Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Research Article

Assessment of the Protective Potential of Inoculums and Metabolites of Rhizobacteria on Soybean (Glycine max) Seedlings against Bacterial and Fungal Pathogens

In Press, (this is not the final "Version of Record"). Available online 24 January, 2024
Author(s): Ayotunde O. Ajinde*, Tolulope A. Ogunnusi and Oghenerobor B. Akpor
Published on: 24 January, 2024

DOI: 10.2174/012772574X282130231206103404

Price: $95

Abstract

Background: Plant growth-promoting bacteria (PGPR), while generally considered to aid plant growth with the provision of nutrients, can also be used as biocontrol agents for plant pathogens.

Aim: The study assessed the protective potential of inoculums and metabolites of plant growthpromoting rhizobacterial strains against bacterial and fungal pathogens on soybean seedlings.

Materials and Methods: Inoculums and metabolites of 15 rhizobacterial strains were used for the study. Five pathogens (Alternaria sp., Aspergillus niger, Corynespora sp., Fusarium oxysporum and Xanthomonas campestris) were employed for the study. Four experimental setups: treated-only seeds, infected-only seeds, infected then inoculum or metabolite treated seeds, and infected then distilled water treated seeds.

Results: In the setup infected with Alternaria sp., final germination values of seeds in the presence of the respective inoculums showed no significant variation between the treated only and the infected then treated setup. In the case of seeds infected with Aspergillus niger, higher germination and vigor index values were observed in the treated-only seeds when compared with the infected then-treated seeds. For seeds infected with Corynespora sp., significantly lower germination and vigor index values were observed in the infected then-treated seeds than the treated-only seeds in the presence of the respective inoculums. With regards to setup infected with Fusarium oxysporum, significantly higher final germination and vigor index values were recorded for the treated only seeds when compared with the infected then treated setups. For the Xanthomonas campestris infected seeds, the majority of the infected then metabolite-treated seeds showed significantly lower final germination values when compared with the treated-only seeds.

Conclusion: The study findings were able to establish the efficacy of some bacteria agents against economically important species of plant pathogens.

[1]
Online database. Food and agriculture organization of the United Nations, 2016. Available from: http://www.fao.org/faostat/en/#data/
[2]
Cheong, D.; Jansen, M.; Peters, R. Shared harvets: Agriculture, trade and employment; International Labour Office: Geneva, Switzerland, 2013.
[3]
Šimic, B.; Sudaric, A.; Liovic, I.; Kalinovic, I.; Rozman, V.; Cosic, J. Influence of storage condition on seed quality of maize, soybean and sunflower. 9th International Working Conference on Stored Product Protection, 2006, pp. 59-63.
[4]
Martín, I.; Gálvez, L.; Guasch, L.; Palmero, D. Fungal pathogens and seed storage in the dry state. Plants, 2022, 11(22), 3167.
[http://dx.doi.org/10.3390/plants11223167] [PMID: 36432896]
[5]
Lijuan, Q.; Ruzhen, C. Chang RuZhen CR. The origin and history of soybean. In: The soybean: Botany, production and uses; CABI: Wallingford, UK, 2010, pp. 1-23.
[6]
Wijewardana, C.; Reddy, K.R.; Bellaloui, N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem., 2019, 278, 92-100.
[http://dx.doi.org/10.1016/j.foodchem.2018.11.035] [PMID: 30583452]
[7]
Online database. Food and Agriculture Organization Statistics, 2021. Available from: https://www.fao.org/faostat/en/
[8]
Sharma, S.; Kaur, M.; Goyal, R.; Gill, B.S. Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. J. Food Sci. Technol., 2014, 51(3), 551-557.
[http://dx.doi.org/10.1007/s13197-011-0517-7] [PMID: 24587531]
[9]
Dugje, I.Y.; Omoigui, L.O.; Ekeleme, F.; Bandyopadhyay, R.; Kumar, P.L.; Kamara, A.Y. Farmers’ guide to soybean production in northern Nigeria; IITA, 2009.
[10]
Nzossié, EJ.; Bring, C. Soybean (Glycine max (L.) Merr.) production in the Cameroonian cotton basin between the dynamics of structuring an agricultural value chain and sustainability issues. In: Soybean for Human Consumption and Animal Feed; Intechopen, , 2020.
[11]
Khojely, D.M.; Ibrahim, S.E.; Sapey, E.; Han, T. History, current status, and prospects of soybean production and research in sub-Saharan Africa. Crop J., 2018, 6(3), 226-235.
[http://dx.doi.org/10.1016/j.cj.2018.03.006]
[12]
Idrisa, Y.L.; Ogunbameru, N.B.; Amaza, P.S. Influence of farmers’ socio-economic and technological characteristics on soybean seeds technology adoption in Southern Borno State, Nigeria. Agro Sci., 2010, 9(3), 209-214.
[13]
Akah, N.P.; Kunyanga, C.N.; Okoth, M.W.; Njue, L.K. Pulse production, consumption and utilization in Nigeria within regional and global context. Sustain. Agric. Res., 2021, 10(2), 48-64.
[http://dx.doi.org/10.5539/sar.v10n2p48]
[14]
Emergen Research. Plant based protein market, by source (soybeans, wheat, pea, others), by type (isolates, concentrates, textured), by form (dry form, wet form), by application, and by region forecast to 2030. 2022. Available online: https://www.emergenresearch.com/industry-report/plant-based-protein-market
[15]
Dell’Olmo, E.; Tiberini, A.; Sigillo, L. Leguminous seedborne pathogens: Seed health and sustainable crop management. Plants, 2023, 12(10), 2040.
[http://dx.doi.org/10.3390/plants12102040] [PMID: 37653957]
[16]
Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-based meat analogue (PBMA) as a sustainable food: A concise review. Eur. Food Res. Technol., 2021, 247(10), 2499-2526.
[http://dx.doi.org/10.1007/s00217-021-03810-1]
[17]
Agarwal, V.K.; Sinclair, J.B. Principles of seed pathology; CRC Press, 1996.
[18]
Soesanto, L.; Hartono, A.R.R.; Mugiastuti, E.; Widarta, H. Seed-borne pathogenic fungi on some soybean varieties. Biodiversitas , 2020, 21(9), 4010-4015.
[http://dx.doi.org/10.13057/biodiv/d210911]
[19]
Govindaraj, M.; Masilamani, P.; Albert, V.A.; Bhaskaran, M. Effect of physical seed treatment on yield and quality of crops: A review. . Agric. Rev., , 2017, 38(OF), 1-4.
[http://dx.doi.org/10.18805/ag.v0iOF.7304]
[20]
Gowda, B.; Hiremath, U.; Kumara, V.; Matti, S.C. Effect of seed treatment with fungicides on seed quality of soybean (Glycine max L.) during storage. Int. J. Curr. Microbiol. Appl. Sci., 2020, 8(1), 420-424.
[21]
Etaware, P.M.; Etaware, E.U.; Olaoluwa, O.O.; Oyetunji, O.J.; Aiyelaagbe, O.O.; Odebode, A.C. The impact crude plant extracts: As potential biofertilizers and treatment against tomato plant infection. J. Plant Pathol. Microbiol., 2019, 10, 481-491.
[22]
O’Callaghan, M. Microbial inoculation of seed for improved crop performance: Issues and opportunities. Appl. Microbiol. Biotechnol., 2016, 100(13), 5729-5746.
[http://dx.doi.org/10.1007/s00253-016-7590-9] [PMID: 27188775]
[23]
Al-Ani, R.A.; Adhab, M.A.; Mahdi, M.H.; Abood, H.M. Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Prot. Sci., 2012, 48(4), 149-155.
[http://dx.doi.org/10.17221/16/2012-PPS]
[24]
Zhang, J.X.; Xue, A.G.; Tambong, J.T. Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis., 2009, 93(12), 1317-1323.
[http://dx.doi.org/10.1094/PDIS-93-12-1317] [PMID: 30759515]
[25]
Cusworth, G.; Garnett, T.; Lorimer, J. Legume dreams: The contested futures of sustainable plant-based food systems in Europe. Glob. Environ. Change, 2021, 69, 102321.
[http://dx.doi.org/10.1016/j.gloenvcha.2021.102321] [PMID: 34471332]
[26]
Akpor, O.B.; Akinwusi, O.D.; Ogunnusi, T.A. Production, characterization and pesticidal potential of Bacillus species metabolites against sugar ant (Camponotus consobrinus). Heliyon, 2021, 7(11), e08447.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08447] [PMID: 34877429]
[27]
International rules for seed testing. Rules 1985. Seed Sci. Technol., 1985, 13(2), 299-513.
[28]
Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria 1. Crop Sci., 1973, 13(6), 630-633.
[http://dx.doi.org/10.2135/cropsci1973.0011183X001300060013x]
[29]
Vankudoth, K.R.; Sivadeveuni, G.; Reddy, S.M. Influence of different species of Penicillium and their culture filtrates on seed germination and seedling growth of sorghum. J. Biochem. Technol., 2015, 5(4), 832-837.
[30]
Kumar, V.; Basu, M.S.; Rajendran, T.P. Mycotoxin research and mycoflora in some commercially important agricultural commodities. Crop Prot., 2008, 27(6), 891-905.
[http://dx.doi.org/10.1016/j.cropro.2007.12.011]
[31]
Bhat, R.; Rai, R.V.; Karim, A.A. Mycotoxins in food and feed: Present status and future concerns. Compr. Rev. Food Sci. Food Saf., 2010, 9(1), 57-81.
[http://dx.doi.org/10.1111/j.1541-4337.2009.00094.x] [PMID: 33467806]
[32]
Habschied, K.; Krstanović, V.; Zdunić, Z.; Babić, J.; Mastanjević, K.; Šarić, G.K. Mycotoxins biocontrol methods for healthier crops and stored products. J. Fungi , 2021, 7(5), 348.
[http://dx.doi.org/10.3390/jof7050348] [PMID: 33946920]
[33]
Shiva, S.A.; Reddy, D.M.; Padmavati, K.; Pindi, P.K. Potential bio-control agent Serratia sp. SCP isolated from rhizosphere soil, Mahbubnagar, Telangana. Open Access. J. Biomed. Sci., 2022, 4(4), 1913-1922.
[34]
Ruiu, L. Plant-growth-promoting bacteria (PGPB) against insects and other agricultural pests. Agronomy , 2020, 10(6), 861.
[http://dx.doi.org/10.3390/agronomy10060861]
[35]
Grover, M.; Bodhankar, S.; Sharma, A.; Sharma, P.; Singh, J.; Nain, L. PGPR mediated alterations in root traits: Way toward sustainable crop production. Front. Sustain. Food Syst., 2021, 4, 618230.
[http://dx.doi.org/10.3389/fsufs.2020.618230]
[36]
Elbouazaoui, A.; Sijilmassi, B.; Maafa, I.; Allal, D.; Ahmed, S. Biocontrol activity of Bacillus, Paenibacillus and Pseudomonas against Fusarium wilt of chickpea in Morocco. Acta Agric. Scand. B Soil Plant Sci., 2022, 72(1), 847-859.
[http://dx.doi.org/10.1080/09064710.2022.2100819]
[37]
Lavania, M.; Chauhan, P.S.; Chauhan, S.V.S.; Singh, H.B.; Nautiyal, C.S. Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr. Microbiol., 2006, 52(5), 363-368.
[http://dx.doi.org/10.1007/s00284-005-5578-2] [PMID: 16586018]
[38]
Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci., 2019, 10, 845.
[http://dx.doi.org/10.3389/fpls.2019.00845] [PMID: 31379891]
[39]
Gupta, V.G.; Pandey, A. Eds.; New and future developments in microbial biotechnology and bioengineering: Microbial secondary metabolites biochemistry and applications. Elsevier, 2019.
[40]
Arfaoui, A.; El Hadrami, A.; Mabrouk, Y.; Sifi, B.; Boudabous, A.; El Hadrami, I.; Daayf, F.; Chérif, M. Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceris. Plant Physiol. Biochem., 2007, 45(6-7), 470-479.
[http://dx.doi.org/10.1016/j.plaphy.2007.04.004] [PMID: 17544286]
[41]
Akhtar, M.S.; Siddiqui, Z.A. Effects of Glomus fasciculatum and Rhizobium sp. on the growth and root-rot disease complex of chickpea. Arch. Phytopathol. Pflanzenschutz, 2007, 40(1), 37-43.
[http://dx.doi.org/10.1080/03235400500320133]
[42]
Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed germination and vigor. Annu. Rev. Plant Biol., 2012, 63(1), 507-533.
[http://dx.doi.org/10.1146/annurev-arplant-042811-105550] [PMID: 22136565]
[43]
Al-Sman, KM.; Abo-Elyousr, K.; Eraky, A. El-Zawahry, A Potential activities of Bacillus simplex as a biocontrol agent against root rot of Nigella sativa caused by Fusarium camptoceras. Egypt. J. Biol. Pest Control, 2019, 29, 1-6.
[44]
Ferreira, F.V.; Musumeci, M.A. Trichoderma as biological control agent: scope and prospects to improve efficacy. World J. Microbiol. Biotechnol., 2021, 37(5), 90.
[http://dx.doi.org/10.1007/s11274-021-03058-7] [PMID: 33899136]
[45]
Ashwini, N; Srividya, S. Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotechnology 2014, 14(2), 127-136.
[46]
Zohora, U.S.; Ano, T.; Rahman, M.S. Biocontrol of Rhizoctonia solani K1 by iturin A producer Bacillus subtilis RB14 seed treatment in tomato plants. Adv. Microbiol., 2016, 6(6), 424-431.
[http://dx.doi.org/10.4236/aim.2016.66042]
[47]
Xie, S.; Zang, H.; Wu, H.; Uddin Rajer, F.; Gao, X. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. Mol. Plant Pathol., 2018, 19(1), 49-58.
[http://dx.doi.org/10.1111/mpp.12494] [PMID: 27682316]
[48]
Koumoutsi, A.; Chen, X.H.; Henne, A.; Liesegang, H.; Hitzeroth, G.; Franke, P.; Vater, J.; Borriss, R. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol., 2004, 186(4), 1084-1096.
[http://dx.doi.org/10.1128/JB.186.4.1084-1096.2004] [PMID: 14762003]
[49]
Leveau, J.H.J.; Preston, G.M. Bacterial mycophagy: Definition and diagnosis of a unique bacterial–fungal interaction. New Phytol., 2008, 177(4), 859-876.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02325.x] [PMID: 18086226]
[50]
Kilic-Ekici, O.; Yuen, G.Y. Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology, 2003, 93(9), 1103-1110.
[http://dx.doi.org/10.1094/PHYTO.2003.93.9.1103] [PMID: 18944093]
[51]
Indiragandhi, P.; Anandham, R.; Madhaiyan, M.; Sa, T.M. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (lepidoptera: plutellidae). Curr. Microbiol., 2008, 56(4), 327-333.
[http://dx.doi.org/10.1007/s00284-007-9086-4] [PMID: 18172718]
[52]
Thahir, B.S.; Radhaiah, A.; Nagalakshmi, D.M.; Eswara, R.N. Biocontrol potential of indigenous Pseudomonas spp. against Sclerotium rolfsii causing stem rot of groundnut. International Journal of Food. Agriculture and Veterinary Sciences, 2012, 2, 134-141.
[53]
Tilocca, B.; Cao, A.; Migheli, Q. Scent of a killer: Microbial volatilome and its role in the biological control of plant pathogens. Front. Microbiol., 2020, 11, 41.
[http://dx.doi.org/10.3389/fmicb.2020.00041] [PMID: 32117096]
[54]
Kong, W.L.; Li, P.S.; Wu, X.Q.; Wu, T.Y.; Sun, X.R. Forest tree associated bacterial diffusible and volatile organic compounds against various phytopathogenic fungi. Microorganisms, 2020, 8(4), 590.
[http://dx.doi.org/10.3390/microorganisms8040590] [PMID: 32325752]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy