Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

A Review on the Development of Novel Heterocycles as α-Glucosidase Inhibitors for the Treatment of Type-2 Diabetes Mellitus

Author(s): Prexa Patel, Drashti Shah, Tushar Bambharoliya, Vidhi Patel, Mehul Patel, Dharti Patel, Vashisth Bhavsar, Shantilal Padhiyar, Bhavesh Patel, Anjali Mahavar, Riddhisiddhi Patel and Ashish Patel*

Volume 20, Issue 5, 2024

Published on: 24 January, 2024

Page: [503 - 536] Pages: 34

DOI: 10.2174/0115734064264591231031065639

Price: $65

Abstract

One of the most effective therapeutic decencies in the treatment of Type 2 Diabetes Mellitus is the inhibition of α-glucosidase enzyme, which is present at the brush border of the intestine and plays an important role in carbohydrate digestion to form mono-, di-, and polysaccharides. Acarbose, Voglibose, Miglitol, and Erniglitate have been well-known α-glucosidase inhibitors in science since 1990. However, the long synthetic route and side effects of these inhibitors forced the researchers to move their focus to innovate simple and small heterocyclic scaffolds that work as excellent α-glucosidase inhibitors. Moreover, they are also effective against the postprandial hyperglycemic condition in Type 2 Diabetes Mellitus. In this aspect, this review summarizes recent progress in the discovery and development of heterocyclic molecules that have been appraised to show outstanding inhibition of α-glucosidase to yield positive effects against diabetes.

Graphical Abstract

[1]
World Health Organization. Global report on diabetes. Available from: https://www.who.int/publications/i/item/9789241565257 (Accessed: July 2022).
[2]
World Health Organization. Diabetes. Available from: http://www.who.int/diabetes/en/ (Accessed: July 2022).
[3]
Baena-Díez, J.M.; Peñafiel, J.; Subirana, I.; Ramos, R.; Elosua, R.; Marín-Ibañez, A.; Guembe, M.J.; Rigo, F.; Tormo-Díaz, M.J.; Moreno-Iribas, C.; Cabré, J.J.; Segura, A.; García-Lareo, M.; Gómez de la Cámara, A.; Lapetra, J.; Quesada, M.; Marrugat, J.; Medrano, M.J.; Berjón, J.; Frontera, G.; Gavrila, D.; Barricarte, A.; Basora, J.; García, J.M.; Pavone, N.C.; Lora-Pablos, D.; Mayoral, E.; Franch, J.; Mata, M.; Castell, C.; Frances, A.; Grau, M. Risk of cause-specific death in individuals with diabetes: A competing risks analysis. Diab. Care, 2016, 39(11), 1987-1995.
[http://dx.doi.org/10.2337/dc16-0614] [PMID: 27493134]
[4]
Gregg, E.W.; Li, Y.; Wang, J.; Rios, B.N.; Ali, M.K.; Rolka, D.; Williams, D.E.; Geiss, L. Changes in diabetes-related complications in the United States, 1990-2010. N. Engl. J. Med., 2014, 370(16), 1514-1523.
[http://dx.doi.org/10.1056/NEJMoa1310799] [PMID: 24738668]
[5]
Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther., 2008, 88(11), 1254-1264.
[http://dx.doi.org/10.2522/ptj.20080020] [PMID: 18801858]
[6]
Dhameja, M.; Gupta, P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: An overview. Eur. J. Med. Chem., 2019, 176, 343-377.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.025] [PMID: 31112894]
[7]
Colhoun, H. Coronary heart disease in women: Why the disproportionate risk? Curr. Diab. Rep., 2006, 6(1), 22-28.
[http://dx.doi.org/10.1007/s11892-006-0047-2] [PMID: 16522277]
[8]
Avogaro, A.; Giorda, C.; Maggini, M.; Mannucci, E.; Raschetti, R.; Lombardo, F.; Spila-Alegiani, S.; Turco, S.; Velussi, M.; Ferrannini, E. Incidence of coronary heart disease in type 2 diabetic men and women: Impact of microvascular complications, treatment, and geographic location. Diab. Care, 2007, 30(5), 1241-1247.
[http://dx.doi.org/10.2337/dc06-2558] [PMID: 17290034]
[9]
Scheen, A.J. Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus? Drugs, 2003, 63(10), 933-951.
[http://dx.doi.org/10.2165/00003495-200363100-00002] [PMID: 12699398]
[10]
Pirart, J. Diabetes mellitus and its degenerative complications: A prospective study of 4,400 patients observed between 1947 and 1973. Diab. Care, 1978, 1(4), 252-263.
[http://dx.doi.org/10.2337/diacare.1.4.252]
[11]
Chandler, R.M.; Byrne, H.K.; Patterson, J.G.; Ivy, J.L. Dietary supplements affect the anabolic hormones after weight-training exercise. J. Appl. Physiol., 1994, 76(2), 839-845.
[http://dx.doi.org/10.1152/jappl.1994.76.2.839] [PMID: 8175597]
[12]
Toeller, M. α-Glucosidase inhibitors in diabetes: Efficacy in NIDDM subjects. Eur. J. Clin. Invest., 1994, 24(S3)(3), 31-35.
[http://dx.doi.org/10.1111/j.1365-2362.1994.tb02253.x] [PMID: 8001625]
[13]
H. Bischoff Bayer, AG. Pharmacology of α-glucosidase inhibition. Eur. J. Clin. Invest., 1994, 24, 3. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2362.1994.tb02249.x
[14]
Yee, H.S.; Fong, N.T. A review of the safety and efficacy of acarbose in diabetes mellitus. Pharmacotherapy, 1996, 16(5), 792-805.
[http://dx.doi.org/10.1002/j.1875-9114.1996.tb02997.x] [PMID: 8888075]
[15]
Kaku, K. Efficacy of voglibose in type 2 diabetes. Expert Opin. Pharmacother., 2014, 15(8), 1181-1190.
[http://dx.doi.org/10.1517/14656566.2014.918956] [PMID: 24798092]
[16]
Scott, L.J.; Spencer, C.M. Miglitol. Drugs, 2000, 59(3), 521-549.
[http://dx.doi.org/10.2165/00003495-200059030-00012] [PMID: 10776834]
[17]
Avery, M.; Mizuno, C.; Chittiboyina, A.; Kurtz, T.; Pershadsingh, H. Type 2 diabetes and oral antihyperglycemic drugs. Curr. Med. Chem., 2008, 15(1), 61-74.
[http://dx.doi.org/10.2174/092986708783330656] [PMID: 18220763]
[18]
Mushtaq, A.; Azam, U.; Mehreen, S.; Naseer, M.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur. J. Med. Chem., 2023, 249, 115119.
[http://dx.doi.org/10.1016/j.ejmech.2023.115119] [PMID: 36680985]
[19]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Recent advances in indian herbal drug research guest editor: Thomas paul asir devasagayam indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem Nutr., 2007, 40, 163.
[20]
Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev., 2022, 21(4), 1049-1079.
[http://dx.doi.org/10.1007/s11101-021-09773-1] [PMID: 34421444]
[21]
Kumar, V.; Prakash, O.; Kumar, S.; Narwal, S. α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev., 2011, 5(9), 19-29.
[http://dx.doi.org/10.4103/0973-7847.79096] [PMID: 22096315]
[22]
Tabopda, T.K.; Ngoupayo, J.; Liu, J.; Mitaine-Offer, A.C.; Tanoli, S.A.K.; Khan, S.N.; Ali, M.S.; Ngadjui, B.T.; Tsamo, E.; Lacaille-Dubois, M.A.; Luu, B. Bioactive aristolactams from Piper umbellatum. Phytochemistry, 2008, 69(8), 1726-1731.
[http://dx.doi.org/10.1016/j.phytochem.2008.02.018] [PMID: 18400239]
[23]
Gao, H.; Huang, Y.; Xu, P.; Kawabata, J. Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chem., 2007, 105(2), 628-634.
[http://dx.doi.org/10.1016/j.foodchem.2007.04.023]
[24]
Patel, A.; Shah, D.; Patel, Y.; Patel, S.; Mehta, M.; Bambharoliya, T. A review on recent development of novel heterocycles as acetylcholinesterase inhibitor for the treatment of alzheimer’s disease. Curr. Drug Targets, 2023, 24(3), 225-246.
[http://dx.doi.org/10.2174/1389450124666221213114500] [PMID: 36515018]
[25]
Jadhav, N.C.; Pahelkar, A.R.; Desai, N.V.; Telvekar, V.N. Design, synthesis and molecular docking study of novel pyrrole-based α-amylase and α-glucosidase inhibitors. Med. Chem. Res., 2017, 26(10), 2675-2691.
[http://dx.doi.org/10.1007/s00044-017-1965-z]
[26]
Chaudhry, F.; Ather, A.Q.; Akhtar, M.J.; Shaukat, A.; Ashraf, M.; al-Rashida, M.; Munawar, M.A.; Khan, M.A. Green synthesis, inhibition studies of yeast α-glucosidase and molecular docking of pyrazolylpyridazine amines. Bioorg. Chem., 2017, 71, 170-180.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.003] [PMID: 28259376]
[27]
Tavani, C.; Bianchi, L.; De Palma, A.; Passeri, G.I.; Punzi, G.; Pierri, C.L.; Lovece, A.; Cavalluzzi, M.M.; Franchini, C.; Lentini, G.; Petrillo, G. Nitro-substituted tetrahydroindolizines and homologs: Design, kinetics, and mechanism of α-glucosidase inhibition. Bioorg. Med. Chem. Lett., 2017, 27(17), 3980-3986.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.068] [PMID: 28781158]
[28]
Kasturi, S.; Surarapu, S.; Uppalanchi, S.; Anireddy, J.S.; Dwivedi, S.; Anantaraju, H.S.; Perumal, Y.; Sigalapalli, D.K.; Babu, B.N.; Ethiraj, K.S. Synthesis and α-glucosidase inhibition activity of dihydroxy pyrrolidines. Bioorg. Med. Chem. Lett., 2017, 27(12), 2818-2823.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.078] [PMID: 28495082]
[29]
Kashtoh, H.; Muhammad, M.T.; Khan, J.J.A.; Rasheed, S.; Khan, A.; Perveen, S.; Javaid, K.; Atia-tul-Wahab; Khan, K.M.; Choudhary, M.I. Dihydropyrano[2,3-c] pyrazole: Novel in vitro inhibitors of yeast α-glucosidase. Bioorg. Chem., 2016, 65, 61-72.
[http://dx.doi.org/10.1016/j.bioorg.2016.01.008] [PMID: 26874344]
[30]
Chaudhry, F.; Naureen, S.; Huma, R.; Shaukat, A.; al-Rashida, M.; Asif, N.; Ashraf, M.; Munawar, M.A.; Khan, M.A. In search of new α -glucosidase inhibitors: Imidazolylpyrazole derivatives. Bioorg. Chem., 2017, 71, 102-109.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.017] [PMID: 28160945]
[31]
Chaudhry, F.; Naureen, S.; Choudhry, S.; Huma, R.; Ashraf, M.; al-Rashida, M.; Jahan, B.; Hyder Khan, M.; Iqbal, F.; Ali Munawar, M.; Ain, K.M. Evaluation of α-glucosidase inhibiting potentials with docking calculations of synthesized arylidene-pyrazolones. Bioorg. Chem., 2018, 77, 507-514.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.002] [PMID: 29454828]
[32]
Taha, M.; Ismail, N.H.; Javaid, K.; Imran, S.; Anouar, E.H.; Wadood, A.; Atia-tul-Wahab; Ali, M.; Khan, K.M.; Saad, S.M.; Rahim, F.; Choudhary, M.I. Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorg. Chem., 2015, 63, 24-35.
[http://dx.doi.org/10.1016/j.bioorg.2015.09.001] [PMID: 26398141]
[33]
Naureen, S.; Noreen, S.; Nazeer, A.; Ashraf, M.; Alam, U.; Munawar, M.A.; Khan, M.A. Triarylimidazoles-synthesis of 3-(4,5-diaryl-1H-imidazol-2-yl)-2-phenyl-1H-indole derivatives as potent α-glucosidase inhibitors. Med. Chem. Res., 2015, 24(4), 1586-1595.
[http://dx.doi.org/10.1007/s00044-014-1239-y]
[34]
Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem., 2017, 74, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.009] [PMID: 28750203]
[35]
Islam, M.S.; Barakat, A.; Al-Majid, A.M.; Ali, M.; Yousuf, S.; Iqbal, C.M.; Khalil, R.; Ul-Haq, Z. Catalytic asymmetric synthesis of indole derivatives as novel α-glucosidase inhibitors in vitro. Bioorg. Chem., 2018, 79, 350-354.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.004] [PMID: 29807208]
[36]
Wang, G.; Wang, J.; Xie, Z.; Chen, M.; Li, L.; Peng, Y.; Chen, S.; Li, W.; Deng, B. Discovery of 3,3-di(indolyl)indolin-2-one as a novel scaffold for α-glucosidase inhibitors: In silico studies and SAR predictions. Bioorg. Chem., 2017, 72, 228-233.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.006] [PMID: 28482263]
[37]
Gollapalli, M.; Taha, M.; Ullah, H.; Nawaz, M.; AlMuqarrabun, L.M.R.; Rahim, F.; Qureshi, F.; Mosaddik, A.; Ahmat, N.; Khan, K.M. Synthesis of bis-indolylmethane sulfonohydrazides derivatives as potent α-glucosidase inhibitors. Bioorg. Chem., 2018, 80, 112-120.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.001] [PMID: 29894890]
[38]
Rahim, F.; Malik, F.; Ullah, H.; Wadood, A.; Khan, F.; Javid, M.T.; Taha, M.; Rehman, W.; Ur Rehman, A.; Khan, K.M. Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorg. Chem., 2015, 60, 42-48.
[http://dx.doi.org/10.1016/j.bioorg.2015.03.005] [PMID: 25955493]
[39]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. Synthesis, in vitro evaluation and molecular docking studies of novel coumarin-isatin derivatives as α-glucosidase inhibitors. Chem. Biol. Drug Des., 2017, 89(3), 456-463.
[http://dx.doi.org/10.1111/cbdd.12867] [PMID: 27616456]
[40]
Xie, Z.; Wang, G.; Wang, J.; Chen, M.; Peng, Y.; Li, L.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation, and molecular docking studies of novel isatin-thiazole derivatives as α-glucosidase inhibitors. Molecules, 2017, 22(4), 659-670.
[http://dx.doi.org/10.3390/molecules22040659] [PMID: 28425975]
[41]
Wang, G.; Chen, M.; Qiu, J.; Xie, Z.; Cao, A. Synthesis, in vitro α-glucosidase inhibitory activity and docking studies of novel chromone-isatin derivatives. Bioorg. Med. Chem. Lett., 2018, 28(2), 113-116.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.047] [PMID: 29208524]
[42]
Han, K.; Li, Y.; Zhang, Y.; Teng, Y.; Ma, Y.; Wang, M.; Wang, R.; Xu, W.; Yao, Q.; Zhang, Y.; Qin, H.; Sun, H.; Yu, P. Design, synthesis and docking study of novel tetracyclic oxindole derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(7), 1471-1475.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.031] [PMID: 25759031]
[43]
Sun, H.; Zhang, Y.; Ding, W.; Zhao, X.; Song, X.; Wang, D.; Li, Y.; Han, K.; Yang, Y.; Ma, Y.; Wang, R.; Wang, D.; Yu, P. Inhibitory activity evaluation and mechanistic studies of tetracyclic oxindole derivatives as α-glucosidase inhibitors. Eur. J. Med. Chem., 2016, 123, 365-378.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.044] [PMID: 27487567]
[44]
Naureen, S.; Chaudhry, F.; Munawar, M.A.; Ashraf, M.; Hamid, S.; Khan, M.A. Biological evaluation of new imidazole derivatives tethered with indole moiety as potent α-glucosidase inhibitors. Bioorg. Chem., 2018, 76, 365-369.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.014] [PMID: 29232634]
[45]
Ali, I.; Khan, A.; Hussain, A.; Farooq, U.; Ismail, M.; Hyder, V.; Ahmad, V.U.; Iaroshenko, V.O.; Hussain, H.; Langer, P. Comparative enzyme inhibition study of 1-deazapurines. Med. Chem. Res., 2016, 25(11), 2599-2606.
[http://dx.doi.org/10.1007/s00044-016-1700-1]
[46]
Arshad, T.; Khan, K.M.; Rasool, N.; Salar, U.; Hussain, S.; Tahir, T.; Ashraf, M.; Wadood, A.; Riaz, M.; Perveen, S.; Taha, M.; Ismail, N.H. Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors. Med. Chem. Res., 2016, 25(9), 2058-2069.
[http://dx.doi.org/10.1007/s00044-016-1614-y]
[47]
Özil, M.; Emirik, M.; Beldüz, A.; Ülker, S. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorg. Med. Chem., 2016, 24(21), 5103-5114.
[http://dx.doi.org/10.1016/j.bmc.2016.08.024] [PMID: 27576293]
[48]
Özil, M.; Emirik, M.; Etlik, S.Y.; Ülker, S.; Kahveci, B. A simple and efficient synthesis of novel inhibitors of alpha-glucosidase based on benzimidazole skeleton and molecular docking studies. Bioorg. Chem., 2016, 68, 226-235.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.011] [PMID: 27572707]
[49]
Taha, M.; Ismail, N.H.; Imran, S.; Mohamad, M.H.; Wadood, A.; Rahim, F.; Saad, S.M.; Rehman, A.; Khan, K.M. Synthesis, α-glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles. Bioorg. Chem., 2016, 65, 100-109.
[http://dx.doi.org/10.1016/j.bioorg.2016.02.004] [PMID: 26894559]
[50]
Arshad, T.; Khan, K.M.; Rasool, N.; Salar, U.; Hussain, S.; Asghar, H.; Ashraf, M.; Wadood, A.; Riaz, M.; Perveen, S.; Taha, M.; Ismail, N.H. 5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α -glucosidase and urease enzymes. Bioorg. Chem., 2017, 72, 21-31.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.007] [PMID: 28346872]
[51]
Özil, M.; Parlak, C.; Baltaş, N. A simple and efficient synthesis of benzimidazoles containing piperazine or morpholine skeleton at C-6 position as glucosidase inhibitors with antioxidant activity. Bioorg. Chem., 2018, 76, 468-477.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.019] [PMID: 29287256]
[52]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[53]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Wadood, A.; Ismail, N.H.; Rahim, F.; Azam, S.S.; Abdullah, N. Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies. Bioorg. Chem., 2016, 64, 29-36.
[http://dx.doi.org/10.1016/j.bioorg.2015.11.006] [PMID: 26637946]
[54]
Zheng, J.W.; Ma, L. Assessment of silver(I) complexes of salicylaldehyde derivatives—histidine Schiff base as novel α -glucosidase inhibitors. Chin. Chem. Lett., 2016, 27(2), 283-286.
[http://dx.doi.org/10.1016/j.cclet.2015.11.015]
[55]
Jabeen, F.; Shehzadi, S.A.; Fatmi, M.Q.; Shaheen, S.; Iqbal, L.; Afza, N.; Panda, S.S.; Ansari, F.L. Synthesis, in vitro and computational studies of 1,4-disubstituted 1,2,3-triazoles as potential α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 1029-1038.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.033] [PMID: 26725952]
[56]
Iqbal, S.; Khan, M.A.; Javaid, K.; Sadiq, R.; Fazal-ur-Rehman, S.; Choudhary, M.I.; Basha, F.Z. New carbazole linked 1,2,3-triazoles as highly potent non-sugar α-glucosidase inhibitors. Bioorg. Chem., 2017, 74, 72-81.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.006] [PMID: 28756277]
[57]
Avula, S.K.; Khan, A.; Rehman, N.U.; Anwar, M.U.; Al-Abri, Z.; Wadood, A.; Riaz, M.; Csuk, R.; Al-Harrasi, A. Synthesis of 1H-1,2,3-triazole derivatives as new α-glucosidase inhibitors and their molecular docking studies. Bioorg. Chem., 2018, 81, 98-106.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.008] [PMID: 30118991]
[58]
Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, In Vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives. Molecules, 2017, 22(9), 1555-1566.
[http://dx.doi.org/10.3390/molecules22091555] [PMID: 28914795]
[59]
Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis and biological evaluation of novel 2,4,5-triarylimidazole–1,2,3-triazole derivatives via click chemistry as α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(23), 5719-5723.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.057] [PMID: 27810241]
[60]
Chaudhari, K.S.; Patel, H.M.; Surana, S.J. Pyridines: Multidrug-resistant tuberculosis (MDR-TB) inhibitors. Indian J. Tuberc., 2017, 64(2), 119-128.
[http://dx.doi.org/10.1016/j.ijtb.2016.11.012] [PMID: 28410694]
[61]
Taha, M.; Ismail, N.H.; Imran, S.; Ainaa, I.; Selvaraj, M.; baharudin, M.; Ali, M.; Khan, K.M.; Uddin, N. Synthesis of 2-phenyl-1H-imidazo[4,5-b]pyridine as type 2 diabetes inhibitors and molecular docking studies. Med. Chem. Res., 2017, 26(5), 916-928.
[http://dx.doi.org/10.1007/s00044-017-1806-0]
[62]
Bathula, C.; Mamidala, R.; Thulluri, C.; Agarwal, R.; Jha, K.K.; Munshi, P.; Adepally, U.; Singh, A.; Chary, M.T.; Sen, S. Substituted furopyridinediones as novel inhibitors of α-glucosidase. RSC Adv., 2015, 5(110), 90374-90385.
[http://dx.doi.org/10.1039/C5RA19255B]
[63]
Islam, M.S.; Barakat, A.; Al-Majid, A.M.; Ghabbour, H.A.; Rahman, A.F.M.M.; Javaid, K.; Imad, R.; Yousuf, S.; Choudhary, M.I. A concise synthesis and evaluation of new malonamide derivatives as potential α-glucosidase inhibitors. Bioorg. Med. Chem., 2016, 24(8), 1675-1682.
[http://dx.doi.org/10.1016/j.bmc.2016.02.037] [PMID: 26972921]
[64]
Ali, F.; Khan, K.M.; Salar, U.; Taha, M.; Ismail, N.H.; Wadood, A.; Riaz, M.; Perveen, S. Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, in vitro α-glucosidase inhibitory activity, and in silico studies. Eur. J. Med. Chem., 2017, 138, 255-272.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.041] [PMID: 28672278]
[65]
Farooq, A.; Shahazadi, L.; Bajda, M.; Ullah, N.; Rauf, A.; Shahzad, S.A.; Khan, A.F.; Ashraf, M.; Yar, M. Organocatalyzed novel synthetic methodology for highly functionalized piperidines as potent α-glucosidase inhibitors. Arch. Pharm., 2016, 349(9), 724-732.
[http://dx.doi.org/10.1002/ardp.201600045] [PMID: 27489132]
[66]
Kasturi, S.P.; Surarapu, S.; Uppalanchi, S.; Dwivedi, S.; Yogeeswari, P.; Sigalapalli, D.K.; Bathini, N.B.; Ethiraj, K.S.; Anireddy, J.S. Synthesis, molecular modeling and evaluation of α-glucosidase inhibition activity of 3,4-dihydroxy piperidines. Eur. J. Med. Chem., 2018, 150, 39-52.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.072] [PMID: 29518717]
[67]
Yousefi, A.; Yousefi, R.; Panahi, F.; Sarikhani, S.; Zolghadr, A.R.; Bahaoddini, A.; Khalafi-Nezhad, A. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int. J. Biol. Macromol., 2015, 78, 46-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.060] [PMID: 25843662]
[68]
Ur Rehman, T.; Ullah Khan, I.; Riaz, S. Novel substituted 3-phenyl 1-(4-(5-bromopyridin-3-yl)-6-phenylpyrimidin-2-yl)-thiourea compounds as key small organic molecules for the potential treatment of type II diabetes mellitus: In vitro studies against yeast α-glucosidase. Med. Chem. Res., 2017, 26(6), 1098-1106.
[http://dx.doi.org/10.1007/s00044-017-1803-3]
[69]
Gong, Z.; Xie, Z.; Qiu, J.; Wang, G. Synthesis, biological evaluation and molecular docking study of 2-substituted-4,6-diarylpyrimidines as α-glucosidase inhibitors. Molecules, 2017, 22(11), 1865-1875.
[http://dx.doi.org/10.3390/molecules22111865] [PMID: 29084182]
[70]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. One-pot and three-component synthesis, characterization and biological evaluation of some new 1,2,4-triazine-coumarins. Heterocycles, 2016, 92(8), 1430-1439.
[http://dx.doi.org/10.3987/COM-16-13491]
[71]
Wang, G.; Wang, J.; He, D.; Li, X.; Li, J.; Peng, Z. Synthesis and biological evaluation of novel 1,2,4-triazine derivatives bearing carbazole moiety as potent α-glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(12), 2806-2809.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.071] [PMID: 27177827]
[72]
Wang, G.; Peng, Z.; Wang, J.; Li, X.; Li, J. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors. Eur. J. Med. Chem., 2017, 125, 423-429.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.067] [PMID: 27689725]
[73]
Wang, G.; Li, X.; Wang, J.; Xie, Z.; Li, L.; Chen, M.; Chen, S.; Peng, Y. Synthesis, molecular docking and α-glucosidase inhibition of 2-((5,6-diphenyl-1,2,4-triazin-3-yl)thio)-N-arylacetamides. Bioorg. Med. Chem. Lett., 2017, 27(5), 1115-1118.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.094] [PMID: 28189421]
[74]
Taha, M.; Ismail, N.H.; Imran, S.; Rokei, M.Q.B.; Saad, S.M.; Khan, K.M. Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors. Bioorg. Med. Chem., 2015, 23(15), 4155-4162.
[http://dx.doi.org/10.1016/j.bmc.2015.06.060] [PMID: 26183542]
[75]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Ali, M.; Rehman, A.U. Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors: In silico studies and SAR predictions. MedChemComm, 2015, 6(10), 1826-1836.
[http://dx.doi.org/10.1039/C5MD00280J]
[76]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Saad, S.M.; Khan, K.M.; Nasir, A. Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorg. Chem., 2016, 66, 117-123.
[http://dx.doi.org/10.1016/j.bioorg.2016.04.006] [PMID: 27149363]
[77]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Ali, M.; Rahim, F.; Khan, A.A.; Riaz, M. Novel thiosemicarbazide–oxadiazole hybrids as unprecedented inhibitors of yeast α-glucosidase and in silico binding analysis. RSC Advan., 2016, 6(40), 33733-33742.
[http://dx.doi.org/10.1039/C5RA28012E]
[78]
Rahim, F.; Ullah, H.; Javid, M.T.; Wadood, A.; Taha, M.; Ashraf, M.; Shaukat, A.; Junaid, M.; Hussain, S.; Rehman, W.; Mehmood, R.; Sajid, M.; Khan, M.N.; Khan, K.M. Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorg. Chem., 2015, 62, 15-21.
[http://dx.doi.org/10.1016/j.bioorg.2015.06.006] [PMID: 26162519]
[79]
Ali, M.; Khan, K.M.; Salar, U.; Ashraf, M.; Taha, M.; Wadood, A.; Hamid, S.; Riaz, M.; Ali, B.; Shamim, S.; Ali, F.; Perveen, S. Synthesis, in vitro $ $$$ α -glucosidase inhibitory activity, and in silico study of (E)-thiosemicarbazones and (E)-2-(2-(arylmethylene) hydrazinyl)-4-arylthiazole derivatives. Mol. Divers., 2018, 22(4), 841-861.
[http://dx.doi.org/10.1007/s11030-018-9835-2] [PMID: 29948581]
[80]
Shah, S.; Arshia; Javaid, K.; Zafar, H.; Mohammed Khan, K.; Khalil, R.; Ul-Haq, Z.; Perveen, S.; Choudhary, M.I. Synthesis, and In Vitro and In Silico α-glucosidase inhibitory studies of 5-chloro-2-aryl benzo[d]thiazoles. Bioorg. Chem., 2018, 78, 269-279.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.013] [PMID: 29614438]
[81]
Wang, M.Y.; Cheng, X.C.; Chen, X.B.; Li, Y.; Zang, L.L.; Duan, Y.Q.; Chen, M.Z.; Yu, P.; Sun, H.; Wang, R.L. Synthesis and biological evaluation of novel N -aryl- ω -(benzoazol-2-yl)-sulfanylalkanamides as dual inhibitors of α-glucosidase and protein tyrosine phosphatase 1B. Chem. Biol. Drug Des., 2018, 92(3), 1647-1656.
[http://dx.doi.org/10.1111/cbdd.13331] [PMID: 29745030]
[82]
Khan, K.M.; Qurban, S.; Salar, U.; Taha, M.; Hussain, S.; Perveen, S.; Hameed, A.; Ismail, N.H.; Riaz, M.; Wadood, A. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of new thiazole derivatives. Bioorg. Chem., 2016, 68, 245-258.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.010] [PMID: 27592296]
[83]
Kazmi, M.; Zaib, S.; Amjad, S.T.; Khan, I.; Ibrar, A.; Saeed, A.; Iqbal, J. Exploration of aroyl/heteroaroyl iminothiazolines featuring 2,4,5-trichlorophenyl moiety as a new class of potent, selective, and in vitro efficacious glucosidase inhibitors. Bioorg. Chem., 2017, 74, 134-144.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.012] [PMID: 28780150]
[84]
Wang, G.; Peng, Y.; Xie, Z.; Wang, J.; Chen, M. Synthesis, α-glucosidase inhibition and molecular docking studies of novel thiazolidine-2,4-dione or rhodanine derivatives. MedChemComm, 2017, 8(7), 1477-1484.
[http://dx.doi.org/10.1039/C7MD00173H] [PMID: 30108859]
[85]
Qamar, R.; Saeed, A.; Saeed, M.; Shah, B.H.; Ashraf, Z.; Abbas, Q.; Seo, S.Y. Synthesis and enzyme inhibitory kinetics of some novel 3-(substituted benzoyl)-2-thioxoimidazolidin-4-one derivatives as α-glucosidase/α-amylase inhibitors. Med. Chem. Res., 2018, 27(5), 1528-1537.
[http://dx.doi.org/10.1007/s00044-018-2170-4]
[86]
Javid, M.T.; Rahim, F.; Taha, M.; Rehman, H.U.; Nawaz, M.; wadood, A.; Imran, S.; Uddin, I.; Mosaddik, A.; Khan, K.M. Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole analogs. Bioorg. Chem., 2018, 78, 201-209.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.022] [PMID: 29597114]
[87]
Sun, H.; Ding, W.; Song, X.; Wang, D.; Chen, M.; Wang, K.; Zhang, Y.; Yuan, P.; Ma, Y.; Wang, R.; Dodd, R.H.; Zhang, Y.; Lu, K.; Yu, P. Synthesis of 6-hydroxyaurone analogues and evaluation of their α-glucosidase inhibitory and glucose consumption-promoting activity: Development of highly active 5,6-disubstituted derivatives. Bioorg. Med. Chem. Lett., 2017, 27(15), 3226-3230.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.040] [PMID: 28651984]
[88]
Wang, G.; Peng, Z.; Wang, J.; Li, J.; Li, X. Synthesis, biological evaluation and molecular docking study of N -arylbenzo[ d]oxazol-2-amines as potential α-glucosidase inhibitors. Bioorg. Med. Chem., 2016, 24(21), 5374-5379.
[http://dx.doi.org/10.1016/j.bmc.2016.08.061] [PMID: 27614916]
[89]
Wang, G.; He, D.; Li, X.; Li, J.; Peng, Z. Design, synthesis and biological evaluation of novel coumarin thiazole derivatives as α-glucosidase inhibitors. Bioorg. Chem., 2016, 65, 167-174.
[http://dx.doi.org/10.1016/j.bioorg.2016.03.001] [PMID: 26964016]
[90]
Salar, U.; Taha, M.; Khan, K.M.; Ismail, N.H.; Imran, S.; Perveen, S.; Gul, S.; Wadood, A. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α -glucosidase inhibitory activity, and molecular modeling studies. Eur. J. Med. Chem., 2016, 122, 196-204.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.037] [PMID: 27371923]
[91]
Ibrar, A.; Zaib, S.; Khan, I.; Shafique, Z.; Saeed, A.; Iqbal, J. New prospects for the development of selective inhibitors of α -glucosidase based on coumarin-iminothiazolidinone hybrids: Synthesis, in vitro biological screening and molecular docking analysis. J. Taiwan Inst. Chem. Eng., 2017, 81, 119-133.
[http://dx.doi.org/10.1016/j.jtice.2017.09.041]
[92]
Chaudhry, F.; Choudhry, S.; Huma, R.; Ashraf, M.; al-Rashida, M.; Munir, R.; Sohail, R.; Jahan, B.; Munawar, M.A.; Khan, M.A. Hetarylcoumarins: Synthesis and biological evaluation as potent α -glucosidase inhibitors. Bioorg. Chem., 2017, 73, 1-9.
[http://dx.doi.org/10.1016/j.bioorg.2017.05.009] [PMID: 28521172]
[93]
Kazmi, M.; Zaib, S.; Ibrar, A.; Amjad, S.T.; Shafique, Z.; Mehsud, S.; Saeed, A.; Iqbal, J.; Khan, I. A new entry into the portfolio of α-glucosidase inhibitors as potent therapeutics for type 2 diabetes: Design, bioevaluation and one-pot multi-component synthesis of diamine-bridged coumarinyl oxadiazole conjugates. Bioorg. Chem., 2018, 77, 190-202.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.022] [PMID: 29421697]
[94]
Mohammadi-Khanaposhtani, M.; Yahyavi, H.; Barzegaric, E.; Imanparast, S.; Heravi, M.M.; Ali Faramarzi, M.; Foroumadi, A.; Adibi, H.; Larijani, B.; Mahdavi, M. New biscoumarin derivatives as potent α-glucosidase inhibitors: Synthesis, biological evaluation, kinetic analysis, and docking study. Polycycl. Aromat. Compd., 2020, 40(4), 915-926.
[http://dx.doi.org/10.1080/10406638.2018.1509359]
[95]
Taha, M.; Shah, S.A.A.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Khan, K.M. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorg. Chem., 2018, 77, 586-592.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.033] [PMID: 29477126]
[96]
Imran, S.; Taha, M.; Ismail, N.H.; Kashif, S.M.; Rahim, F.; Jamil, W.; Wahab, H.; Khan, K.M. Synthesis, In vitro and docking studies of new flavone ethers as α -glucosidase inhibitors. Chem. Biol. Drug Des., 2016, 87(3), 361-373.
[http://dx.doi.org/10.1111/cbdd.12666] [PMID: 26362113]
[97]
Wang, G.; Chen, M.; Wang, J.; Peng, Y.; Li, L.; Xie, Z.; Deng, B.; Chen, S.; Li, W. Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α -glucosidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(13), 2957-2961.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.007] [PMID: 28506754]
[98]
Zhen, J.; Dai, Y.; Villani, T.; Giurleo, D.; Simon, J.E.; Wu, Q. Synthesis of novel flavonoid alkaloids as α-glucosidase inhibitors. Bioorg. Med. Chem., 2017, 25(20), 5355-5364.
[http://dx.doi.org/10.1016/j.bmc.2017.07.055] [PMID: 28797772]
[99]
Li, G.L.; Cai, C.Y.; He, J.Y.; Rao, L.; Ma, L.; Liu, Y.; Wang, B. Synthesis of 3-acyloxyxanthone derivatives as α-glucosidase inhibitors: A further insight into the 3-substituents’ effect. Bioorg. Med. Chem., 2016, 24(7), 1431-1438.
[http://dx.doi.org/10.1016/j.bmc.2016.01.022] [PMID: 26917220]
[100]
Ding, S.M.; Lan, T.; Ye, G.J.; Huang, J.J.; Hu, Y.; Zhu, Y.R.; Wang, B. Novel oxazolxanthone derivatives as a new type of α-glucosidase inhibitor: synthesis, activities, inhibitory modes and synergetic effect. Bioorg. Med. Chem., 2018, 26(12), 3370-3378.
[http://dx.doi.org/10.1016/j.bmc.2018.05.008] [PMID: 29776833]
[101]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[102]
Nagaraju, S.; Perumal P, O.; Divakar, K.; Paplal, B.; Kashinath, D. “On water” synthesis of dibenzo-[1,4]-diazepin-1-ones using L -proline as an organocatalyst and under catalyst-free conditions, and their evaluation as α-glucosidase inhibitors. New J. Chem., 2017, 41(17), 8993-9001.
[http://dx.doi.org/10.1039/C7NJ01021D]
[103]
Satyanarayana, N.; Sree, B.R.; Sathish, K.; Nagaraju, S.; Divakar, K.; Pawar, R.; Shirisha, T.; Kashinath, D. Synthesis of 2-styryl-quinazoline and 3-styryl-quinoxaline based sulfonate esters via sp 3 C–H activation and their evaluation for α-glucosidase inhibition. New J. Chem., 2022, 46(11), 5162-5170.
[http://dx.doi.org/10.1039/D1NJ05644A]
[104]
Patel, A.D.; Barot, R.; Parmar, I.; Panchal, I.; Shah, U.; Patel, M.; Mishtry, B. Molecular docking, In-Silico ADMET study and development of 1,6- dihydropyrimidine derivative as protein tyrosine phosphatase inhibitor: An approach to design and develop antidiabetic agents. Curr. Computeraided Drug Des., 2018, 14(4), 349-362.
[http://dx.doi.org/10.2174/1573409914666180426125721] [PMID: 29701158]
[105]
Panchal, I.I.; Sen, D.J.; Patel, A.D.; Shah, U.; Patel, M.; Navale, A.; Bhavsar, V. Molecular docking, synthesis and biological evaluation of sulphonylureas/guanidine derivatives as promising antidiabetic agent. Curr. Drug Discov. Technol., 2018, 15(4), 315-325.
[http://dx.doi.org/10.2174/1570163814666171002102904] [PMID: 28969569]
[106]
Patel, A.D.; Pasha, T.Y.; Lunagariya, P.; Shah, U.; Bhambharoliya, T.; Tripathi, R.K.P. A library of thiazolidin‐4‐one derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors: An attempt to discover novel antidiabetic agents. ChemMedChem, 2020, 15(13), 1229-1242.
[http://dx.doi.org/10.1002/cmdc.202000055] [PMID: 32390300]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy