Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Synthesis of Methyl N-phenylcarbamate Derivatives by Xphos Pd G2 Catalyzed Intermolecular Amidation Reaction

Author(s): Yan-fen Shi, Zheng Wu, Jie Mou* and Hong-hua Yuan*

Volume 21, Issue 6, 2024

Published on: 25 January, 2024

Page: [557 - 562] Pages: 6

DOI: 10.2174/0115701786261811231126174656

Price: $65

Abstract

The utilization of palladium catalysts in cross-coupling reactions has emerged as a highly promising method for the facile formation of aryl C-N bonds, operating under mild conditions. In this study, we present an efficient approach for the synthesis of methyl N-phenyl carbamate derivatives through the intermolecular amidation of aryl chlorides, catalyzed by Xphos Pd G2. The developed protocol has demonstrated remarkable efficacy, offering several advantages. Notably, the intermolecular amidation reaction exhibited good chemoselectivity, allowing for the precise targeting of desired C-N bond formations while maintaining the integrity of other functional groups. Additionally, this methodology showcases exceptional functional group compatibility, accommodating a diverse array of moieties, including sensitive groups that are traditionally challenging to handle. The Xphos Pd G2 catalyst has proven to be instrumental in orchestrating this transformation, exhibiting high catalytic activity and selectivity. Furthermore, this protocol stands out for its operational simplicity, making it a practical choice for synthetic chemists seeking a straightforward and reliable route to access methyl N-phenyl carbamate derivatives. Overall, this study not only expands the synthetic toolbox for C-N bond formations, but also underscores the significance of palladium-catalyzed methodologies in modern organic synthesis. The reported findings hold substantial promise for applications in medicinal chemistry and material science, where the facile construction of aryl C-N bonds is of paramount importance.

« Previous
Graphical Abstract

[1]
Castillo, P.R.; Buchwald, S.L. Chem. Rev., 2016, 116, 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512] [PMID: 27689804]
[2]
Ingoglia, B.T.; Wagen, C.C.; Buchwald, S.L. Tetrahedron, 2019, 75(32), 4199-4211.
[http://dx.doi.org/10.1016/j.tet.2019.05.003]
[3]
Nykaza, T.V.; Li, G.; Yang, J.; Luzung, M.R.; Radosevich, A.T. Angew. Chem. Int. Ed., 2020, 59(11), 4505-4510.
[http://dx.doi.org/10.1002/anie.201914851]
[4]
Dennis, J.M.; White, N.A.; Liu, R.Y.; Buchwald, S.L. ACS Catal., 2019, 9(5), 3822-3830.
[http://dx.doi.org/10.1021/acscatal.9b00981] [PMID: 31649828]
[5]
Kudisch, M.; Lim, C.H.; Thordarson, P.; Miyake, G.M. J. Am. Chem. Soc., 2019, 141(49), 19479-19486.
[http://dx.doi.org/10.1021/jacs.9b11049] [PMID: 31714761]
[6]
Ruffoni, A.; Juliá, F.; Svejstrup, T.D.; McMillan, A.J.; Douglas, J.J.; Leonori, D. Nat. Chem., 2019, 11(5), 426-433.
[http://dx.doi.org/10.1038/s41557-019-0254-5] [PMID: 31011173]
[7]
Ullmann, F. Bielecki. J. Ber. Dtsch. Chem. Ges., 1901, 34(2), 2174-2185.
[http://dx.doi.org/10.1002/cber.190103402141]
[8]
Goldberg, I. Ber. Dtsch. Chem. Ges., 1906, 39(2), 1691-1692.
[http://dx.doi.org/10.1002/cber.19060390298]
[9]
Sardarian, A.R.; Dindarloo Inaloo, I.; Zangiabadi, M. New J. Chem., 2019, 43(22), 8557-8565.
[http://dx.doi.org/10.1039/C9NJ00028C]
[10]
Ullmann, F.; Sponagel, P. Ber. Dtsch. Chem. Ges., 1905, 38(2), 2211-2212.
[http://dx.doi.org/10.1002/cber.190503802176]
[11]
Louie, J.; Hartwig, J.F. Tetrahedron Lett., 1995, 36(21), 3609-3612.
[http://dx.doi.org/10.1016/0040-4039(95)00605-C]
[12]
Beare, N.A.; Hartwig, J.F. J. Org. Chem., 2002, 67(2), 541-555.
[http://dx.doi.org/10.1021/jo016226h] [PMID: 11798329]
[13]
Paul, F.; Patt, J.; Hartwig, J.F. J. Am. Chem. Soc., 1994, 116(13), 5969-5970.
[http://dx.doi.org/10.1021/ja00092a058]
[14]
Guram, A.S.; Rennels, R.A.; Buchwald, S.L. Angew. Chem. Int. Ed. Engl., 1995, 34(12), 1348-1350.
[http://dx.doi.org/10.1002/anie.199513481]
[15]
Guram, A.S.; Buchwald, S.L. J. Am. Chem. Soc., 1994, 116(17), 7901-7902.
[http://dx.doi.org/10.1021/ja00096a059]
[16]
Tan, Y.; Hartwig, J.F. J. Am. Chem. Soc., 2010, 132(11), 3676-3677.
[http://dx.doi.org/10.1021/ja100676r] [PMID: 20187645]
[17]
Padmavathi, R.; Babu, S.A. Asian J. Org. Chem., 2019, 8(6), 899-908.
[http://dx.doi.org/10.1002/ajoc.201900109]
[18]
Young, I.S.; Simmons, E.M.; Fenster, M.D.B.; Zhu, J.J.; Katipally, K.R. Org. Process Res. Dev., 2018, 22(5), 585-594.
[http://dx.doi.org/10.1021/acs.oprd.8b00022]
[19]
Tong, H.R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal., 2020, 10(1), 114-120.
[http://dx.doi.org/10.1021/acscatal.9b04768]
[20]
Ma, F.; Xie, X.; Zhang, L.; Peng, Z.; Ding, L.; Fu, L.; Zhang, Z. J. Org. Chem., 2012, 77(12), 5279-5285.
[http://dx.doi.org/10.1021/jo3005827] [PMID: 22624625]
[21]
Sardarian, A.R. Catal. Lett., 2018, 148, 642-652.
[http://dx.doi.org/10.1007/s10562-017-2277-0]
[22]
Sharif, S.; Day, J.; Hunter, H.N.; Lu, Y.; Mitchell, D.; Rodriguez, M.J.; Organ, M.G. J. Am. Chem. Soc., 2017, 139(51), 18436-18439.
[http://dx.doi.org/10.1021/jacs.7b09488] [PMID: 29035559]
[23]
Bryan, J. U.S. Patent 2018/282282A1, 2018.
[24]
Jiashi, G.A. W.O. Patent 2016/25933A2, 2016.
[25]
Chen, H.; Yang, H.; Li, N.; Xue, X.; He, Z.; Zeng, Q. Org. Process Res. Dev., 2019, 23(8), 1679-1685.
[http://dx.doi.org/10.1021/acs.oprd.9b00194]
[26]
Qin, L.; Cui, H.; Zou, D.; Li, J.; Wu, Y.; Zhu, Z.; Wu, Y. Tetrahedron Lett., 2010, 51(33), 4445-4448.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.083]
[27]
Bhagwanth, S.; Waterson, A.G.; Adjabeng, G.M.; Hornberger, K.R. J. Org. Chem., 2009, 74(12), 4634-4637.
[http://dx.doi.org/10.1021/jo9004537] [PMID: 19518153]
[28]
Falk, F.C. Chem. Commun. (Camb.), 2011, 47, 11095-11097.
[http://dx.doi.org/10.1039/c1cc14844c] [PMID: 21909550]
[29]
Xu, Z.; Li, K.; Zhai, R.; Liang, T.; Gui, X.; Zhang, R. RSC Advances, 2017, 7(82), 51972-51977.
[http://dx.doi.org/10.1039/C7RA09160E]
[30]
Beutner, G.L.; Coombs, J.R.; Green, R.A.; Inankur, B.; Lin, D.; Qiu, J.; Roberts, F.; Simmons, E.M.; Wisniewski, S.R. Org. Process Res. Dev., 2019, 23(8), 1529-1537.
[http://dx.doi.org/10.1021/acs.oprd.9b00196]
[31]
Fan, G.; Luo, S.; Fang, T.; Wu, Q.; Song, G.; Li, J. J. Mol. Catal. Chem., 2015, 404-405, 92-97.
[http://dx.doi.org/10.1016/j.molcata.2015.04.017]
[32]
Ghosh, S.; Ghosh, A.; Biswas, S.; Sengupta, M.; Roy, D.; Islam, S.M. ChemistrySelect, 2019, 4(13), 3961-3972.
[http://dx.doi.org/10.1002/slct.201900138]
[33]
Takeuchi, K.; Chen, M.Y.; Yuan, H.Y.; Koizumi, H.; Matsumoto, K.; Fukaya, N.; Choe, Y.K.; Shigeyasu, S.; Matsumoto, S.; Hamura, S.; Choi, J.C. Chemistry, 2021, 27(72), 18066-18073.
[http://dx.doi.org/10.1002/chem.202103587] [PMID: 34779056]
[34]
Chakrabarti, K.; Dutta, K.; Kundu, S. Org. Biomol. Chem., 2020, 18(30), 5891-5896.
[http://dx.doi.org/10.1039/D0OB01303J] [PMID: 32677635]
[35]
Kawano, Y. Preparation of piperidine derivatives for the treatment of tuberculosis; Otsuka Pharmaceutical Co., Ltd., 2017.
[36]
Li, L.; Xue, M.; Yan, X.; Liu, W.; Xu, K.; Zhang, S. Org. Biomol. Chem., 2018, 16(25), 4615-4618.
[http://dx.doi.org/10.1039/C8OB01059E] [PMID: 29900466]
[37]
Pinto, D.J.P.; Smallheer, J.M.; Corte, J.R.; Austin, E.J.D.; Wang, C.; Fang, T.; Smith, L.M., II; Rossi, K.A.; Rendina, A.R.; Bozarth, J.M.; Zhang, G.; Wei, A.; Ramamurthy, V.; Sheriff, S.; Myers, J.E., Jr; Morin, P.E.; Luettgen, J.M.; Seiffert, D.A.; Quan, M.L.; Wexler, R.R. Bioorg. Med. Chem. Lett., 2015, 25(7), 1635-1642.
[http://dx.doi.org/10.1016/j.bmcl.2015.01.028]
[38]
Riemer, D.; Hirapara, P.; Das, S. ChemSusChem, 2016, 9(15), 1916-1920.
[http://dx.doi.org/10.1002/cssc.201600521] [PMID: 27376902]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy