Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Advancement in Inhaled Nano-drug Delivery for Pulmonary, Nasal, and Nose-to-brain Diseases

In Press, (this is not the final "Version of Record"). Available online 24 January, 2024
Author(s): Qiuxia Fu, Yangjie Liu, Cao Peng, Tobias Achu Muluh, Umer Anayyat and Liu Liang*
Published on: 24 January, 2024

DOI: 10.2174/0115672018268047231207105652

Price: $95

Abstract

Pulmonary, nasal, and nose-to-brain diseases involve clinical approaches, such as bronchodilators, inhaled steroids, oxygen therapy, antibiotics, antihistamines, nasal steroids, decongestants, intranasal drug delivery, neurostimulation, and surgery to treat patients. However, systemic medicines have serious adverse effects, necessitating the development of inhaled formulations that allow precise drug delivery to the airways with minimum systemic drug exposure. Particle size, surface charge, biocompatibility, drug capacity, and mucoadhesive are unique chemical and physical features that must be considered for pulmonary and nasal delivery routes due to anatomical and permeability considerations. The traditional management of numerous chronic diseases has a variety of drawbacks. As a result, targeted medicine delivery systems that employ nanotechnology enhancer drug efficiency and optimize the overall outcome are created. The pulmonary route is one of the most essential targeted drug delivery systems because it allows the administering of drugs locally and systemically to the lungs, nasal cavity, and brain. Furthermore, the lungs' beneficial characteristics, such as their ability to inhibit first-pass metabolism and their thin epithelial layer, help treat several health complications. The potential to serve as noninvasive self-administration delivery sites of the lung and nasal routes is discussed in this script. New methods for treating respiratory and some systemic diseases with inhalation have been explored and highlight particular attention to using specialized nanocarriers for delivering various drugs via the nasal and pulmonary pathways. The design and development of inhaled nanomedicine for pulmonary, nasal, and respiratory medicine applications is a potential approach for clinical translation.

[1]
Feinerman, C.E. Pulmonary diseases in women. Med. Clin. North Am., 1998, 82(2), 189-202.
[http://dx.doi.org/10.1016/S0025-7125(05)70603-9] [PMID: 9531922]
[2]
Hager, T.; Reis, H.; Theegarten, D. Infectious pulmonary diseases. Pathologe, 2014, 35(6), 606-611.
[http://dx.doi.org/10.1007/s00292-014-1924-0] [PMID: 25319227]
[3]
P, A. Nose-to-brain drug delivery for the treatment of Alzheimer’s disease: Current advancements and challenges. Expert Opin. Drug Deliv., 2022, 19(1), 87-102.
[4]
Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Chougule, M.B.; Shoyele, S.A.; Alexander, A. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J. Control. Release, 2018, 281, 139-177.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.011] [PMID: 29772289]
[5]
Giunchedi, P.; Gavini, E.; Bonferoni, M.C. Nose-to-brain delivery. Pharmaceutics, 2020, 12(2), 138.
[http://dx.doi.org/10.3390/pharmaceutics12020138] [PMID: 32041344]
[6]
Pérez-Osorio, I.N.; Espinosa, A.; Giraldo Velázquez, M.; Padilla, P.; Bárcena, B.; Fragoso, G.; Jung-Cook, H.; Besedovsky, H.; Meneses, G.; Sciutto Conde, E.L. Nose-to-brain delivery of dexamethasone: Biodistribution studies in mice. J. Pharmacol. Exp. Ther., 2021, 378(3), 244-250.
[http://dx.doi.org/10.1124/jpet.121.000530] [PMID: 34531307]
[7]
Bhat, A.A.; Thapa, R.; Goyal, A.; Subramaniyan, V.; Kumar, D.; Gupta, S.; Singh, S.K.; Dua, K.; Gupta, G. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases. Future Med. Chem., 2023, 15(7), 583-586.
[http://dx.doi.org/10.4155/fmc-2023-0048] [PMID: 37140132]
[8]
Tanna, V.; Sawarkar, S.P.; Ravikumar, P. Exploring nose to brain nano delivery for effective management of migraine. Curr. Drug Deliv., 2023, 20(2), 144-157.
[http://dx.doi.org/10.2174/1567201819666220401091632] [PMID: 35366772]
[9]
Arora, S.; Ahmad, S.; Irshad, R.; Goyal, Y.; Rafat, S.; Siddiqui, N.; Dev, K.; Husain, M.; Ali, S.; Mohan, A.; Syed, M.A. TLRs in pulmonary diseases. Life Sci., 2019, 233, 116671.
[http://dx.doi.org/10.1016/j.lfs.2019.116671] [PMID: 31336122]
[10]
Bosetti, R. Cost–effectiveness of nanomedicine: The path to a future successful and dominant market? Nanomedicine, 2015, 10(12), 1851-1853.
[http://dx.doi.org/10.2217/nnm.15.74] [PMID: 26139120]
[11]
Brasch, F. Interstitial pulmonary diseases. Pathologe, 2006, 27(2), 116-132.
[http://dx.doi.org/10.1007/s00292-006-0823-4] [PMID: 16456642]
[12]
Harari, S.; Humbert, M. Rare pulmonary diseases: A common fight. Eur. Respir. Rev., 2017, 26(145), 170059.
[http://dx.doi.org/10.1183/16000617.0059-2017] [PMID: 28877977]
[13]
Anderson, C.F.; Grimmett, M.E.; Domalewski, C.J.; Cui, H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(1), e1586.
[http://dx.doi.org/10.1002/wnan.1586] [PMID: 31602823]
[14]
Muluh, T.A.; Chen, Z.; Li, Y.; Xiong, K.; Jin, J.; Fu, S.; Wu, J. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system. Int. J. Nanomedicine, 2021, 16, 2389-2404.
[http://dx.doi.org/10.2147/IJN.S295300] [PMID: 33790556]
[15]
Banwell, B.; Bennett, J.L.; Marignier, R.; Kim, H.J.; Brilot, F.; Flanagan, E.P.; Ramanathan, S.; Waters, P.; Tenembaum, S.; Graves, J.S.; Chitnis, T.; Brandt, A.U.; Hemingway, C.; Neuteboom, R.; Pandit, L.; Reindl, M.; Saiz, A.; Sato, D.K.; Rostasy, K.; Paul, F.; Pittock, S.J.; Fujihara, K.; Palace, J. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD panel proposed criteria. Lancet Neurol., 2023, 22(3), 268-282.
[http://dx.doi.org/10.1016/S1474-4422(22)00431-8] [PMID: 36706773]
[16]
Cao, Y.; Zhang, R. The application of nanotechnology in treatment of Alzheimer’s disease. Front. Bioeng. Biotechnol., 2022, 10, 1042986.
[http://dx.doi.org/10.3389/fbioe.2022.1042986] [PMID: 36466349]
[17]
Kher, C.; Kumar, S. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review. Cureus, 2022, 14(9), e29059.
[http://dx.doi.org/10.7759/cureus.29059] [PMID: 36259014]
[18]
Tillman, L.; Tabish, T.A.; Kamaly, N.; Moss, P.; El-briri, A.; Thiemermann, C.; Pranjol, M.Z.I.; Yaqoob, M.M. Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. Biomaterials and Biosystems, 2022, 6, 100047.
[http://dx.doi.org/10.1016/j.bbiosy.2022.100047] [PMID: 36824160]
[19]
Gonçalves, J.; Alves, G.; Carona, A.; Bicker, J.; Vitorino, C.; Falcão, A.; Fortuna, A. Pre-clinical assessment of the nose-to-brain delivery of zonisamide after intranasal administration. Pharm. Res., 2020, 37(4), 74.
[http://dx.doi.org/10.1007/s11095-020-02786-z] [PMID: 32215749]
[20]
Gong, Y.; Liu, H.; Ke, S.; Zhuo, L.; Wang, H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front. Cardiovasc. Med., 2023, 9, 1037741.
[http://dx.doi.org/10.3389/fcvm.2022.1037741] [PMID: 36684578]
[21]
Debele, T.A.; Park, Y. Application of nanoparticles: diagnosis, therapeutics, and delivery of insulin/anti-diabetic drugs to enhance the therapeutic efficacy of diabetes mellitus. Life, 2022, 12(12), 2078.
[http://dx.doi.org/10.3390/life12122078] [PMID: 36556443]
[22]
Miller, M.R.; Raftis, J.B.; Langrish, J.P.; McLean, S.G.; Samutrtai, P.; Connell, S.P.; Wilson, S.; Vesey, A.T.; Fokkens, P.H.B.; Boere, A.J.F.; Krystek, P.; Campbell, C.J.; Hadoke, P.W.F.; Donaldson, K.; Cassee, F.R.; Newby, D.E.; Duffin, R.; Mills, N.L. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano, 2017, 11(5), 4542-4552.
[http://dx.doi.org/10.1021/acsnano.6b08551] [PMID: 28443337]
[23]
Bur, M.; Henning, A.; Hein, S.; Schneider, M.; Lehr, C.M. Inhalative nanomedicine—Opportunities and challenges. Inhal. Toxicol., 2009, 21(sup1)(Suppl. 1), 137-143.
[http://dx.doi.org/10.1080/08958370902962283] [PMID: 19558246]
[24]
Chinnasamy, V.; Subramaniyan, V.; Chandiran, S.; Kayarohanam, S.; Kanniyan, D.C.; Velaga, V.S.S.R.; Muhammad, S. Antiarthritic activity of achyranthes aspera on formaldehyde - induced arthritis in rats. Open Access Maced. J. Med. Sci., 2019, 7(17), 2709-2714.
[http://dx.doi.org/10.3889/oamjms.2019.559] [PMID: 31844425]
[25]
Cifuentes-Rius, A.; Desai, A.; Yuen, D.; Johnston, A.P.R.; Voelcker, N.H. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol., 2021, 16(1), 37-46.
[http://dx.doi.org/10.1038/s41565-020-00810-2] [PMID: 33349685]
[26]
de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[27]
Ding, L.; Tang, S.; Wyatt, T.A.; Knoell, D.L.; Oupický, D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J. Control. Release, 2021, 330, 977-991.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.005] [PMID: 33181203]
[28]
Rosen, Y. Pathology of granulomatous pulmonary diseases. Arch. Pathol. Lab. Med., 2022, 146(2), 233-251.
[http://dx.doi.org/10.5858/arpa.2020-0543-RA] [PMID: 33905479]
[29]
Albini, A.; Pagani, A.; Pulze, L.; Bruno, A.; Principi, E.; Congiu, T.; Gini, E.; Grimaldi, A.; Bassani, B.; De Flora, S.; de Eguileor, M.; Noonan, D.M. Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: Systemic distribution, macrophage accumulation, and amyloid deposition. Int. J. Nanomedicine, 2015, 10, 6133-6145.
[PMID: 26457053]
[30]
Fuloria, S.; Subramaniyan, V.; Karupiah, S.; Kumari, U.; Sathasivam, K.; Meenakshi, D.U.; Wu, Y.S.; Guad, R.M.; Udupa, K.; Fuloria, N.K. A comprehensive review on source, types, effects, nanotechnology, detection, and therapeutic management of reactive carbonyl species associated with various chronic diseases. Antioxidants, 2020, 9(11), 1075.
[http://dx.doi.org/10.3390/antiox9111075] [PMID: 33147856]
[31]
Wen, Q. Erythrocyte membrane-camouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer. Int J Biol Macromol, 2021, 193((Pt A): ), 228-237.
[32]
Han, M.K.; McLaughlin, V.V.; Criner, G.J.; Martinez, F.J. Pulmonary diseases and the heart. Circulation, 2007, 116(25), 2992-3005.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.685206] [PMID: 18086941]
[33]
Tamura, G.; Choi, J.W.; Takeda, S.; Nishina, N.; Hayashi, A. Aerosol velocity of two pressurized metered-dose inhalers using AEROSPHERE® delivery technology. Respir. Investig., 2021, 59(1), 153-154.
[http://dx.doi.org/10.1016/j.resinv.2020.07.002] [PMID: 32859558]
[34]
Ahmad, A. Pharmacological strategies and recent advancement in nano-drug delivery for targeting asthma. Life, 2022, 12(4), 596.
[http://dx.doi.org/10.3390/life12040596] [PMID: 35455087]
[35]
Cunha, S.; Swedrowska, M.; Bellahnid, Y.; Xu, Z.; Sousa Lobo, J.M.; Forbes, B.; Silva, A.C. Thermosensitive in situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: Characterisation, biocompatibility, and drug deposition studies. Int. J. Pharm., 2022, 620, 121720.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121720] [PMID: 35413397]
[36]
Gonçalves, J.; Alves, G.; Fonseca, C.; Carona, A.; Bicker, J.; Falcão, A.; Fortuna, A. Is intranasal administration an opportunity for direct brain delivery of lacosamide? Eur. J. Pharm. Sci., 2021, 157, 105632.
[http://dx.doi.org/10.1016/j.ejps.2020.105632] [PMID: 33152466]
[37]
Muralidharan, P.; Malapit, M.; Mallory, E.; Hayes, D., Jr; Mansour, H.M. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine, 2015, 11(5), 1189-1199.
[http://dx.doi.org/10.1016/j.nano.2015.01.007] [PMID: 25659645]
[38]
Fidler, L.; Green, S.; Wintemute, K. Pressurized metered-dose inhalers and their impact on climate change. CMAJ, 2022, 194(12), E460.
[http://dx.doi.org/10.1503/cmaj.211747] [PMID: 35347049]
[39]
Mohsen, A.M. Nanotechnology advanced strategies for the management of diabetes mellitus. Curr. Drug Targets, 2019, 20(10), 995-1007.
[http://dx.doi.org/10.2174/1389450120666190307101642] [PMID: 30848199]
[40]
Rosière, R.; Hureaux, J.; Levet, V.; Amighi, K.; Wauthoz, N. Inhaled chemotherapy - Part 1: General concept and current technological challenges. Rev. Mal. Respir., 2018, 35(4), 357-377.
[PMID: 29731372]
[41]
Topal, E.; Arga, M.; Özmen, A.H.; Kurşun, M.A.; İlhan, Ö.A.; Alıcı, M. The pharmacists’ ability to use pressurized metered-dose inhalers with a spacer device and factors affecting it. J. Asthma, 2021, 58(5), 659-664.
[http://dx.doi.org/10.1080/02770903.2020.1731823] [PMID: 32066310]
[42]
Wang, W.; Huang, Z.; Xue, K.; Li, J.; Wang, W.; Ma, J.; Ma, C.; Bai, X.; Huang, Y.; Pan, X.; Wu, C. Development of aggregation-caused quenching probe-loaded pressurized metered-dose inhalers with fluorescence tracking potentials. AAPS PharmSciTech, 2020, 21(8), 296.
[http://dx.doi.org/10.1208/s12249-020-01782-1] [PMID: 33099699]
[43]
Barjaktarevic, I.Z.; Milstone, A.P. Nebulized therapies in copd: past, present, and the future. Int. J. Chron. Obstruct. Pulmon. Dis., 2020, 15, 1665-1677.
[http://dx.doi.org/10.2147/COPD.S252435] [PMID: 32764912]
[44]
Li, X.; Chen, L.; Luan, S.; Zhou, J.; Xiao, X.; Yang, Y.; Mao, C.; Fang, P.; Chen, L.; Zeng, X.; Gao, H.; Yuan, Y. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin. Cancer Biol., 2022, 86(Pt 2), 873-885.
[http://dx.doi.org/10.1016/j.semcancer.2022.01.007] [PMID: 35074509]
[45]
Urso, A.; Meloni, F.; Malatesta, M.; Latorre, R.; Damoci, C.; Crapanzano, J.; Pandolfi, L.; Giustra, M.D.; Pearson, M.; Colombo, M.; Schilling, K.; Glabonjat, R.A.; D’Ovidio, F. Endotracheal nebulization of gold nanoparticles for noninvasive pulmonary drug delivery. Nanomedicine, 2023, 18(4), 317-330.
[http://dx.doi.org/10.2217/nnm-2022-0179] [PMID: 37140430]
[46]
Liu, M.; Li, L.; Jin, D.; Liu, Y. Nanobody—A versatile tool for cancer diagnosis and therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2021, 13(4), e1697.
[http://dx.doi.org/10.1002/wnan.1697] [PMID: 33470555]
[47]
Li, X.; Bottini, M.; Zhang, L.; Zhang, S.; Chen, J.; Zhang, T.; Liu, L.; Rosato, N.; Ma, X.; Shi, X.; Wu, Y.; Guo, W.; Liang, X.J. Core–satellite nanomedicines for in vivo real-time monitoring of enzyme-activatable drug release by fluorescence and photoacoustic dual-modal imaging. ACS Nano, 2019, 13(1), 176-186.
[http://dx.doi.org/10.1021/acsnano.8b05136] [PMID: 30592401]
[48]
Lin, V.Y.; Kaza, N.; Birket, S.E.; Kim, H.; Edwards, L.J.; LaFontaine, J.; Liu, L.; Mazur, M.; Byzek, S.A.; Hanes, J.; Tearney, G.J.; Raju, S.V.; Rowe, S.M. Excess mucus viscosity and airway dehydration impact COPD airway clearance. Eur. Respir. J., 2020, 55(1), 1900419.
[http://dx.doi.org/10.1183/13993003.00419-2019] [PMID: 31672759]
[49]
Nafee, N.; Forier, K.; Braeckmans, K.; Schneider, M. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: Proof of concept, challenges and pitfalls. Eur. J. Pharm. Biopharm., 2018, 124, 125-137.
[http://dx.doi.org/10.1016/j.ejpb.2017.12.017] [PMID: 29291931]
[50]
Liu, X.; Tang, I.; Wainberg, Z.A.; Meng, H. Safety considerations of cancer nanomedicine—a key step toward translation. Small, 2020, 16(36), 2000673.
[http://dx.doi.org/10.1002/smll.202000673] [PMID: 32406992]
[51]
Osman, G.; Rodriguez, J.; Chan, S.Y.; Chisholm, J.; Duncan, G.; Kim, N.; Tatler, A.L.; Shakesheff, K.M.; Hanes, J.; Suk, J.S.; Dixon, J.E. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J. Control. Release, 2018, 285, 35-45.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.001] [PMID: 30004000]
[52]
Malviya, R.; Raj, S.; Fuloria, S.; Subramaniyan, V.; Sathasivam, K.; Kumari, U.; Unnikrishnan Meenakshi, D.; Porwal, O.; Hari Kumar, D.; Singh, A.; Chakravarthi, S.; Kumar Fuloria, N. Evaluation of antitumor efficacy of chitosan-tamarind gum polysaccharide polyelectrolyte complex stabilized nanoparticles of simvastatin. Int. J. Nanomedicine, 2021, 16, 2533-2553.
[http://dx.doi.org/10.2147/IJN.S300991] [PMID: 33824590]
[53]
Paris, A.J.; Guo, L.; Dai, N.; Katzen, J.B.; Patel, P.N.; Worthen, G.S.; Brenner, J.S. Using selective lung injury to improve murine models of spatially heterogeneous lung diseases. PLoS One, 2019, 14(4), e0202456.
[http://dx.doi.org/10.1371/journal.pone.0202456] [PMID: 30943189]
[54]
Talaat, M.; Si, X.A.; Dong, H.; Xi, J. Leveraging statistical shape modeling in computational respiratory dynamics: Nanomedicine delivery in remodeled airways. Comput. Methods Programs Biomed., 2021, 204, 106079.
[http://dx.doi.org/10.1016/j.cmpb.2021.106079] [PMID: 33831725]
[55]
Gulati, N.; Chellappan, D.K.; MacLoughlin, R.; Dua, K.; Dureja, H. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects. Life Sci., 2021, 285, 119969.
[http://dx.doi.org/10.1016/j.lfs.2021.119969] [PMID: 34547339]
[56]
Shimosaraya, N.; Sotani, T.; Miyagi, Y.; Mondarte, E.A.Q.; Suthiwanich, K.; Hayashi, T.; Nagata, Y.; Sogawa, H.; Sanda, F. Tyrosine-based photoluminescent diketopiperazine supramolecular aggregates. Soft Matter, 2021, 18(1), 137-145.
[http://dx.doi.org/10.1039/D1SM01206A] [PMID: 34821896]
[57]
Zhang, Z.; Conant, C.R.; El-Baba, T.J.; Raab, S.A.; Fuller, D.R.; Hales, D.A.; Clemmer, D.E. Diketopiperazine formation from fpgn k (n = 1–9) peptides: Rates of structural rearrangements and mechanisms. J. Phys. Chem. B, 2021, 125(29), 8107-8116.
[http://dx.doi.org/10.1021/acs.jpcb.1c03515] [PMID: 34270248]
[58]
Mirshafiee, V.; Jiang, W.; Sun, B.; Wang, X.; Xia, T. Facilitating translational nanomedicine via predictive safety assessment. Mol. Ther., 2017, 25(7), 1522-1530.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.011] [PMID: 28412168]
[59]
Deppermann, N.; Maison, W. Proline-based diketopiperazine-scaffolds. Adv. Exp. Med. Biol., 2009, 611, 203-204.
[http://dx.doi.org/10.1007/978-0-387-73657-0_93] [PMID: 19400160]
[60]
Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; Rebbeck, T.R.; Balasubramanian, S. Early detection of cancer. Science, 2022, 375(6586), eaay9040.
[http://dx.doi.org/10.1126/science.aay9040] [PMID: 35298272]
[61]
Doroudian, M.; O’ Neill, A.; Mac Loughlin, R.; Prina-Mello, A.; Volkov, Y.; Donnelly, S.C. Nanotechnology in pulmonary medicine. Curr. Opin. Pharmacol., 2021, 56, 85-92.
[http://dx.doi.org/10.1016/j.coph.2020.11.002] [PMID: 33341460]
[62]
Singh, Y.; Fuloria, N.K.; Fuloria, S.; Subramaniyan, V.; Meenakshi, D.U.; Chakravarthi, S.; Kumari, U.; Joshi, N.; Gupta, G. N‐terminal domain of SARS CoV‐2 spike protein mutation associated reduction in effectivity of neutralizing antibody with vaccinated individuals. J. Med. Virol., 2021, 93(10), 5726-5728.
[http://dx.doi.org/10.1002/jmv.27181] [PMID: 34232521]
[63]
Bhat, A.A.; Gupta, G.; Alharbi, K.S.; Afzal, O.; Altamimi, A.S.A.; Almalki, W.H.; Kazmi, I.; Al-Abbasi, F.A.; Alzarea, S.I.; Chellappan, D.K.; Singh, S.K.; MacLoughlin, R.; Oliver, B.G.; Dua, K. Polysaccharide-based nanomedicines targeting lung cancer. Pharmaceutics, 2022, 14(12), 2788.
[http://dx.doi.org/10.3390/pharmaceutics14122788] [PMID: 36559281]
[64]
Carrasco-Esteban, E.; Domínguez-Rullán, J.A.; Barrionuevo-Castillo, P.; Pelari-Mici, L.; Leaman, O.; Sastre-Gallego, S.; López-Campos, F. Current role of nanoparticles in the treatment of lung cancer. J. Clin. Transl. Res., 2021, 7(2), 140-155.
[PMID: 34104817]
[65]
Sripada, K.; Wierzbicka, A.; Abass, K.; Grimalt, J.O.; Erbe, A.; Röllin, H.B.; Weihe, P.; Díaz, G.J.; Singh, R.R.; Visnes, T.; Rautio, A.; Odland, J.Ø.; Wagner, M. a children’s health perspective on nano- and microplastics. Environ. Health Perspect., 2022, 130(1), 015001.
[http://dx.doi.org/10.1289/EHP9086] [PMID: 35080434]
[66]
Doroudian, M.; Zanganeh, S.; Abbasgholinejad, E.; Donnelly, S.C. Nanomedicine in lung cancer immunotherapy. Front. Bioeng. Biotechnol., 2023, 11, 1144653.
[http://dx.doi.org/10.3389/fbioe.2023.1144653] [PMID: 37008041]
[67]
Haider, M.; Elsherbeny, A.; Pittalà, V.; Consoli, V.; Alghamdi, M.A.; Hussain, Z.; Khoder, G.; Greish, K. Nanomedicine strategies for management of drug resistance in lung cancer. Int. J. Mol. Sci., 2022, 23(3), 1853.
[http://dx.doi.org/10.3390/ijms23031853] [PMID: 35163777]
[68]
Hsieh, C.H.; Hsieh, H.C.; Shih, F.H.; Wang, P.W.; Yang, L.X.; Shieh, D.B.; Wang, Y.C. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics, 2021, 11(14), 7072-7091.
[http://dx.doi.org/10.7150/thno.57803] [PMID: 34093872]
[69]
Jovčevska, I.; Muyldermans, S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1), 11-26.
[http://dx.doi.org/10.1007/s40259-019-00392-z] [PMID: 31686399]
[70]
Koutu, V.; Gupta, M.; Das, S.; Rawat, D.K.; Kharade, V.; Pasricha, R.K. Nanotechnology in lung cancer therapeutics: A narrative review. Cureus, 2023, 15(1), e34245.
[http://dx.doi.org/10.7759/cureus.34245] [PMID: 36855484]
[71]
Lahiri, A.; Maji, A.; Potdar, P.D.; Singh, N.; Parikh, P.; Bisht, B.; Mukherjee, A.; Paul, M.K. Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol. Cancer, 2023, 22(1), 40.
[http://dx.doi.org/10.1186/s12943-023-01740-y] [PMID: 36810079]
[72]
Miao, Y.; Chen, M.; Zhou, X.; Guo, L.; Zhu, J.; Wang, R.; Zhang, X.; Gan, Y. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacol. Sin., 2021, 42(10), 1714-1722.
[http://dx.doi.org/10.1038/s41401-020-00594-0] [PMID: 33469196]
[73]
Raguraman, R.; Srivastava, A.; Munshi, A.; Ramesh, R. Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv. Drug Deliv. Rev., 2021, 178, 113918.
[http://dx.doi.org/10.1016/j.addr.2021.113918] [PMID: 34375681]
[74]
Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L.; Živković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24.
[http://dx.doi.org/10.1155/2021/3687700] [PMID: 34707776]
[75]
Sharma, A.; Shambhwani, D.; Pandey, S.; Singh, J.; Lalhlenmawia, H.; Kumarasamy, M.; Singh, S.K.; Chellappan, D.K.; Gupta, G.; Prasher, P.; Dua, K.; Kumar, D. Advances in lung cancer treatment using nanomedicines. ACS Omega, 2023, 8(1), 10-41.
[http://dx.doi.org/10.1021/acsomega.2c04078] [PMID: 36643475]
[76]
Tarasov, V.V.; Svistunov, A.A.; Chubarev, V.N.; Dostdar, S.A.; Sokolov, A.V.; Brzecka, A.; Sukocheva, O.; Neganova, M.E.; Klochkov, S.G.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. Extracellular vesicles in cancer nanomedicine. Semin. Cancer Biol., 2021, 69, 212-225.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.017] [PMID: 31421263]
[77]
Vikas; Sahu, H.K.; Mehata, A.K.; Viswanadh, M.K.; Priya, V.; Muthu, M.S. Dual-receptor-targeted nanomedicines: Emerging trends and advances in lung cancer therapeutics. Nanomedicine, 2022, 17(19), 1375-1395.
[http://dx.doi.org/10.2217/nnm-2021-0470] [PMID: 36317852]
[78]
Woodman, C.; Vundu, G.; George, A.; Wilson, C.M. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin. Cancer Biol., 2021, 69, 349-364.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.009] [PMID: 32088362]
[79]
Anderson, S.; Atkins, P.; Bäckman, P.; Cipolla, D.; Clark, A.; Daviskas, E.; Disse, B.; Entcheva-Dimitrov, P.; Fuller, R.; Gonda, I.; Lundbäck, H.; Olsson, B.; Weers, J. Inhaled medicines: Past, present, and future. Pharmacol. Rev., 2022, 74(1), 48-118.
[http://dx.doi.org/10.1124/pharmrev.120.000108] [PMID: 34987088]
[80]
Bai, X.; Zhao, G.; Chen, Q.; Li, Z.; Gao, M.; Ho, W.; Xu, X.; Zhang, X.Q. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci. Adv., 2022, 8(25), eabn7162.
[http://dx.doi.org/10.1126/sciadv.abn7162] [PMID: 35731866]
[81]
Hope, A.; Wade, S.J.; Aghmesheh, M.; Vine, K.L. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J. Control. Release, 2022, 341, 399-413.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.043] [PMID: 34863842]
[82]
Paranjpe, M.; Müller-Goymann, C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci., 2014, 15(4), 5852-5873.
[http://dx.doi.org/10.3390/ijms15045852] [PMID: 24717409]
[83]
Trapani, A.; Di Gioia, S.; Ditaranto, N.; Cioffi, N.; Goycoolea, F.M.; Carbone, A.; Garcia-Fuentes, M.; Conese, M.; Alonso, M.J. Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int. J. Pharm., 2013, 447(1-2), 115-123.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.035] [PMID: 23454518]
[84]
Yang, L.; Luo, J.; Shi, S.; Zhang, Q.; Sun, X.; Zhang, Z.; Gong, T. Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application. Int. J. Pharm., 2013, 451(1-2), 104-111.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.077] [PMID: 23651645]
[85]
Karsch-Bluman, A.; Avraham, S.; Assayag, M.; Schwob, O.; Benny, O. Encapsulated carbenoxolone reduces lung metastases. Cancers, 2019, 11(9), 1383.
[http://dx.doi.org/10.3390/cancers11091383] [PMID: 31533288]
[86]
Marchetti, G.M.; Burwell, T.J.; Peterson, N.C.; Cann, J.A.; Hanna, R.N.; Li, Q.; Ongstad, E.L.; Boyd, J.T.; Kennedy, M.A.; Zhao, W.; Rickert, K.W.; Grimsby, J.S.; Dall’Acqua, W.F.; Wu, H.; Tsui, P.; Borrok, M.J.; Gupta, R. Targeted drug delivery via caveolae-associated protein PV1 improves lung fibrosis. Commun. Biol., 2019, 2(1), 92.
[http://dx.doi.org/10.1038/s42003-019-0337-2] [PMID: 30854484]
[87]
Islam, N.; Richard, D. Inhaled micro/nanoparticulate anticancer drug formulations: An emerging targeted drug delivery strategy for lung cancers. Curr. Cancer Drug Targets, 2019, 19(3), 162-178.
[http://dx.doi.org/10.2174/1568009618666180525083451] [PMID: 29793407]
[88]
Nie, H.; Xie, X.; Zhang, D.; Zhou, Y.; Li, B.; Li, F.; Li, F.; Cheng, Y.; Mei, H.; Meng, H.; Jia, L. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale, 2020, 12(2), 877-887.
[http://dx.doi.org/10.1039/C9NR09011H] [PMID: 31833519]
[89]
Jin, Q.; Zhu, W.; Zhu, J.; Zhu, J.; Shen, J.; Liu, Z.; Yang, Y.; Chen, Q. Nanoparticle‐mediated delivery of inhaled immunotherapeutics for treating lung metastasis. Adv. Mater., 2021, 33(7), 2007557.
[http://dx.doi.org/10.1002/adma.202007557] [PMID: 33448035]
[90]
Zhang, K.; Dong, C.; Chen, M.; Yang, T.; Wang, X.; Gao, Y.; Wang, L.; Wen, Y.; Chen, G.; Wang, X.; Yu, X.; Zhang, Y.; Wang, P.; Shang, M.; Han, K.; Zhou, Y. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma. Theranostics, 2020, 10(1), 411-425.
[http://dx.doi.org/10.7150/thno.33482] [PMID: 31903129]
[91]
Muluh, T.A.; Lu, X.; Zhang, Y.; Li, Y.; Fu, Q.; Han, Z.; Wang, D.; Umar Shinge, S.A. Combined immunotherapy and targeted therapies for cancer treatment: Recent advances and future perspectives. Curr. Cancer Drug Targets, 2023, 23(4), 251-264.
[http://dx.doi.org/10.2174/1568009623666221020104603] [PMID: 36278447]
[92]
Agnihotri, V.; Agrawal, Y.; Goyal, S.; Sharma, C.; Ojha, S. An update on advancements and challenges in inhalational drug delivery for pulmonary arterial hypertension. Molecules, 2022, 27(11), 3490.
[http://dx.doi.org/10.3390/molecules27113490] [PMID: 35684428]
[93]
Ali, M.E.; McConville, J.T.; Lamprecht, A. Pulmonary delivery of anti-inflammatory agents. Expert Opin. Drug Deliv., 2015, 12(6), 929-945.
[http://dx.doi.org/10.1517/17425247.2015.993968] [PMID: 25534260]
[94]
Abdelaziz, H.M.; Gaber, M.; Abd-Elwakil, M.M.; Mabrouk, M.T.; Elgohary, M.M.; Kamel, N.M.; Kabary, D.M.; Freag, M.S.; Samaha, M.W.; Mortada, S.M.; Elkhodairy, K.A.; Fang, J.Y.; Elzoghby, A.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Control. Release, 2018, 269, 374-392.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.036] [PMID: 29180168]
[95]
Beck-Broichsitter, M.; Gauss, J.; Packhaeuser, C.B.; Lahnstein, K.; Schmehl, T.; Seeger, W.; Kissel, T.; Gessler, T. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model. Int. J. Pharm., 2009, 367(1-2), 169-178.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.017] [PMID: 18848609]
[96]
Chen, R.; Xu, L.; Fan, Q.; Li, M.; Wang, J.; Wu, L.; Li, W.; Duan, J.; Chen, Z. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery. Drug Deliv., 2017, 24(1), 1191-1203.
[http://dx.doi.org/10.1080/10717544.2017.1365395] [PMID: 28844172]
[97]
Formiga, F.R.; Leblanc, R.; de Souza Rebouças, J.; Farias, L.P.; de Oliveira, R.N.; Pena, L. Ivermectin: An award-winning drug with expected antiviral activity against COVID-19. J. Control. Release, 2021, 329, 758-761.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.009] [PMID: 33038449]
[98]
García-Fernández, A.; Sancenón, F.; Martínez-Máñez, R. Mesoporous silica nanoparticles for pulmonary drug delivery. Adv. Drug Deliv. Rev., 2021, 177, 113953.
[http://dx.doi.org/10.1016/j.addr.2021.113953] [PMID: 34474094]
[99]
Gencer, A.; Duraloglu, C.; Ozbay, S.; Ciftci, T.T.; Yabanoglu-Ciftci, S.; Arica, B. Recent advances in treatment of lung cancer: Nanoparticle-based drug and siRNA delivery systems. Curr. Drug Deliv., 2021, 18(2), 103-120.
[http://dx.doi.org/10.2174/1567201817999200730211718] [PMID: 32748745]
[100]
Gomez, A.I.; Acosta, M.F.; Muralidharan, P.; Yuan, J.X.J.; Black, S.M.; Hayes, D., Jr; Mansour, H.M. Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery. Pulm. Pharmacol. Ther., 2020, 64, 101975.
[http://dx.doi.org/10.1016/j.pupt.2020.101975] [PMID: 33137515]
[101]
Hamarat Şanlıer, Ş.; Ak, G.; Yılmaz, H.; Ünal, A.; Bozkaya, Ü.F.; Tanıyan, G.; Yıldırım, Y.; Yıldız Türkyılmaz, G. Development of ultrasound-triggered and magnetic-targeted nanobubble system for dual-drug delivery. J. Pharm. Sci., 2019, 108(3), 1272-1283.
[http://dx.doi.org/10.1016/j.xphs.2018.10.030] [PMID: 30773203]
[102]
Lazo, R.E.L.; Mengarda, M.; Almeida, S.L.; Caldonazo, A.; Espinoza, J.T.; Murakami, F.S. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review. J. Control. Release, 2022, 350, 308-323.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.021] [PMID: 35995298]
[103]
Bahmanpour, A.H. Nanotechnology for pulmonary and nasal drug delivery In: Nanoengineered Biomaterials for Advanced Drug Delivery; , 2020; pp. 561-579.
[http://dx.doi.org/10.1016/B978-0-08-102985-5.00023-1]
[104]
Yue, P.; Zhou, W.; Huang, G.; Lei, F.; Chen, Y.; Ma, Z.; Chen, L.; Yang, M. Nanocrystals based pulmonary inhalation delivery system: Advance and challenge. Drug Deliv., 2022, 29(1), 637-651.
[http://dx.doi.org/10.1080/10717544.2022.2039809] [PMID: 35188021]
[105]
Shen, A.M.; Minko, T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J. Control. Release, 2020, 326, 222-244.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.011] [PMID: 32681948]
[106]
Li, H.Y.; Zhang, F. Preparation of spray-dried nanoparticles for efficient drug delivery to the lungs. Methods Mol. Biol., 2020, 2118, 139-145.
[http://dx.doi.org/10.1007/978-1-0716-0319-2_10] [PMID: 32152976]
[107]
Ngan, C.L.; Asmawi, A.A. Lipid-based pulmonary delivery system: A review and future considerations of formulation strategies and limitations. Drug Deliv. Transl. Res., 2018, 8(5), 1527-1544.
[http://dx.doi.org/10.1007/s13346-018-0550-4] [PMID: 29881970]
[108]
Irvine, J.; Afrose, A.; Islam, N. Formulation and delivery strategies of ibuprofen: challenges and opportunities. Drug Dev. Ind. Pharm., 2018, 44(2), 173-183.
[http://dx.doi.org/10.1080/03639045.2017.1391838] [PMID: 29022772]
[109]
Subramaniyan, V.; Fuloria, S.; Gupta, G.; Kumar, D.H.; Sekar, M.; Sathasivam, K.V.; Sudhakar, K.; Alharbi, K.S.; Al-Malki, W.H.; Afzal, O.; Kazmi, I.; Al-Abbasi, F.A.; Altamimi, A.S.A.; Fuloria, N.K. A review on epidermal growth factor receptor’s role in breast and non-small cell lung cancer. Chem. Biol. Interact., 2022, 351, 109735.
[http://dx.doi.org/10.1016/j.cbi.2021.109735] [PMID: 34742684]
[110]
Sudhakar, K.; Fuloria, S.; Subramaniyan, V.; Sathasivam, K.V.; Azad, A.K.; Swain, S.S.; Sekar, M.; Karupiah, S.; Porwal, O.; Sahoo, A.; Meenakshi, D.U.; Sharma, V.K.; Jain, S.; Charyulu, R.N.; Fuloria, N.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system. Nanomaterials, 2021, 11(10), 2557.
[http://dx.doi.org/10.3390/nano11102557] [PMID: 34685005]
[111]
Tammam, S.N.; El Safy, S.; Ramadan, S.; Arjune, S.; Krakor, E.; Mathur, S. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2. J. Control. Release, 2021, 337, 258-284.
[http://dx.doi.org/10.1016/j.jconrel.2021.07.028] [PMID: 34293319]
[112]
Wolfram, J.; Zhu, M.; Yang, Y.; Shen, J.; Gentile, E.; Paolino, D.; Fresta, M.; Nie, G.; Chen, C.; Shen, H.; Ferrari, M.; Zhao, Y. Safety of nanoparticles in medicine. Curr. Drug Targets, 2015, 16(14), 1671-1681.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[113]
Zimmermann, C.M.; Baldassi, D.; Chan, K.; Adams, N.B.P.; Neumann, A.; Porras-Gonzalez, D.L.; Wei, X.; Kneidinger, N.; Stoleriu, M.G.; Burgstaller, G.; Witzigmann, D.; Luciani, P.; Merkel, O.M. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery. J. Control. Release, 2022, 351, 137-150.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.021] [PMID: 36126785]
[114]
Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm., 2010, 392(1-2), 1-19.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.017] [PMID: 20223286]
[115]
Sanzhakov, M.A.; Ipatova, O.M.; Torkhovskaya, T.I.; Prozorovskiĭ, V.N.; Tikhonova, E.G.; Druzhilovskaya, O.S.; Medvedeva, N.V. [Nanoparticles as drug delivery system for antituberculous drugs]. Annals of the Russian academy of medical sciences, 2013, 68(8), 37-44.
[http://dx.doi.org/10.15690/vramn.v68i8.722] [PMID: 24340644]
[116]
Lombardo, R.; Musumeci, T.; Carbone, C.; Pignatello, R. Nanotechnologies for intranasal drug delivery: An update of literature. Pharm. Dev. Technol., 2021, 26(8), 824-845.
[http://dx.doi.org/10.1080/10837450.2021.1950186] [PMID: 34218736]
[117]
Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci., 2016, 92, 224-234.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[118]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[119]
Yun, T.; Liu, Z.; Wang, J.; Wang, R.; Zhu, L.; Zhu, Z.; Wang, X. Microenvironment immune response induced by tumor ferroptosis—the application of nanomedicine. Front. Oncol., 2022, 12, 1019654.
[http://dx.doi.org/10.3389/fonc.2022.1019654] [PMID: 36185311]
[120]
Zheng, Y.; Li, Z.; Chen, H.; Gao, Y. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy. Eur. J. Pharm. Sci., 2020, 144, 105213.
[http://dx.doi.org/10.1016/j.ejps.2020.105213] [PMID: 31926941]
[121]
Zhuang, J.; Holay, M.; Park, J.H.; Fang, R.H.; Zhang, J.; Zhang, L. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy. Theranostics, 2019, 9(25), 7826-7848.
[http://dx.doi.org/10.7150/thno.37216] [PMID: 31695803]
[122]
Saleh, T.; Shojaosadati, S.A. Multifunctional nanoparticles for cancer immunotherapy. Hum. Vaccin. Immunother., 2016, 12(7), 1863-1875.
[PMID: 26901287]
[123]
Li, H.; Fu, Q.; Muluh, T.A.; Shinge, S.A.U.; Fu, S.; Wu, J. The application of nanotechnology in immunotherapy based combinations for cancer treatment. Recent Patents Anticancer Drug Discov., 2023, 18(1), 53-65.
[http://dx.doi.org/10.2174/1574892817666220308090954] [PMID: 35260063]
[124]
Abd-Allah, H.; Abdel-Aziz, R.T.A.; Nasr, M. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int. J. Biol. Macromol., 2020, 156, 262-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.040] [PMID: 32289418]
[125]
Fan, Y.; Marioli, M.; Zhang, K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal., 2021, 192, 113642.
[http://dx.doi.org/10.1016/j.jpba.2020.113642] [PMID: 33011580]
[126]
Chen, F.; Shi, Y.; Zhang, J.; Liu, Q. Nanoparticle-based drug delivery systems for targeted epigenetics cancer therapy. Curr. Drug Targets, 2020, 21(11), 1084-1098.
[http://dx.doi.org/10.2174/1389450121666200514222900] [PMID: 32410563]
[127]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 137, 115-170.
[http://dx.doi.org/10.1016/bs.acr.2017.11.003] [PMID: 29405974]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy