Abstract
Background: The advent of single-cell RNA sequencing (scRNA-seq) technology has offered unprecedented opportunities to unravel cellular heterogeneity and functions. Yet, despite its success in unraveling gene expression heterogeneity, accurately identifying and interpreting alternative splicing events from scRNA-seq data remains a formidable challenge. With advancing technology and algorithmic innovations, the prospect of accurately identifying alternative splicing events from scRNA-seq data is becoming increasingly promising.
Objective: This perspective aims to uncover the intricacies of splicing at the single-cell level and their potential implications for health and disease. It seeks to harness scRNA-seq's transformative power in revealing cell-specific alternative splicing dynamics and aims to propel our understanding of gene regulation within individual cells to new heights.
Methods: The perspective grounds its method on recent literature along with the experimental protocols of single-cell RNA-seq and methods to identify and quantify the alternative splicing events from scRNA-seq data.
Results: This perspective outlines the promising potential, challenges, and methodologies for leveraging different scRNA-seq technologies to identify and study alternative splicing events, with a focus on advancing our understanding of gene regulation at the single-cell level.
Conclusion: This perspective explores the prospects of utilizing scRNA-seq data to identify and study alternative splicing events, highlighting their potential, challenges, methodologies, biological insights, and future directions.
[http://dx.doi.org/10.1126/science.1090100] [PMID: 14684825]
[http://dx.doi.org/10.1038/ng.259] [PMID: 18978789]
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[http://dx.doi.org/10.1016/j.cell.2006.06.023] [PMID: 16839875]
[http://dx.doi.org/10.1186/s13059-018-1496-z] [PMID: 30097058]
[http://dx.doi.org/10.1038/nature07509] [PMID: 18978772]
[http://dx.doi.org/10.1016/j.molcel.2004.12.004] [PMID: 15610736]
[http://dx.doi.org/10.1016/j.neuron.2015.05.004] [PMID: 26139367]
[http://dx.doi.org/10.1038/nmeth.1528] [PMID: 21057496]
[http://dx.doi.org/10.1126/science.1230612] [PMID: 23258890]
[http://dx.doi.org/10.1126/science.1228186] [PMID: 23258891]
[http://dx.doi.org/10.1038/cdd.2016.91] [PMID: 27689872]
[http://dx.doi.org/10.7554/eLife.11752] [PMID: 26829591]
[http://dx.doi.org/10.1016/j.molcel.2017.06.003] [PMID: 28673540]
[http://dx.doi.org/10.1038/nmeth.4150] [PMID: 28114287]
[http://dx.doi.org/10.1038/nmeth.2772] [PMID: 24363023]
[http://dx.doi.org/10.1038/nprot.2014.006] [PMID: 24385147]
[http://dx.doi.org/10.1038/nbt.2282] [PMID: 22820318]
[http://dx.doi.org/10.1038/nmeth.2639] [PMID: 24056875]
[http://dx.doi.org/10.1016/j.gpb.2020.02.005] [PMID: 33662621]
[http://dx.doi.org/10.1038/ncomms16027] [PMID: 28722025]
[http://dx.doi.org/10.1101/gr.276109.121] [PMID: 35858747]
[http://dx.doi.org/10.1038/s41467-020-17800-6] [PMID: 32788667]
[http://dx.doi.org/10.1093/nar/gkv1525] [PMID: 26740580]
[http://dx.doi.org/10.1186/s13059-017-1248-5] [PMID: 28655331]
[http://dx.doi.org/10.1371/journal.pcbi.1007925] [PMID: 32502143]
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[http://dx.doi.org/10.1093/bioinformatics/btq033] [PMID: 20110278]
[http://dx.doi.org/10.1093/bib/bbz126] [PMID: 31802105]
[http://dx.doi.org/10.1093/bioinformatics/bts635] [PMID: 23104886]
[http://dx.doi.org/10.1093/nar/gkq622] [PMID: 20802226]
[http://dx.doi.org/10.1093/bioinformatics/btp120] [PMID: 19289445]
[http://dx.doi.org/10.1038/nmeth.4402] [PMID: 28825705]
[http://dx.doi.org/10.1038/ncomms14049] [PMID: 28091601]