Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

LRRK2; Communicative Role in the Treatment of Parkinson’s Disease and Ulcerative Colitis Overlapping

Author(s): Naser-Aldin Lashgari, Nazanin Momeni Roudsari, Amirhossein Niknejad, Hedieh Sadat Shamsnia, Maryam Shayan, Leila Mohaghegh Shalmani, Saeideh Momtaz*, Nima Rezaei* and Amir Hossein Abdolghaffari*

Volume 23, Issue 10, 2024

Published on: 25 January, 2024

Page: [1177 - 1188] Pages: 12

DOI: 10.2174/0118715273270874231205050727

Price: $65

Abstract

Background: Involvement of gastrointestinal inflammation in Parkinson’s disease (PD) pathogenesis and movement have progressively emerged. Inflammation is involved in the etiology of both PD and inflammatory bowel disease (IBD). Transformations in leucine-rich recurrent kinase 2 (LRRK2) are among the best hereditary supporters of IBD and PD. Elevated levels of LRRK2 have been reported in stimulated colonic tissue from IBD patients and peripheral invulnerable cells from irregular PD patients; thus, it is thought that LRRK2 directs inflammatory cycles.

Objective: Since its revelation, LRRK2 has been seriously linked in neurons, albeit various lines of proof affirmed that LRRK2 is profoundly communicated in invulnerable cells. Subsequently, LRRK2 might sit at a junction by which stomach inflammation and higher LRRK2 levels in IBD might be a biomarker of expanded risk for inconsistent PD or potentially may address a manageable helpful objective in incendiary sicknesses that increment the risk of PD. Here, we discuss how PD and IBD share covering aggregates, especially regarding LRRK2 and present inhibitors, which could be a helpful objective in ongoing treatments.

Method: English data were obtained from Google Scholar, PubMed, Scopus, and Cochrane library studies published between 1990-December 2022.

Result: Inhibitors of the LRRK2 pathway can be considered as the novel treatment approaches for IBD and PD treatment.

Conclusion: Common mediators and pathways are involved in the pathophysiology of IBD and PD, which are majorly correlated with inflammatory situations. Such diseases could be used for further clinical investigations.

Next »
Graphical Abstract

[1]
Lee H-S, Lobbestael E, Vermeire S, Sabino J, Cleynen I. Inflammatory bowel disease and Parkinson’s disease: Common pathophysiological links. Gut 2021; 70(2): 408-17.
[PMID: 33067333]
[2]
Lin J-C, Lin CS, Hsu CW, Lin CL, Kao CH. Association between Parkinson’s disease and inflammatory bowel disease: A nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 2016; 22(5): 1049-55.
[http://dx.doi.org/10.1097/MIB.0000000000000735] [PMID: 26919462]
[3]
Cabezudo D, Baekelandt V, Lobbestael E. Multiple-hit hypothesis in Parkinson’s disease: LRRK2 and inflammation. Front Neurosci 2020; 14: 376.
[http://dx.doi.org/10.3389/fnins.2020.00376] [PMID: 32410948]
[4]
Wallings RL, Tansey MG. LRRK2 regulation of immune-pathways and inflammatory disease. Biochem Soc Trans 2019; 47(6): 1581-95.
[http://dx.doi.org/10.1042/BST20180463] [PMID: 31769472]
[5]
Liu Z, Lee J, Krummey S, et al. Leucine-rich repeat kinase 2 (LRRK2) regulates inflammatory bowel disease through the Nuclear Factor of Activated T cells (NFAT). Nat Immunol 2011; 12(11): 1063.
[http://dx.doi.org/10.1038/ni.2113] [PMID: 21983832]
[6]
Panagiotakopoulou V, Ivanyuk D, De Cicco S, et al. Interferon-γ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nat Commun 2020; 11(1): 5163.
[http://dx.doi.org/10.1038/s41467-020-18755-4] [PMID: 33057020]
[7]
Dzamko NL. LRRK2 and the immune system. Leucine-Rich Repeat Kinase 2 (LRRK2) 2017; 123-43.
[http://dx.doi.org/10.1007/978-3-319-49969-7_7]
[8]
Nabar NR, Heijjer CN, Shi CS, et al. LRRK2 is required for CD38-mediated NAADP-Ca2+ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy 2022; 18(1): 204-22.
[http://dx.doi.org/10.1080/15548627.2021.1954779] [PMID: 34313548]
[9]
Kim B, Yang MS, Choi D, et al. Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One 2012; 7(4): e34693.
[http://dx.doi.org/10.1371/journal.pone.0034693] [PMID: 22496842]
[10]
Moehle MS, Webber PJ, Tse T, et al. LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 2012; 32(5): 1602-11.
[http://dx.doi.org/10.1523/JNEUROSCI.5601-11.2012] [PMID: 22302802]
[11]
Russo I, Berti G, Plotegher N, et al. Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. J Neuroinflammation 2015; 12(1): 230.
[http://dx.doi.org/10.1186/s12974-015-0449-7] [PMID: 26646749]
[12]
Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson’s disease. Trends Neurosci 2022; 45(3): 224-36.
[http://dx.doi.org/10.1016/j.tins.2021.12.002] [PMID: 34991886]
[13]
Li X, Moore DJ, Xiong Y, Dawson TM, Dawson VL. Reevaluation of phosphorylation sites in the Parkinson disease-associated leucine-rich repeat kinase 2. J Biol Chem 2010; 285(38): 29569-76.
[http://dx.doi.org/10.1074/jbc.M110.127639] [PMID: 20595391]
[14]
Ho DH, Nam D, Seo MK, Park SW, Seol W, Son I. LRRK2 kinase inhibitor rejuvenates oxidative stress-induced cellular senescence in neuronal cells. Oxid Med Cell Longev 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/9969842] [PMID: 34306319]
[15]
Lin J, Zheng X, Zhang Z, et al. Inhibition of LRRK2 restores parkin-mediated mitophagy and attenuates intervertebral disc degeneration. Osteoarthritis Cartilage 2021; 29(4): 579-91.
[http://dx.doi.org/10.1016/j.joca.2021.01.002] [PMID: 33434630]
[16]
Yang D, Li T, Liu Z, et al. LRRK2 kinase activity mediates toxic interactions between genetic mutation and oxidative stress in a Drosophila model: Suppression by curcumin. Neurobiol Dis 2012; 47(3): 385-92.
[http://dx.doi.org/10.1016/j.nbd.2012.05.020] [PMID: 22668778]
[17]
Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev 2014; 13(1): 3-10.
[http://dx.doi.org/10.1016/j.autrev.2013.06.004] [PMID: 23774107]
[18]
Lashgari NA, Roudsari NM, Zandi N, et al. Current overview of opioids in progression of inflammatory bowel disease; pharmacological and clinical considerations. Mol Biol Rep 2021; 48(1): 855-74.
[http://dx.doi.org/10.1007/s11033-020-06095-x] [PMID: 33394234]
[19]
Lucaciu LA, Ilieș M, Vesa ȘC, et al. Serum Interleukin (IL)-23 and IL-17 profile in Inflammatory Bowel Disease (IBD) patients could differentiate between severe and non-severe disease. J Pers Med 2021; 11(11): 1130.
[http://dx.doi.org/10.3390/jpm11111130] [PMID: 34834482]
[20]
Jiang W, Su J, Zhang X, et al. Elevated levels of Th17 cells and Th17-related cytokines are associated with disease activity in patients with inflammatory bowel disease. Inflamm Res 2014; 63(11): 943-50.
[http://dx.doi.org/10.1007/s00011-014-0768-7] [PMID: 25129403]
[21]
Monteleone G, Biancone L, Marasco R, et al. Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 1997; 112(4): 1169-78.
[http://dx.doi.org/10.1016/S0016-5085(97)70128-8] [PMID: 9098000]
[22]
Monteleone G, Trapasso F, Parrello T, et al. Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol 1999; 163(1): 143-7.
[http://dx.doi.org/10.4049/jimmunol.163.1.143] [PMID: 10384110]
[23]
Rovedatti L. Differential regulation of interleukin-17 and interferon-y production in inflammatory bowel disease. Queen Mary University of London 2010.
[24]
Lashgari NA, Momeni Roudsari N, Khayatan D, et al. Ginger and its constituents: Role in treatment of inflammatory bowel disease. Biofactors 2022; 48(1): 7-21.
[http://dx.doi.org/10.1002/biof.1808] [PMID: 34882874]
[25]
Ceponis PJM, Botelho F, Richards CD, McKay DM. Interleukins 4 and 13 increase intestinal epithelial permeability by a phosphatidylinositol 3-kinase pathway. Lack of evidence for STAT 6 involvement. J Biol Chem 2000; 275(37): 29132-7.
[http://dx.doi.org/10.1074/jbc.M003516200] [PMID: 10871612]
[26]
Neuman MG. Immune dysfunction in inflammatory bowel disease. Transl Res 2007; 149(4): 173-86.
[http://dx.doi.org/10.1016/j.trsl.2006.11.009] [PMID: 17383591]
[27]
Ueyama H, Kiyohara T, Sawada N, et al. High Fas ligand expression on lymphocytes in lesions of ulcerative colitis. Gut 1998; 43(1): 48-55.
[http://dx.doi.org/10.1136/gut.43.1.48] [PMID: 9771405]
[28]
Danese S, Argollo M, Le Berre C, Peyrin-Biroulet L. JAK selectivity for inflammatory bowel disease treatment: Does it clinically matter? Gut 2019; 68(10): 1893-9.
[http://dx.doi.org/10.1136/gutjnl-2019-318448] [PMID: 31227590]
[29]
Agrawal M, Kim ES, Colombel JF. JAK inhibitors safety in ulcerative colitis: Practical implications. J Crohn’s Colitis 2020; 14 (Suppl. 2): S755-60.
[http://dx.doi.org/10.1093/ecco-jcc/jjaa017] [PMID: 32006031]
[30]
Billiet T, Rutgeerts P, Ferrante M, Van Assche G, Vermeire S. Targeting TNF-α for the treatment of inflammatory bowel disease. Expert Opin Biol Ther 2014; 14(1): 75-101.
[http://dx.doi.org/10.1517/14712598.2014.858695] [PMID: 24206084]
[31]
Schottelius AJG, Baldwin AS Jr. A role for transcription factor NF-k B in intestinal inflammation. Int J Colorectal Dis 1999; 14(1): 18-28.
[http://dx.doi.org/10.1007/s003840050178] [PMID: 10207726]
[32]
Neurath MF, Pettersson S. Predominant role of NF-κ B p65 in the pathogenesis of chronic intestinal inflammation. Immunobiology 1997; 198(1-3): 91-8.
[http://dx.doi.org/10.1016/S0171-2985(97)80030-7] [PMID: 9442381]
[33]
Blaylock R. Parkinson’s disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 2017; 8(1): 65.
[http://dx.doi.org/10.4103/sni.sni_441_16] [PMID: 28540131]
[34]
Levesque S, Wilson B, Gregoria V, et al. Reactive microgliosis: Extracellular μ-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 2010; 133(3): 808-21.
[http://dx.doi.org/10.1093/brain/awp333] [PMID: 20123724]
[35]
Richardson JR, Hossain MM. Microglial ion channels as potential targets for neuroprotection in Parkinson’s disease. Neural plasticity 2013; 2013
[http://dx.doi.org/10.1155/2013/587418]
[36]
Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol 2009; 8(4): 382-97.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[37]
Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 1998; 57(4): 338-42.
[http://dx.doi.org/10.1097/00005072-199804000-00006] [PMID: 9600227]
[38]
Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999; 5(12): 1403-9.
[http://dx.doi.org/10.1038/70978] [PMID: 10581083]
[39]
Chandra G, et al. Neutralization of regulated on activation, normal T cell expressed and secreted and eotaxin prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Biol Chem 2016; 291(29)
[http://dx.doi.org/10.1074/jbc.M116.714824] [PMID: 27226559]
[40]
Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: From pathogenesis to treatment. Cells 2019; 8(7): 712.
[http://dx.doi.org/10.3390/cells8070712] [PMID: 31336937]
[41]
Chen H, O’Reilly EJ, Schwarzschild MA, Ascherio A. Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 2007; 167(1): 90-5.
[http://dx.doi.org/10.1093/aje/kwm260] [PMID: 17890755]
[42]
Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. The involvement of JAK/STAT signaling pathway in the treatment of Parkinson’s disease. J Neuroimmunol 2021; 361: 577758.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577758] [PMID: 34739911]
[43]
Flood PM. Transcriptional factor NF-κB as a target for therapy in Parkinson's disease. Parkinson's disease 2011; 2011: 216298.
[44]
Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci USA 1997; 94(14): 7531-6.
[http://dx.doi.org/10.1073/pnas.94.14.7531] [PMID: 9207126]
[45]
Ghosh A, Roy A, Liu X, et al. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 2007; 104(47): 18754-9.
[http://dx.doi.org/10.1073/pnas.0704908104] [PMID: 18000063]
[46]
Lan A, Chen J, Zhao Y, Chai Z, Hu Y. mTOR signaling in Parkinson’s disease. Neuromolecular Med 2017; 19(1): 1-10.
[http://dx.doi.org/10.1007/s12017-016-8417-7] [PMID: 27263112]
[47]
Xu Y, Liu C, Chen S, et al. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell Signal 2014; 26(8): 1680-9.
[http://dx.doi.org/10.1016/j.cellsig.2014.04.009] [PMID: 24726895]
[48]
Chen L, Xu B, Liu L, et al. Hydrogen peroxide inhibits mTOR signaling by activation of AMPKα leading to apoptosis of neuronal cells. Lab Invest 2010; 90(5): 762-73.
[http://dx.doi.org/10.1038/labinvest.2010.36] [PMID: 20142804]
[49]
Liu Z, Lenardo MJ. The role of LRRK2 in inflammatory bowel disease. Cell Res 2012; 22(7): 1092-4.
[http://dx.doi.org/10.1038/cr.2012.42] [PMID: 22430149]
[50]
Gardet A, Benita Y, Li C, et al. LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 2010; 185(9): 5577-85.
[http://dx.doi.org/10.4049/jimmunol.1000548] [PMID: 20921534]
[51]
Rocha J, Sun C, Glogauer M, Philpott D. A75 role of LRRK2 in inflammatory bowel disease. J Can Assoc Gastroenterol 2018; 1 (Suppl. 2): 118-8.
[http://dx.doi.org/10.1093/jcag/gwy009.075]
[52]
Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA. Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater 2012; 24(249): 249-65.
[http://dx.doi.org/10.22203/eCM.v024a18] [PMID: 23007910]
[53]
Dzamko NL. LRRK2 and the immune system. Adv Neurobiol 2017; 14: 123-43.
[http://dx.doi.org/10.1007/978-3-319-49969-7_7] [PMID: 28353282]
[54]
Kubo M, Nagashima R, Kurihara M, et al. Leucine-rich repeat kinase 2 controls inflammatory cytokines production through NF-κB phosphorylation and antigen presentation in bone marrow-derived dendritic cells. Int J Mol Sci 2020; 21(5): 1890.
[http://dx.doi.org/10.3390/ijms21051890] [PMID: 32164260]
[55]
Takagawa T, Kitani A, Fuss I, et al. An increase in LRRK2 suppresses autophagy and enhances Dectin-1–induced immunity in a mouse model of colitis. Sci Transl Med 2018; 10(444): eaan8162.
[http://dx.doi.org/10.1126/scitranslmed.aan8162] [PMID: 29875204]
[56]
Liu TC, Naito T, Liu Z, et al. LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn’s disease patients. JCI Insight 2017; 2(6): e91917.
[http://dx.doi.org/10.1172/jci.insight.91917] [PMID: 28352666]
[57]
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020; 578(7796): 527-39.
[http://dx.doi.org/10.1038/s41586-020-2025-2] [PMID: 32103191]
[58]
Sharifinejad N, Mozhgani SH, Bakhtiyari M, Mahmoudi E. Association of LRRK2 rs11564258 single nucleotide polymorphisms with type and extent of gastrointestinal mycobiome in ulcerative colitis: a case–control study. Gut Pathog 2021; 13(1): 56.
[http://dx.doi.org/10.1186/s13099-021-00453-1] [PMID: 34593025]
[59]
Greggio E, Bubacco L, Russo I. Cross-talk between LRRK2 and PKA: Implication for Parkinson’s disease? Biochem Soc Trans 2017; 45(1): 261-7.
[http://dx.doi.org/10.1042/BST20160396] [PMID: 28202680]
[60]
Rui Q, Ni H, Li D, Gao R, Chen G. The Role of LRRK2 in Neurodegeneration of Parkinson Disease. Curr Neuropharmacol 2018; 16(9): 1348-57.
[http://dx.doi.org/10.2174/1570159X16666180222165418] [PMID: 29473513]
[61]
Gillardon F, Schmid R, Draheim H. Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 2012; 208: 41-8.
[http://dx.doi.org/10.1016/j.neuroscience.2012.02.001] [PMID: 22342962]
[62]
MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 2006; 52(4): 587-93.
[http://dx.doi.org/10.1016/j.neuron.2006.10.008] [PMID: 17114044]
[63]
Berwick DC, Harvey K. LRRK2 signaling pathways: The key to unlocking neurodegeneration? Trends Cell Biol 2011; 21(5): 257-65.
[http://dx.doi.org/10.1016/j.tcb.2011.01.001] [PMID: 21306901]
[64]
Ferrer I, Blanco R, Carmona M, et al. Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies. J Neural Transm 2001; 108(12): 1383-96.
[http://dx.doi.org/10.1007/s007020100015] [PMID: 11810403]
[65]
Hsu CH, Chan D, Greggio E, et al. MKK6 binds and regulates expression of Parkinson’s disease‐related protein LRRK2. J Neurochem 2010; 112(6): 1593-604.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06568.x] [PMID: 20067578]
[66]
Ho CCY, Rideout HJ, Ribe E, Troy CM, Dauer WT. The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. J Neurosci 2009; 29(4): 1011-6.
[http://dx.doi.org/10.1523/JNEUROSCI.5175-08.2009] [PMID: 19176810]
[67]
Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 2011; 91(4): 1161-218.
[http://dx.doi.org/10.1152/physrev.00022.2010] [PMID: 22013209]
[68]
Iaccarino C, Crosio C, Vitale C, Sanna G, Carrì MT, Barone P. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 2007; 16(11): 1319-26.
[http://dx.doi.org/10.1093/hmg/ddm080] [PMID: 17409193]
[69]
Hsieh C-H, Shaltouki A, Gonzalez AE, et al. Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 2016; 19(6): 709-24.
[http://dx.doi.org/10.1016/j.stem.2016.08.002] [PMID: 27618216]
[70]
Kuss M, Adamopoulou E, Kahle PJ. Interferon‐γ induces leucine‐rich repeat kinase LRRK 2 via extracellular signal‐regulated kinase ERK 5 in macrophages. J Neurochem 2014; 129(6): 980-7.
[http://dx.doi.org/10.1111/jnc.12668] [PMID: 24479685]
[71]
Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: Challenges of clinical trials. Nat Rev Neurol 2020; 16(2): 97-107.
[http://dx.doi.org/10.1038/s41582-019-0301-2] [PMID: 31980808]
[72]
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson’s disease due to altered endolysosomal biology with variable lewy body pathology: A hypothesis. Front Neurosci 2020; 14: 556.
[http://dx.doi.org/10.3389/fnins.2020.00556] [PMID: 32581693]
[73]
Ravinther AI, Dewadas HD, Tong SR, et al. Molecular pathways involved in LRRK2-linked Parkinson’s disease: A systematic review. Int J Mol Sci 2022; 23(19): 11744.
[http://dx.doi.org/10.3390/ijms231911744] [PMID: 36233046]
[74]
Pang SYY, Lo RCN, Ho PWL, et al. LRRK2, GBA and their interaction in the regulation of autophagy: Implications on therapeutics in Parkinson’s disease. Transl Neurodegener 2022; 11(1): 5.
[http://dx.doi.org/10.1186/s40035-022-00281-6] [PMID: 35101134]
[75]
Tabrez S. A synopsis on the role of tyrosine hydroxylase in Parkinson's disease. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2012; 11(4): 395-409.
[http://dx.doi.org/10.2174/187152712800792785]
[76]
Zhou ZD, Saw WT, Ho PGH, et al. The role of tyrosine hydroxylase–dopamine pathway in Parkinson’s disease pathogenesis. Cell Mol Life Sci 2022; 79(12): 599.
[http://dx.doi.org/10.1007/s00018-022-04574-x] [PMID: 36409355]
[77]
Russo I, Bubacco L, Greggio E. LRRK2 and neuroinflammation: partners in crime in Parkinson’s disease? J Neuroinflammation 2014; 11(1): 52.
[http://dx.doi.org/10.1186/1742-2094-11-52] [PMID: 24655756]
[78]
Liu Z, Xu E, Zhao HT, Cole T, West AB. LRRK2 and Rab10 coordinate macropinocytosis to mediate immunological responses in phagocytes. EMBO J 2020; 39(20): e104862.
[http://dx.doi.org/10.15252/embj.2020104862] [PMID: 32853409]
[79]
Kim KS, Marcogliese PC, Yang J, et al. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson’s disease. Proc Natl Acad Sci USA 2018; 115(22): E5164-73.
[http://dx.doi.org/10.1073/pnas.1718946115] [PMID: 29760073]
[80]
Zhang Q. Age-related LRRK2 G2019S mutation impacts microglial dopaminergic fiber refinement and synaptic pruning involved in abnormal behaviors. J Mol Neurosci 2021; 1-17.
[http://dx.doi.org/10.1007/s12031-020-01606-8] [PMID: 34409578]
[81]
Iseki T, Imai Y, Hattori N. Is glial dysfunction the key pathogenesis of LRRK2-linked Parkinson’s disease? Biomolecules 2023; 13(1): 178.
[http://dx.doi.org/10.3390/biom13010178] [PMID: 36671564]
[82]
Hui KY, Fernandez-Hernandez H, Hu J, et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci Transl Med 2018; 10(423): eaai7795.
[http://dx.doi.org/10.1126/scitranslmed.aai7795] [PMID: 29321258]
[83]
Witoelar A, Jansen IE, Wang Y, et al. Genome-wide pleiotropy between parkinson disease and autoimmune diseases. JAMA Neurol 2017; 74(7): 780-92.
[http://dx.doi.org/10.1001/jamaneurol.2017.0469] [PMID: 28586827]
[84]
Cook DA, Kannarkat GT, Cintron AF, et al. LRRK2 levels in immune cells are increased in Parkinson’s disease. NPJ Parkinsons Dis 2017; 3(1): 11.
[http://dx.doi.org/10.1038/s41531-017-0010-8] [PMID: 28649611]
[85]
de Guilhem de Lataillade A, Verchere J, Oullier T, et al. LRRK2 is reduced in Parkinson’s disease gut. Acta Neuropathol 2021; 142(3): 601-3.
[http://dx.doi.org/10.1007/s00401-021-02334-y] [PMID: 34091743]
[86]
Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T. Inflammatory bowel disease increases the risk of Parkinson’s disease: A Danish nationwide cohort study 1977–2014. Gut 2019; 68(1): 18-24.
[http://dx.doi.org/10.1136/gutjnl-2017-315666] [PMID: 29785965]
[87]
Houser MC, Tansey MG. The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 2017; 3(1): 3.
[http://dx.doi.org/10.1038/s41531-016-0002-0] [PMID: 28649603]
[88]
Stolzenberg E, Berry D, Yang D, et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun 2017; 9(5): 456-63.
[http://dx.doi.org/10.1159/000477990] [PMID: 28651250]
[89]
Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological α‐synuclein in gastrointestinal tissues from prodromal P arkinson disease patients. Ann Neurol 2016; 79(6): 940-9.
[http://dx.doi.org/10.1002/ana.24648] [PMID: 27015771]
[90]
Liu Z, Lee J, Krummey S, Lu W, Cai H, Lenardo MJ. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 2011; 12(11): 1063-70.
[http://dx.doi.org/10.1038/ni.2113] [PMID: 21983832]
[91]
Lin CH. Mild chronic colitis triggers parkinsonism in LRRK2 mutant mice through activating TNF‐α pathway. Mov Disord 2021.
[PMID: 34918781]
[92]
Ikezu T, Koro L, Wolozin B, Farraye FA, Strongosky AJ, Wszolek ZK. Crohn’s and Parkinson’s disease-associated LRRK2 mutations alter type II interferon responses in human CD14+ blood monocytes ex vivo. J Neuroimmune Pharmacol 2020; 15(4): 794-800.
[http://dx.doi.org/10.1007/s11481-020-09909-8] [PMID: 32180132]
[93]
Weimers P, Halfvarson J, Sachs MC, et al. Inflammatory bowel disease and Parkinson’s disease: A nationwide Swedish cohort study. Inflamm Bowel Dis 2019; 25(1): 111-23.
[http://dx.doi.org/10.1093/ibd/izy190] [PMID: 29788069]
[94]
Hutfless S, Wenning GK. Which way does the axis tip? IBD increases the risk of Parkinson’s disease. Gut 2019; 68(1): 3-3.
[http://dx.doi.org/10.1136/gutjnl-2018-316537] [PMID: 29858394]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy