
Jadidi-Niaragh F, Atyabi F, Rastegari A, et al. Downregulation of CD73 in 4T1 breast cancer cells through siRNA-loaded chitosan-lactate nanoparticles. Tumour Biol 2016; 37(6): 8403-12.
[http://dx.doi.org/10.1007/s13277-015-4732-0] [PMID: 26733167]
[9]
Hosseini A, Sharifi AM, Abdollahi M, et al. Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus. Biol Trace Elem Res 2015; 164(1): 80-9.
[http://dx.doi.org/10.1007/s12011-014-0197-z] [PMID: 25516117]
[10]
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood–brain barrier: The role of nanomaterials in treating neurological diseases. Adv Mater 2018; 30(46): 1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[11]
Bahrami B, Mohammadnia-Afrouzi M, Bakhshaei P, et al. Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy. Tumour Biol 2015; 36(8): 5727-42.
[http://dx.doi.org/10.1007/s13277-015-3706-6] [PMID: 26142733]
[12]
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9(1): 2241-57.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[13]
Kondiah PPD, Choonara YE, Kondiah PJ, et al. Nanocomposites for therapeutic application in multiple sclerosis. Applications of Nanocomposite Materials in Drug Delivery 2018; 2018: 391-408.
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00017-0]
[14]
Wei M, Yang Z, Li S, Le W. Nanotherapeutic and Stem cell therapeutic strategies in neurodegenerative diseases: A promising therapeutic approach. Int J Nanomedicine 2023; 18: 611-26.
[http://dx.doi.org/10.2147/IJN.S395010] [PMID: 36760756]
[15]
Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012; 64(7): 686-700.
[http://dx.doi.org/10.1016/j.addr.2011.10.007] [PMID: 22100125]
[16]
Pichla M, Bartosz G, Sadowska-Bartosz I. The antiaggregative and antiamyloidogenic properties of nanoparticles: A promising tool for the treatment and diagnostics of neurodegenerative diseases. Oxid Med Cell Longev 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/3534570] [PMID: 33123310]
[17]
Goldsmith M, Abramovitz L, Peer D. Precision nanomedicine in neurodegenerative diseases. ACS Nano 2014; 8(3): 1958-65.
[http://dx.doi.org/10.1021/nn501292z] [PMID: 24660817]
[18]
Mody V, Siwale R, Singh A, Mody H. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4): 282-9.
[http://dx.doi.org/10.4103/0975-7406.72127] [PMID: 21180459]
[19]
Omanović-Mikličanin E, Badnjević A, Kazlagić A, Hajlovac M. Nanocomposites: A brief review. Health Technol 2020; 10(1): 51-9.
[http://dx.doi.org/10.1007/s12553-019-00380-x]
[20]
Tai WP, Kim YS, Kim JG. Fabrication and magnetic properties of Al2O3/Co nanocomposites. Mater Chem Phys 2003; 82(2): 396-400.
[http://dx.doi.org/10.1016/S0254-0584(03)00269-4]
[21]
Adhikary RR, Sandbhor P, Banerjee R. Nanotechnology platforms in Parkinson’s Disease. ADMET DMPK 2015; 3(3): 155-81.
[http://dx.doi.org/10.5599/admet.3.3.189]
[22]
Modi G, Pillay V, Choonara YE, Ndesendo VMK, du Toit LC, Naidoo D. Nanotechnological applications for the treatment of neurodegenerative disorders. Prog Neurobiol 2009; 88(4): 272-85.
[http://dx.doi.org/10.1016/j.pneurobio.2009.05.002] [PMID: 19486920]
[23]
Williams A. Defining neurodegenerative diseases. BMJ 2002; 324(7352): 1465-6.
[http://dx.doi.org/10.1136/bmj.324.7352.1465] [PMID: 12077015]
[24]
Kanwar J, Sriramoju B, Kanwar RK. Neurological disorders and therapeutics targeted to surmount the blood–brain barrier. Int J Nanomedicine 2012; 7: 3259-78.
[http://dx.doi.org/10.2147/IJN.S30919] [PMID: 22848160]
[25]
Hagberg H, Mallard C. Effect of inflammation on central nervous system development and vulnerability: Review. Curr Opin Neurol 2005; 18(2): 117-23.
[http://dx.doi.org/10.1097/01.wco.0000162851.44897.8f] [PMID: 15791140]
[26]
Carvey PM, Hendey B, Monahan AJ. The blood–brain barrier in neurodegenerative disease: A rhetorical perspective. J Neurochem 2009; 111(2): 291-314.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06319.x] [PMID: 19659460]
[27]
Waldmeier PC. Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27(2): 303-21.
[http://dx.doi.org/10.1016/S0278-5846(03)00025-3] [PMID: 12657369]
[28]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[29]
Olson M, Shaw CM. Presenile dementia and Alzheimer’s disease in mongolism. Brain 1969; 92(1): 147-56.
[http://dx.doi.org/10.1093/brain/92.1.147] [PMID: 4237656]
[30]
Dement A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[31]
Jakob-Roetne R, Jacobsen H. Alzheimer’s disease: From pathology to therapeutic approaches. Angew Chem Int Ed 2009; 48(17): 3030-59.
[http://dx.doi.org/10.1002/anie.200802808] [PMID: 19330877]
[32]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[33]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[34]
Mathew A, Aravind A, Fukuda T, et al. Curcumin nanoparticles-a gateway for multifaceted approach to tackle Alzheimer’s disease. Proceedings of the 2011 11th IEEE International Conference on Nanotechnology. Portland, OR, USA. 2011; pp. 15-8. August 2011; 833-6.
[35]
Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chemistry 2015; 21(2): 829-35.
[http://dx.doi.org/10.1002/chem.201404562] [PMID: 25376633]
[36]
Hou K, Zhao J, Wang H, et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat Commun 2020; 11(1): 4790.
[http://dx.doi.org/10.1038/s41467-020-18525-2] [PMID: 32963242]
[37]
Sathya S, Shanmuganathan B, Saranya S, Vaidevi S, Ruckmani K, Pandima Devi K. Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer’s toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif Cells Nanomed Biotechnol 2018; 46(8): 1719-30.
[PMID: 29069924]
[38]
Tang M, Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 2017; 58(4): 1003-16.
[http://dx.doi.org/10.3233/JAD-170188] [PMID: 28527218]
[39]
Barbara R, Belletti D, Pederzoli F, et al. Novel Curcumin loaded nanoparticles engineered for Blood-Brain Barrier crossing and able to disrupt Abeta aggregates. Int J Pharm 2017; 526(1-2): 413-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.015] [PMID: 28495580]
[40]
Shi S, Liang D, Chen Y, et al. Gx‐50 reduces β‐amyloid‐induced TNF‐α, IL‐1β, NO, and PGE 2 expression and inhibits NF‐κB signaling in a mouse model of Alzheimer’s disease. Eur J Immunol 2016; 46(3): 665-76.
[http://dx.doi.org/10.1002/eji.201545855] [PMID: 26643273]
[41]
Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv 2018; 25(1): 1091-102.
[http://dx.doi.org/10.1080/10717544.2018.1461955] [PMID: 30107760]
[42]
Doggui S, Sahni JK, Arseneault M, Dao L, Ramassamy C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J Alzheimers Dis 2012; 30(2): 377-92.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[43]
Cheng KK, Yeung CF, Ho SW, Chow SF, Chow AHL, Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J 2013; 15(2): 324-36.
[http://dx.doi.org/10.1208/s12248-012-9444-4] [PMID: 23229335]
[44]
Djiokeng Paka G, Doggui S, Zaghmi A, et al. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: Role of poly (lactide-co-glycolide) polymeric matrix composition. Mol Pharm 2016; 13(2): 391-403.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00611] [PMID: 26618861]
[45]
Kim MJ, Rehman SU, Amin FU, Kim MO. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine 2017; 13(8): 2533-44.
[http://dx.doi.org/10.1016/j.nano.2017.06.022] [PMID: 28736294]
[46]
Xiong N, Zhao Y, Dong X, Zheng J, Sun Y. Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β‐protein aggregation and cytotoxicity. Small 2017; 13(13): 1601666.
[http://dx.doi.org/10.1002/smll.201601666] [PMID: 28112856]
[47]
Amin FU, Hoshiar AK, Do TD, et al. Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer’s disease. Nanoscale 2017; 9(30): 10619-32.
[http://dx.doi.org/10.1039/C7NR00772H] [PMID: 28534925]
[48]
Li J, Han Q, Wang X, et al. Reduced aggregation and cytotoxicity of amyloid peptides by graphene oxide/gold nanocomposites prepared by pulsed laser ablation in water. Small 2014; 10(21): 4386-94.
[http://dx.doi.org/10.1002/smll.201401121] [PMID: 25059878]
[49]
Ahmad I, Mozhi A, Yang L, et al. Graphene oxide-iron oxide nanocomposite as an inhibitor of Aβ 42 amyloid peptide aggregation. Colloids Surf B Biointerfaces 2017; 159: 540-5.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.020] [PMID: 28846964]
[50]
Zhao Y, Cai J, Liu Z, et al. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of β-amyloid aggregates in Alzheimer’s disease mice. Nano Lett 2019; 19(2): 674-83.
[http://dx.doi.org/10.1021/acs.nanolett.8b03644] [PMID: 30444372]
[51]
Zhang L, Zhao P, Yue C, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials 2019; 197: 393-404.
[http://dx.doi.org/10.1016/j.biomaterials.2019.01.037] [PMID: 30703744]
[52]
Jeon SG, Cha MY, Kim J, et al. Vitamin D-binding protein-loaded PLGA nanoparticles suppress Alzheimer’s disease-related pathology in 5XFAD mice. Nanomedicine 2019; 17: 297-307.
[http://dx.doi.org/10.1016/j.nano.2019.02.004] [PMID: 30794963]
[53]
Li C, Wang N, Zheng G, Yang L. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota. ACS Appl Mater Interfaces 2021; 13(39): 46406-20.
[http://dx.doi.org/10.1021/acsami.1c14818] [PMID: 34569225]
[54]
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2017; 100: 37-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.021] [PMID: 27737778]
[55]
McNaught KSP, Belizaire R, Isacson O, Jenner P, Olanow CW. Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 2003; 179(1): 38-46.
[http://dx.doi.org/10.1006/exnr.2002.8050] [PMID: 12504866]
[56]
Desai S, Pansare P, Sainani S, Doke R, Bhalchim V, Rode K. Foxo6 - a novel target for Parkinson’s Disease. Biomed Pharmacol J 2020; 13(1): 367-81.
[http://dx.doi.org/10.13005/bpj/1897]
[57]
Doke RR, Pansare PA, Sainani SR, Bhalchim VM, Rode KR, Desai SR. Natural products: An emerging tool in parkinson’s disease. J Neurosci 2019; 5(3): 95-105.
[58]
Linazasoro G. Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat Disord 2008; 14(5): 383-92.
[http://dx.doi.org/10.1016/j.parkreldis.2007.11.012] [PMID: 18329315]
[59]
Songjiang Z, Lixiang W. Amyloid-beta associated with chitosan nano-carrier has favorable immunogenicity and permeates the BBB. AAPS PharmSciTech 2009; 10(3): 900-5.
[http://dx.doi.org/10.1208/s12249-009-9279-1] [PMID: 19609682]
[60]
Trapani A, De Giglio E, Cafagna D, et al. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int J Pharm 2011; 419(1-2): 296-307.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.036] [PMID: 21821107]
[61]
Kaliyaperumal P, Renganathan S, Arumugam K, Aremu BR. Engineered graphene quantum dot nanocomposite triggers α-synuclein defibrillation: Therapeutics against Parkinson’s disease. Nanomedicine 2023; 47: 102608.
[http://dx.doi.org/10.1016/j.nano.2022.102608] [PMID: 36228996]
[62]
Naz F, Rahul , Fatima M, et al. Ropinirole silver nanocomposite attenuates neurodegeneration in the transgenic Drosophila melanogaster model of Parkinson’s disease. Neuropharmacology 2020; 177: 108216.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108216] [PMID: 32707222]
[63]
Siddique YH, Khan W, Singh BR, Naqvi AH. Synthesis of alginate-curcumin nanocomposite and its protective role in transgenic Drosophila model of Parkinson’s disease. ISRN Pharmacol 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/794582] [PMID: 24171120]
[64]
Siddique YH, Khan W, Fatima A, et al. Effect of bromocriptine alginate nanocomposite (BANC) on a transgenic Drosophila model of Parkinson’s disease. Dis Model Mech 2016; 9(1): 63-8.
[PMID: 26542705]
[65]
Khanam S, Naz F, Ali F, et al. Effect of cabergoline alginate nanocomposite on the transgenic Drosophila melanogaster model of Parkinson’s disease. Toxicol Mech Methods 2018; 28(9): 699-708.
[http://dx.doi.org/10.1080/15376516.2018.1502386] [PMID: 30019977]
[66]
Sharma S, Lohan S, Murthy RSR. Formulation and characterization of intranasal mucoadhesive nanoparticulates and thermo-reversible gel of levodopa for brain delivery. Drug Dev Ind Pharm 2014; 40(7): 869-78.
[http://dx.doi.org/10.3109/03639045.2013.789051] [PMID: 23600649]
[67]
Pahuja R, Seth K, Shukla A, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015; 9(5): 4850-71.
[http://dx.doi.org/10.1021/nn506408v] [PMID: 25825926]
[68]
Gambaryan PY, Kondrasheva IG, Severin ES, Guseva AA, Kamensky AA. Increasing the efficiency of parkinson’s disease treatment using a poly (lactic-co-glycolic acid) (PLGA) based L-DOPA delivery system. Exp Neurobiol 2014; 23(3): 246-52.
[http://dx.doi.org/10.5607/en.2014.23.3.246] [PMID: 25258572]
[69]
Jafarieh O, Md S, Ali M, et al. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 2015; 41(10): 1674-81.
[http://dx.doi.org/10.3109/03639045.2014.991400] [PMID: 25496439]
[70]
Ray S, Sinha P, Laha B, Maiti S, Bhattacharyya UK, Nayak AK. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol 2018; 48: 21-9.
[http://dx.doi.org/10.1016/j.jddst.2018.08.016]
[71]
Md S, Khan RA, Mustafa G, et al. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur J Pharm Sci 2013; 48(3): 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[72]
Raj R, Wairkar S, Sridhar V, Gaud R. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int J Biol Macromol 2018; 109: 27-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.056] [PMID: 29247729]
[73]
Tzankov B, Tzankova V, Aluani D, et al. Development of MCM-41 mesoporous silica nanoparticles as a platform for pramipexole delivery. J Drug Deliv Sci Technol 2019; 51: 26-35.
[http://dx.doi.org/10.1016/j.jddst.2019.02.008]
[74]
Sridhar V, Gaud R, Bajaj A, Wairkar S. Pharmacokinetics and pharmacodynamics of intranasally administered selegiline nanoparticles with improved brain delivery in Parkinson’s disease. Nanomedicine 2018; 14(8): 2609-18.
[http://dx.doi.org/10.1016/j.nano.2018.08.004] [PMID: 30171904]
[75]
Bali NR, Salve PS. Selegiline nanoparticle embedded transdermal film: An alternative approach for brain targeting in Parkinson’s disease. J Drug Deliv Sci Technol 2019; 54: 101299.
[http://dx.doi.org/10.1016/j.jddst.2019.101299]
[76]
Hu K, Shi Y, Jiang W, Han J, Huang S, Jiang X. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson’s disease. Int J Pharm 2011; 415(1-2): 273-83.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.062] [PMID: 21651967]
[77]
Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 2008; 70(3): 735-40.
[http://dx.doi.org/10.1016/j.ejpb.2008.07.005] [PMID: 18684400]
[78]
Tentillier N, Etzerodt A, Olesen MN, et al. Anti-inflammatory modulation of microglia via CD163-targeted glucocorticoids protects dopaminergic neurons in the 6-OHDA Parkinson’s disease model. J Neurosci 2016; 36(36): 9375-90.
[http://dx.doi.org/10.1523/JNEUROSCI.1636-16.2016] [PMID: 27605613]
[79]
Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009; 17(8): 564-74.
[http://dx.doi.org/10.1080/10611860903112842] [PMID: 19694610]
[80]
Chang CZ, Wu SC, Lin CL, Kwan AL. Curcumin, encapsulated in nano-sized PLGA, down-regulates nuclear factor κB (p65) and subarachnoid hemorrhage induced early brain injury in a rat model. Brain Res 2015; 1608: 215-24.
[http://dx.doi.org/10.1016/j.brainres.2015.02.039] [PMID: 25747863]
[81]
Bollimpelli VS, Kumar P, Kumari S, Kondapi AK. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem Int 2016; 95: 37-45.
[http://dx.doi.org/10.1016/j.neuint.2016.01.006] [PMID: 26826319]
[82]
Singh G, Pai RS. Optimized PLGA nanoparticle platform for orally dosed trans -resveratrol with enhanced bioavailability potential. Expert Opin Drug Deliv 2014; 11(5): 647-59.
[http://dx.doi.org/10.1517/17425247.2014.890588] [PMID: 24661109]
[83]
da Rocha LG, Bonfanti SD, Colle D, et al. Improved neuroprotective effects of resveratrol-loaded polysorbate 80-coated poly(lactide) nanoparticles in MPTP-induced Parkinsonism. Nanomedicine 2015; 10(7): 1127-38.
[http://dx.doi.org/10.2217/nnm.14.165] [PMID: 25929569]
[84]
Tiwari MN, Agarwal S, Bhatnagar P, et al. Nicotine-encapsulated poly(lactic-co-glycolic) acid nanoparticles improve neuroprotective efficacy against MPTP-induced parkinsonism. Free Radic Biol Med 2013; 65: 704-18.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.042] [PMID: 23933227]
[85]
Kimura K, Yamasaki K, Nakamura H, Haratake M, Taguchi K, Otagiri M. Preparation and in vitro analysis of human serum albumin nanoparticles loaded with anthracycline derivatives. Chem Pharm Bull 2018; 66(4): 382-90.
[http://dx.doi.org/10.1248/cpb.c17-00838] [PMID: 29607904]
[86]
Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers 2015; 1(1): 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[87]
Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012; 36(4): 342-53.
[http://dx.doi.org/10.5142/jgr.2012.36.4.342] [PMID: 23717136]
[88]
Wang JQ, Chen Q, Wang X, et al. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J Biol Chem 2013; 288(5): 3070-84.
[http://dx.doi.org/10.1074/jbc.M112.407726] [PMID: 23250749]
[89]
del Hoyo P, García-Redondo A, de Bustos F, et al. Oxidative stress in skin fibroblasts cultures of patients with Huntington’s disease. Neurochem Res 2006; 31(9): 1103-9.
[http://dx.doi.org/10.1007/s11064-006-9110-2] [PMID: 16944322]
[90]
Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med 2014; 16(1): 106-18.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[91]
Cong W, Bai R, Li YF, Wang L, Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl Mater Interfaces 2019; 11(38): 34725-35.
[http://dx.doi.org/10.1021/acsami.9b12319] [PMID: 31479233]
[92]
Debnath K, Pradhan N, Singh BK, Jana NR, Jana NR. Correction to poly (trehalose) nanoparticles prevent amyloid aggregation and suppress polyglutamine aggregation in a Huntington’s disease model mouse. ACS Appl Mater Interfaces 2019; 11(33): 30508-8.
[http://dx.doi.org/10.1021/acsami.9b12769] [PMID: 31386335]
[93]
Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377(9769): 942-55.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[94]
Saberi S, Stauffer JE, Schulte DJ, Ravits J. Neuropathology of amyotrophic lateral sclerosis and its variants. Neurol Clin 2015; 33(4): 855-76.
[http://dx.doi.org/10.1016/j.ncl.2015.07.012] [PMID: 26515626]
[95]
Blokhuis AM, Groen EJN, Koppers M, van den Berg LH, Pasterkamp RJ. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol 2013; 125(6): 777-94.
[http://dx.doi.org/10.1007/s00401-013-1125-6] [PMID: 23673820]
[96]
DeCoteau W, Heckman KL, Estevez AY, et al. Cerium oxide nanoparticles with antioxidant properties ameliorate strength and prolong life in mouse model of amyotrophic lateral sclerosis. Nanomedicine 2016; 12(8): 2311-20.
[http://dx.doi.org/10.1016/j.nano.2016.06.009] [PMID: 27389143]
[97]
Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine 2010; 5(1): 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[98]
Mazibuko Z, Choonara YE, Kumar P, et al. A review of the potential role of nano-enabled drug delivery technologies in amyotrophic lateral sclerosis: Lessons learned from other neurodegenerative disorders. J Pharm Sci 2015; 104(4): 1213-29.
[http://dx.doi.org/10.1002/jps.24322] [PMID: 25559087]
[99]
Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnology 2016; 14(1): 27.
[http://dx.doi.org/10.1186/s12951-016-0177-x] [PMID: 27061902]
[100]
Tripodo G, Chlapanidas T, Perteghella S, et al. Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases. Colloids Surf B Biointerfaces 2015; 125: 300-8.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.034] [PMID: 25524221]
[101]
Yan J, Greer JM. NF-κB, a potential therapeutic target for the treatment of multiple sclerosis. CNS Neurol Disord Drug Targets 2008; 7(6): 536-57.
[102]
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, et al. Application of nanomedicine for crossing the blood-brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13(5): 603-19.
[http://dx.doi.org/10.3109/1547691X.2016.1159264] [PMID: 27416019]
[103]
Naeimi R, Safarpour F, Hashemian M, et al. Curcumin-loaded nanoparticles ameliorate glial activation and improve myelin repair in lyolecithin-induced focal demyelination model of rat corpus callosum. Neurosci Lett 2018; 674: 1-10.
[http://dx.doi.org/10.1016/j.neulet.2018.03.018] [PMID: 29530814]
[104]
Eitan E, Hutchison ER, Greig NH, et al. Combination therapy with lenalidomide and nanoceria ameliorates CNS autoimmunity. Exp Neurol 2015; 273: 151-60.
[http://dx.doi.org/10.1016/j.expneurol.2015.08.008] [PMID: 26277686]
[105]
Heckman KL, DeCoteau W, Estevez A, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano 2013; 7(12): 10582-96.
[http://dx.doi.org/10.1021/nn403743b] [PMID: 24266731]
[106]
Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm 2010; 394(1-2): 115-21.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.026] [PMID: 20433914]
[107]
Brooking J, Davis SS, Illum L. Transport of nanoparticles across the rat nasal mucosa. J Drug Target 2001; 9(4): 267-79.
[http://dx.doi.org/10.3109/10611860108997935] [PMID: 11697030]
[108]
Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 2009; 6(1): 20.
[http://dx.doi.org/10.1186/1743-8977-6-20] [PMID: 19640265]
[109]
Oberdörster E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 2004; 112(10): 1058-62.
[http://dx.doi.org/10.1289/ehp.7021] [PMID: 15238277]
[110]
Sharma HS, Hussain S, Schlager J, Ali SF, Sharma A. Influence of nanoparticles on blood–brain barrier permeability and brain edema formation in rats. Acta Neurochir Suppl 2010; 106: 359-64.
[http://dx.doi.org/10.1007/978-3-211-98811-4_65]
[111]
Tang J, Xiong L, Wang S, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol 2009; 9(8): 4924-32.
[http://dx.doi.org/10.1166/jnn.2009.1269] [PMID: 19928170]
[112]
Chen L, Zhang B, Toborek M. Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomedicine 2013; 9(2): 212-21.
[http://dx.doi.org/10.1016/j.nano.2012.05.017] [PMID: 22687898]
[113]
Huang CL, Hsiao IL, Lin HC, Wang CF, Huang YJ, Chuang CY. Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environ Res 2015; 136: 253-63.
[http://dx.doi.org/10.1016/j.envres.2014.11.006] [PMID: 25460644]
[114]
Mohajeri M, Sadeghizadeh M, Najafi F, Javan M. Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 2015; 99: 156-67.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.013] [PMID: 26211978]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy