Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Mini-Review Article

Prospects of Identifying Alternative Splicing Events from Single-Cell RNA Sequencing Data

Author(s): Jiacheng Wang* and Lei Yuan

Volume 19, Issue 9, 2024

Published on: 25 January, 2024

Page: [845 - 850] Pages: 6

DOI: 10.2174/0115748936279561231214072041

Price: $65

Abstract

Background: The advent of single-cell RNA sequencing (scRNA-seq) technology has offered unprecedented opportunities to unravel cellular heterogeneity and functions. Yet, despite its success in unraveling gene expression heterogeneity, accurately identifying and interpreting alternative splicing events from scRNA-seq data remains a formidable challenge. With advancing technology and algorithmic innovations, the prospect of accurately identifying alternative splicing events from scRNA-seq data is becoming increasingly promising.

Objective: This perspective aims to uncover the intricacies of splicing at the single-cell level and their potential implications for health and disease. It seeks to harness scRNA-seq's transformative power in revealing cell-specific alternative splicing dynamics and aims to propel our understanding of gene regulation within individual cells to new heights.

Methods: The perspective grounds its method on recent literature along with the experimental protocols of single-cell RNA-seq and methods to identify and quantify the alternative splicing events from scRNA-seq data.

Results: This perspective outlines the promising potential, challenges, and methodologies for leveraging different scRNA-seq technologies to identify and study alternative splicing events, with a focus on advancing our understanding of gene regulation at the single-cell level.

Conclusion: This perspective explores the prospects of utilizing scRNA-seq data to identify and study alternative splicing events, highlighting their potential, challenges, methodologies, biological insights, and future directions.

[1]
Johnson JM, Castle J, Garrett-Engele P, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302(5653): 2141-4.
[http://dx.doi.org/10.1126/science.1090100] [PMID: 14684825]
[2]
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008; 40(12): 1413-5.
[http://dx.doi.org/10.1038/ng.259] [PMID: 18978789]
[3]
Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[4]
Blencowe BJ. Alternative splicing: New insights from global analyses. Cell 2006; 126(1): 37-47.
[http://dx.doi.org/10.1016/j.cell.2006.06.023] [PMID: 16839875]
[5]
Arzalluz-Luque Á, Conesa A. Single-cell RNAseq for the study of isoforms—how is that possible? Genome Biol 2018; 19(1): 110.
[http://dx.doi.org/10.1186/s13059-018-1496-z] [PMID: 30097058]
[6]
Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456(7221): 470-6.
[http://dx.doi.org/10.1038/nature07509] [PMID: 18978772]
[7]
Pan Q, Shai O, Misquitta C, et al. Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol Cell 2004; 16(6): 929-41.
[http://dx.doi.org/10.1016/j.molcel.2004.12.004] [PMID: 15610736]
[8]
Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: Recent insights into mechanisms and functional roles. Neuron 2015; 87(1): 14-27.
[http://dx.doi.org/10.1016/j.neuron.2015.05.004] [PMID: 26139367]
[9]
Katz Y, Wang ET, Airoldi EM, Burge CB. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 2010; 7(12): 1009-15.
[http://dx.doi.org/10.1038/nmeth.1528] [PMID: 21057496]
[10]
Barbosa-Morais NL, Irimia M, Pan Q, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science 2012; 338(6114): 1587-93.
[http://dx.doi.org/10.1126/science.1230612] [PMID: 23258890]
[11]
Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 2012; 338(6114): 1593-9.
[http://dx.doi.org/10.1126/science.1228186] [PMID: 23258891]
[12]
Paronetto MP, Passacantilli I, Sette C. Alternative splicing and cell survival: From tissue homeostasis to disease. Cell Death Differ 2016; 23(12): 1919-29.
[http://dx.doi.org/10.1038/cdd.2016.91] [PMID: 27689872]
[13]
Vaquero-Garcia J, Barrera A, Gazzara MR, et al. A new view of transcriptome complexity and regulation through the lens of local splicing variations. eLife 2016; 5: e11752.
[http://dx.doi.org/10.7554/eLife.11752] [PMID: 26829591]
[14]
Song Y, Botvinnik OB, Lovci MT, et al. Single-cell alternative splicing analysis with expedition reveals splicing dynamics during neuron differentiation. Mol Cell 2017; 67(1): 148-161.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.06.003] [PMID: 28673540]
[15]
Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods 2017; 14(3): 309-15.
[http://dx.doi.org/10.1038/nmeth.4150] [PMID: 28114287]
[16]
Islam S, Zeisel A, Joost S, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 2014; 11(2): 163-6.
[http://dx.doi.org/10.1038/nmeth.2772] [PMID: 24363023]
[17]
Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014; 9(1): 171-81.
[http://dx.doi.org/10.1038/nprot.2014.006] [PMID: 24385147]
[18]
Ramsköld D, Luo S, Wang YC, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 2012; 30(8): 777-82.
[http://dx.doi.org/10.1038/nbt.2282] [PMID: 22820318]
[19]
Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 2013; 10(11): 1096-8.
[http://dx.doi.org/10.1038/nmeth.2639] [PMID: 24056875]
[20]
Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct comparative analyses of 10X genomics chromium and smart-seq2. Genomics Proteomics Bioinformatics 2021; 19(2): 253-66.
[http://dx.doi.org/10.1016/j.gpb.2020.02.005] [PMID: 33662621]
[21]
Byrne A, Beaudin AE, Olsen HE, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun 2017; 8(1): 16027.
[http://dx.doi.org/10.1038/ncomms16027] [PMID: 28722025]
[22]
Buen Abad Najar CF, Burra P, Yosef N, Lareau LF. Identifying cell state–associated alternative splicing events and their coregulation. Genome Res 2022; 32(7): 1385-97.
[http://dx.doi.org/10.1101/gr.276109.121] [PMID: 35858747]
[23]
Lebrigand K, Magnone V, Barbry P, Waldmann R. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat Commun 2020; 11(1): 4025.
[http://dx.doi.org/10.1038/s41467-020-17800-6] [PMID: 32788667]
[24]
Welch JD, Hu Y, Prins JF. Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res 2016; 44(8): e73-3.
[http://dx.doi.org/10.1093/nar/gkv1525] [PMID: 26740580]
[25]
Huang Y, Sanguinetti G. BRIE: transcriptome-wide splicing quantification in single cells. Genome Biol 2017; 18(1): 123.
[http://dx.doi.org/10.1186/s13059-017-1248-5] [PMID: 28655331]
[26]
Hu Y, Wang K, Li M. Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers. PLOS Comput Biol 2020; 16(6): e1007925.
[http://dx.doi.org/10.1371/journal.pcbi.1007925] [PMID: 32502143]
[27]
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/Map format and SAMtools. Bioinformatics 2009; 25(16): 2078-9.
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[28]
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841-2.
[http://dx.doi.org/10.1093/bioinformatics/btq033] [PMID: 20110278]
[29]
Mehmood A, Laiho A, Venäläinen MS, McGlinchey AJ, Wang N, Elo LL. Systematic evaluation of differential splicing tools for RNA-seq studies. Brief Bioinform 2020; 21(6): 2052-65.
[http://dx.doi.org/10.1093/bib/bbz126] [PMID: 31802105]
[30]
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15-21.
[http://dx.doi.org/10.1093/bioinformatics/bts635] [PMID: 23104886]
[31]
Wang K, Singh D, Zeng Z, et al. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 2010; 38(18): e178-8.
[http://dx.doi.org/10.1093/nar/gkq622] [PMID: 20802226]
[32]
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25(9): 1105-11.
[http://dx.doi.org/10.1093/bioinformatics/btp120] [PMID: 19289445]
[33]
Qiu X, Mao Q, Tang Y, et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 2017; 14(10): 979-82.
[http://dx.doi.org/10.1038/nmeth.4402] [PMID: 28825705]
[34]
Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049.
[http://dx.doi.org/10.1038/ncomms14049] [PMID: 28091601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy