Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

Structural Design and Dynamic Characteristic Analysis of Short-column Micro Piezoelectric Power Actuator

Author(s): Huaiyong Li*, Shijie Gao, Zhong Chen and Yonghua Yin

Volume 17, Issue 2, 2024

Published on: 25 January, 2024

Page: [143 - 156] Pages: 14

DOI: 10.2174/0122127976284214231220051410

Price: $65

Abstract

Background: With the rapid development of science and technology, industrial products continue to develop towards the direction of lightweight and miniaturization, and the demand for power sources to drive micromachinery is increasing, so the patents related to microactuators are also increasingly valued. The microactuator based on a piezoelectric drive converts the deformation energy of the piezoelectric body into the kinetic energy of the transmission mechanism to drive the output shaft rotation. The stator and the rotor of the existing actuator are the surface contact with a certain preload force. After working for a long time, the contact surface will be lost due to friction, which will reduce the response speed and rotation accuracy and even cause the rotor to slip, affecting the actuator operating life.

Objective: In order to solve the above technical problems, the author innovates the driving mode between stator and rotor and proposes a novel short-column micro piezoelectric actuator based on multi-tooth alternating meshing transmission.

Methods: Firstly, the structure and operating principle of short-column micro piezoelectric power actuator, which can realize linear motion into rotary motion, and has three main advantages: compactness in size, multi-tooth meshing drive and large driving torque, are proposed and elucidated. Secondly, the structure size of each component of the actuator is determined to complete the 3D structure design. Thirdly, the modal analysis and the harmonic response analysis of the actuator are studied. The frequency range of the sawtooth wave voltage excitation signal applied to the actuator is determined. Finally, he prototype is made, and the performance test is carried out.

Results: In this paper, a micro piezoelectric power actuator different from the existing patent is proposed, which is assembled by a drive module, a transmission module, an elastic element, an output shaft, a base module and a shell. The results show that when the excitation frequency applied by the actuator is 157 Hz, the amplitude of the tooth column along the axis of the actuator is 3.071mm, the axial amplitude of the output shaft is zero, and there is no axial motion. At this time, the displacement of the tooth column is the largest, and the driving performance is the best. From the experimental results, it can be seen that the prototype appears to have intermittent rotation under this frequency excitation.

Conclusion: The proposed micro piezoelectric power actuator adopts multi-tooth alternating meshing between the stator and the rotor to transfer power, which changes the transmission mode relying on friction in the existing technology, reduces the friction loss, avoids rotor slip, and improves the response speed, rotation accuracy and operating life of the actuator. The research work in this paper provides a new idea and a new method for the research and design of micromechanical power sources.

[1]
Chen Z, Li X, Ci P, Liu G, Dong S. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes. Rev Sci Instrum 2015; 86(3): 035002.
[http://dx.doi.org/10.1063/1.4914843] [PMID: 25832267]
[2]
Ahmadian MT, Jafarishad H. Design and analysis of a 3-link micro-manipulator actuated by piezoelectric layers. Mechanism Mach Theory 2017; 112: 43-60.
[http://dx.doi.org/10.1016/j.mechmachtheory.2016.12.002]
[3]
Wang T, Xu L. Chaotic vibrations by a novel non-contact piezoelectric actuator. Appl Math Model 2022; 106: 199-224.
[http://dx.doi.org/10.1016/j.apm.2022.01.022]
[4]
Aoyagi M, Beeby SP, White NM. A novel multi-degree-of freedom thick-film ultrasonic motor. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49(2): 151-8.
[http://dx.doi.org/10.1109/58.985699] [PMID: 11885673]
[5]
Zhang H, Dong S, Zhang S, Wang T, Zhang Z, Fan L. Ultrasonic micro-motor using miniature piezoelectric tube with diameter of 1.0mm. Ultrasonics 2006; 44(1): e603-6.
[http://dx.doi.org/10.1016/j.ultras.2006.05.064] [PMID: 16793103]
[6]
Mohd Romlay FR, Wan Yusoff WA, Mat Piah KA. Increasing the efficiency of traveling wave ultrasonic motor by modifying the stator geometry. Ultrasonics 2016; 64: 177-85.
[http://dx.doi.org/10.1016/j.ultras.2015.09.002] [PMID: 26364739]
[7]
Zhao CS. Ultrasonic Motors Technologies and Applications. Beijing, China: Science Press 2007; pp. 1-22.
[8]
Zhao CS, Zhu H. Development and application of ultrasonic motor technology. Machine Manufacturing and Automation 2008; (3): 1-9.
[9]
Zhao C. Ultrasonic motors: Technologies and applications. Berlin, Germany: Springer Science & Business Media 2011; pp. 1-13.
[http://dx.doi.org/10.1007/978-3-642-15305-1]
[10]
Tian X, Liu Y, Deng J, Wang L, Chen W. A review on piezoelectric ultrasonic motors for the past decade: Classification, operating principle, performance, and future work perspectives. Sens Actuators A Phys 2020; 306: 111971.
[http://dx.doi.org/10.1016/j.sna.2020.111971]
[11]
Guo Y, Lu Q, Sun ZJ, Song AG. Optimization design of stator for traveling wave spherical ultrasonic motor. Piezoelectr-ics & Acoustooptics 2020; 42(1): 77-82.
[12]
Lu Q, Chen XF, Huang WQ. Application of rhombic piezoelectric actuator in parallel positioning platform. Journal of Vibration. Measurement & Diagnosis 2020; 40: 680-8.
[13]
Li XH, Chen C, Zhao CS. Vibration analysis of non-contact linear ultrasonic motor. Journal of Vibration and Shock 2010; 29(7): 149-52.
[14]
Williams A, Brown W. Piezoelectric motor US21439499, 1942.
[15]
Lavrinenko VV, Nekrasov M. Piezoelectric motor. SU217509, 1965.
[16]
Sashida T. Trial construction and operation of an ultrasonic vibration driven motor. Oyo Butsiuri 1982; 6: 713-8.
[17]
Sashida T. Motor device utilizing ultrasonic oscillation US4562374, 1984.
[18]
Yukihiro I. Ultrasonic motor. J Acous Soc Jpn 1987; 43: 184-8.
[19]
Xu L, Li H, Li C. Displacements of the flexible ring for an electromechanical integrated harmonic piezodrive system. Struct Eng Mech 2016; 60(6): 1079-92.
[http://dx.doi.org/10.12989/sem.2016.60.6.1079]
[20]
Kurosawa M, Nakamura K, Okamoto T, Ueha S. An ultrasonic motor using bending vibrations of a short cylinder. IEEE Trans Ultrason Ferroelectr Freq Control 1989; 36(5): 517-21.
[http://dx.doi.org/10.1109/58.31795] [PMID: 18290228]
[21]
Koc B, Cagatay S, Uchino K. A piezoelectric motor using two orthogonal bending modes of a hollow cylinder. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49(4): 495-500.
[http://dx.doi.org/10.1109/58.996568] [PMID: 11989705]
[22]
Jeong SS, Park CH, Park TG. Optimal design of V-type ultrasonic motor. J Cent South Univ Technol 2010; 17(6): 1247-50. [English Edition].
[http://dx.doi.org/10.1007/s11771-010-0627-9]
[23]
Qiu C, Ling J, Zhang Y, Ming M, Feng Z, Xiao X. A novel cooperative compensation method to compensate for return stroke of stick-slip piezoelectric actuators. Mechanism Mach Theory 2021; 159: 104254.
[http://dx.doi.org/10.1016/j.mechmachtheory.2021.104254]
[24]
Shi YL, Lin YY, Zhang J. Recent development on magnetic resonance compatible surgical robots driven by piezoelectric actuator. Piezoelectrics & Acoustooptics 2019; 41(1): 106-14.
[25]
Zhang JT, Zhu H, Zhao CS. Precision positioning stage using rod shape rotary ultrasonic motors. Zhongguo Jixie Gongcheng 2011; 22(15): 1842-6.
[26]
Maeno T. Recent progress of ultrasonic motors in Japan. In: The 1st International Workshop on Ultrasonic Motors and Actuators. Yokohama, Japan. 2005; pp. 15-7.
[27]
Toyama S. Spherical ultrasonic motor for pipe inspection robot. Appl Mech Mater 2012; 186: 3-11.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.186.3]
[28]
Harkness P, Lucas M. A brief overview of space applications for ultrasonics. Ultrasonics 2012; 52(8): 975-9.
[http://dx.doi.org/10.1016/j.ultras.2012.09.004] [PMID: 23010145]
[29]
Pan S, Xiao Z, Xu ZF, Chen L, Xu HB. Multi multiple beam expander driven by ultrasonic motor with polymer based stator. Journal of Vibration. Measurement & Diagnosis 2021; 41(5): 855-62.
[30]
Zheng JJ, Sun ZJ, Yan H, Yang JL, Guo Y, Qian F. Master slave controlled robotic system based on hollow ultrasonic motor for vascular interventional surgery. Journal of Vibration. Measurement & Diagnosis 2021; 41(5): 976-83.
[31]
Kiichi K. Ultrasonic motor, robot, and life diagnostic method of ultrasonic motor. US20230198426, 2023.
[32]
Ji Y, Kim J, Kim Y, Kwak M, Kim R, Heo C. Electronic device including camera module and method for operating the electronic device. US20230007149, 2023.
[33]
Zhang X, Zhang G, Nakamura K, Ueha S. A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor. Sens Actuators A Phys 2011; 169(1): 206-10.
[http://dx.doi.org/10.1016/j.sna.2011.05.023]
[34]
Jung WS, Kang CY, Paik DS, Vasiljev PE, Kim JD, Yoon SJ. Dynamic properties of an omni-directional piezoelectric motor for precision position control. Ultrasonics 2009; 49(6-7): 594-8.
[http://dx.doi.org/10.1016/j.ultras.2009.03.002] [PMID: 19395053]
[35]
Masuda N, Izuhara S, Mashimo T. Miniature camera module with a hollow linear ultrasonic motor-based focus feature. Sens Actuators A Phys 2023; 354: 114248.
[http://dx.doi.org/10.1016/j.sna.2023.114248]
[36]
DeAngelis DA, Schulze GW. Performance of PIN-PMN-PT single crystal piezoelectric versus PZT8 piezoceramic materials in ultrasonic transducers. Phys Procedia 2015; 63: 21-7.
[http://dx.doi.org/10.1016/j.phpro.2015.03.004]
[37]
Zhou T, Chen Y, Lu C, et al. Integrated lens auto-focus system driven by a nut-type ultrosonic motor (USM). Science in China Series E: Technological Sciences 2009; 52(9): 2591-6.
[http://dx.doi.org/10.1007/s11431-009-0246-6]
[38]
Wang W, Xu SS. Ultrasonic motors help Chang 'e 5 to the moon digging trip. Available from: https://www.chinanews.com.cn/gn/2020/11-24/9346229.shtml
[39]
Amiri Delouei A, Atashafrooz M, Sajjadi H, Karimnejad S. The thermal effects of multi-walled carbon nanotube concentration on an ultrasonic vibrating finned tube heat exchanger. Int Commun Heat Mass Transf 2022; 135: 106098.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2022.106098]
[40]
Delouei AA, Sajjadi H, Ahmadi G. The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic assisted liquid cooled cpu radiator. Iran J Sci Technol Trans Mech Eng 2023.
[http://dx.doi.org/10.1007/s40997-023-00667-5]
[41]
Amiri Delouei A, Naeimi H, Sajjadi H, Atashafrooz M, Imanparast M, Chamkha AJ. An active approach to heat transfer enhancement in indirect heaters of city gate stations: An experimental modeling. Appl Therm Eng 2024; 237: 121795.
[http://dx.doi.org/10.1016/j.applthermaleng.2023.121795]
[42]
Amiri Delouei A, Sajjadi H, Ahmadi G. Ultrasonic vibration technology to improve the thermal performance of cpu water-cooling systems: Experimental investigation. Water 2022; 14(24): 4000.
[http://dx.doi.org/10.3390/w14244000]
[43]
Hedeshi M, Jalali A, Arabkoohsar A, Amiri Delouei A. Nanofluid as the working fluid of an ultrasonic assisted double-pipe counter flow heat exchanger. J Therm Anal Calorim 2023; 148(16): 8579-91.
[http://dx.doi.org/10.1007/s10973-023-12102-7]
[44]
Amiri Delouei A, Sajjadi H, Atashafrooz M, Hesari M, Ben Hamida MB, Arabkoohsar A. Louvered Fin-and-Flat Tube Compact Heat Exchanger under Ultrasonic Excitation. Fire (Basel) 2022; 6(1): 13.
[http://dx.doi.org/10.3390/fire6010013]
[45]
Esfandyari M, Amiri Delouei A, Jalai A. Optimization of ultrasonic-excited double-pipe heat exchanger with machine learning and PSO. Int Commun Heat Mass Transf 2023; 147: 106985.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2023.106985]
[46]
Qu JJ, Qi YL, Zhang ZQ, Sun HY. Advances on tribology of ultrasonic motor and its friction materials. Tribology 1998; 18(1): 80-7.
[47]
Li Z, Wang Z, Xue ZT, Guo P, Zhao L, Wang QJ. Design and analysis of three-stator type piezoelectric driven multi-degree-of freedom motor. Electric Machines and Control 2020; 24(11): 135-47.
[48]
Wang RF, Wang L. Structural design and experimental studies of rotating ultrasonic motor driven by single-phase standing wave. Jixie Gongcheng Xuebao 2022; 58(7): 227-36.
[http://dx.doi.org/10.3901/JME.2022.07.227]
[49]
Ryndzionek R, Sienkiewicz Ł. A review of recent advances in the single- and multi-degree-of-freedom ultrasonic piezoelectric motors. Ultrasonics 2021; 116: 106471.
[http://dx.doi.org/10.1016/j.ultras.2021.106471] [PMID: 34091199]
[50]
Cheng GM, Zeng P. QIU XY. Study on ultrasonic vibration antifriction phenomenon. Piezoelectrics & Acoustooptics 1998; 20(5): 322-5.
[51]
Peng TJ, Yang SC, Yang ZG, Cheng GM, Zeng P, Zhang DJ. Experimental study on ultrasonic antifriction behavior. Journal of Jilin University 2006; 36(S2): 88-90. [Engineering and Technology Edition
[52]
Li J, Chen Y, Zhou T. The measurement on vibration friction coefficient of ultrasonic motor. 2008; IEEE Ultrasonics Symposium 154-6.
[53]
Sednaoui T, Vezooli E, Dzidek B, et al. Experimental evaluation of friction reduction in ultrasonic devices. 2015; IEEE World Haptics Conference 37-42.
[http://dx.doi.org/10.1109/WHC.2015.7177688]
[54]
Friesen R, Wiertlewski M, Peshkin M, Colgate JE. The contribution of air to ultrasonic friction reduction. 2017; IEEE World Haptics Conference 517-22.
[http://dx.doi.org/10.1109/WHC.2017.7989955]
[55]
Qu JJ, Tian X, Sun FY. Experiment study on friction reduction of ultrasonic vibration based on traveling wave ultrasonic motor. Tribology 2007; 27(1): 73-7.
[56]
Wang WH, Guo JF, Jin L, Qu JJ, Wang GQ. Experimental investigation on friction characteristics of ultrasonic motor. Tribology 2010; 30(2): 168-73.
[57]
Ren WH, Yang L. Simulation research on antifriction phenomenon of ultrasonic motors. Journal of Vibration. Measurement & Diagnosis 2023; 43(1): 118-201.
[58]
Huang MJ, Zhou TY, Wu QH. The influence of ultrasonic vibration on friction force. Acta Acustica 2000; 25(2): 115-9.
[59]
Qu JJ, Jiang KL, Zhang K, Zhou TY. Study on antifriction effect of ultrasonic vibration in ultrasonic driving. Acta Acustica 2001; 26(6): 497-502.
[60]
Storck H, Littmann W, Wallaschek J, Mracek M. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to traveling wave ultrasonic motors. Ultrasonics 2002; 40(1-8): 379-83.
[http://dx.doi.org/10.1016/S0041-624X(02)00126-9]
[61]
Xu L, Li H. Free vibration for an electromechanical integrated harmonic piezodrive system. Int J Appl Electromagn Mech 2013; 42(2): 269-82.
[http://dx.doi.org/10.3233/JAE-131663]
[62]
Li C, Xing J. Dynamic optimization of an electromechanical integrated harmonic piezoelectric motor. J Mech Sci Technol 2018; 32(6): 2517-26.
[http://dx.doi.org/10.1007/s12206-018-0509-x]
[63]
Zhou P, Yao ZY, Zhou FZ. Identification of thermal resource of ultrasonic motors and interactional rule of structural parameter temperature rise and output characteristic. Piezoelectrics & Acoustooptics 2008; 30(04): 517-20.
[64]
Kadoli R, Ganesan N. Studies on dynamic behavior of composite and isotropic cylindrical shells with PZT layers under axisymmetric temperature variation. J Sound Vibrat 2004; 271(1-2): 103-30.
[http://dx.doi.org/10.1016/S0022-460X(03)00265-7]
[65]
Johnson KL. Contact Emchanics. Cambridge, England: Cambridge University Press 1985; pp. 255-65.
[http://dx.doi.org/10.1017/CBO9781139171731]
[66]
Wang BK, Dong GN, Xie YB. Numerical analysis of rolling sliding contact with frictional heating. Zhongguo Jixie Gongcheng 2002; 13(21): 1880-3.
[67]
Yang JH, Zhang YZ, Qiu M, Du SM. Analysis to the thermal mechanism of wear in dry friction condition. Lubrication engineering 2005; 2(5): 173-6.
[68]
Wang X, Shen YP. A solution of the elliptic piezoelectric inclusion problem under uniform heat flux. Int J Solids Struct 2001; 38(15): 2503-16.
[http://dx.doi.org/10.1016/S0020-7683(00)00123-2]
[69]
Nakamura K, Ito T, Kurosawa M, Ueha S. A trial construction of an ultrasonic motor with fluid coupling. Jpn J Appl Phys 1990; 29(1A): L160.
[http://dx.doi.org/10.1143/JJAP.29.L160]
[70]
Nakamura K, Maruyama M, Ueha S. A new ultrasonic motor using electro-rheological fluid and torsional vibration. Ultrasonics 1996; 34(2-5): 261-4.
[http://dx.doi.org/10.1016/0041-624X(96)00019-4]
[71]
Yamayoshi Y, Hirose S. Improvement of characteristics of noncontact ultrasonic motor using acoustically coupled two air gaps. Jpn J Appl Phys 2011; 50(7): 913-9.
[72]
Yamayoshi Y, Shiina J, Tamura H, Hirose S. Sound field characteristics in air gaps of noncontact ultrasonic motor driven by two flexural standing wave vibration disks. Jpn J Appl Phys 2010; 49(7S): 07HE16.
[http://dx.doi.org/10.1143/JJAP.49.07HE16]
[73]
Stepanenko DA, Minchenya VT. Development and study of novel non-contact ultrasonic motor based on principle of structural asymmetry. Ultrasonics 2012; 52(7): 866-72.
[http://dx.doi.org/10.1016/j.ultras.2012.02.004] [PMID: 22520741]
[74]
Chen C, Li F, Yan XJ, Jia B, Sha L. Study on non-contact Piezoelectric Actuator with spherical rotors. Zhongguo Dianji Gongcheng Xuebao 2012; 32(6): 163-9.
[75]
Takasaki M, Chino S, Kato Y, Ishino Y, Mizuno T. Actuation force measurement mechanism for non-contact ultrasonic suspension. Key Eng Mater 2012; 523-524(523-524): 727-32.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.523-524.727]
[76]
Qiu W, Hong Y, Mizuno Y. A rotary motor using giant electrorheological fluid and piezoelectric torsional vibrator. Proceedings of Symposium on Ultrasonic Electronics. 433-.
[77]
Qiu W, Hong Y, Mizuno Y, Wen W, Nakamura K. Non-contact piezoelectric rotary motor modulated by giant electrorheological fluid. Sens Actuators A Phys 2014; 217: 124-8.
[http://dx.doi.org/10.1016/j.sna.2014.05.019]
[78]
Shi M, Liu X, Feng K, Zhang K. Experimental and numerical investigation of a self-adapting non-contact ultrasonic motor. Tribol Int 2021; 153: 106624.
[http://dx.doi.org/10.1016/j.triboint.2020.106624]
[79]
Huang H, You LJ, Wu YX, et al. A miniature stick-slip piezoelectric motor and its driving method. CN113258824, 2021.
[80]
Wang SP, Zhou SH, Liu X, et al. A linear rotary two degree of freedom piezoelectric actuator based on inertial drive. CN115441769, 2022.
[81]
Xin JC, Li C, Xu LZ. New type of micro stepping piezoelectric motor. CN204906224, 2015.
[82]
Wang SP, Zhou SH, Liu X, et al. A long stroke piezoelectric actuator capable of outputting continuous angular displacement. CN115566930, 2023.
[83]
Li Z, Zhao L. A piezoelectric motor. CN111245288, 2020.
[84]
Wang SP, Zhou SH, Liu X, et al. A stepper three degree of freedom piezoelectric actuator based on inertial drive. CN115603608, 2023.
[85]
Donghyun H, Byeongkyu L. Rotary motor. US20210399655, 2021.
[86]
Burhanettin K, Thomas P. Rotary ultrasonic motor. US20200228031, 2020.
[87]
Ashizawa T, Watanabe K, Takahashi H. Vibration body and Vibration wave motor. EP4163718, 2023.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy