Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB

Author(s): Meenakshi Dhanawat*, Garima, Kashish Wilson, Sumeet Gupta, Rishabh Chalotra and Nidhi Gupta

Volume 21, Issue 11, 2024

Published on: 24 January, 2024

Page: [1515 - 1528] Pages: 14

DOI: 10.2174/0115672018266501231207095127

Price: $65

Abstract

Although the brain is very accessible to nutrition and oxygen, it can be difficult to deliver medications to malignant brain tumours. To get around some of these issues and enable the use of therapeutic pharmacological substances that wouldn't typically cross the blood-brain barrier (BBB), convection-enhanced delivery (CED) has been developed. It is a cutting-edge strategy that gets beyond the blood-brain barrier and enables targeted drug administration to treat different neurological conditions such as brain tumours, Parkinson's disease, and epilepsy. Utilizing pressure gradients to spread the medicine across the target area is the main idea behind this diffusion mechanism. Through one to several catheters positioned stereotactically directly within the tumour mass, around the tumour, or in the cavity created by the resection, drugs are given. This method can be used in a variety of drug classes, including traditional chemotherapeutics and cutting-edge investigational targeted medications by using positive-pressure techniques. The drug delivery volume must be optimized for an effective infusion while minimizing backflow, which causes side effects and lowers therapeutic efficacy. Therefore, this technique provides a promising approach for treating disorders of the central nervous system (CNS).

[1]
Brethour, M.K.; Nyström, K.V.; Broughton, S.; Kiernan, T.E.; Perez, A.; Handler, D.; Swatzell, V.; Yang, J.J.; Starr, M.; Seagraves, K.B.; Cudlip, F.; Biby, S.; Tocco, S.; Owens, P.; Alexandrov, A.W. Controversies in acute stroke treatment. AACN Adv. Crit. Care, 2012, 23(2), 158-172.
[http://dx.doi.org/10.4037/NCI.0b013e31824fe1b6] [PMID: 22543489]
[2]
Gabathuler, R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis., 2010, 37(1), 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[3]
Pathan, S.; Iqbal, Z.; Zaidi, S.; Talegaonkar, S.; Vohra, D.; Jain, G.; Azeem, A.; Jain, N.; Lalani, J.; Khar, R.; Ahmad, F. CNS drug delivery systems: Novel approaches. Recent Pat. Drug Deliv. Formul., 2009, 3(1), 71-89.
[http://dx.doi.org/10.2174/187221109787158355] [PMID: 19149731]
[4]
D’Amico, R.S.; Aghi, M.K.; Vogelbaum, M.A.; Bruce, J.N. Convection-enhanced drug delivery for glioblastoma: a review. J. Neurooncol., 2021, 151(3), 415-427.
[http://dx.doi.org/10.1007/s11060-020-03408-9] [PMID: 33611708]
[5]
Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 2008, 57(2), 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[6]
Daneman, R. The blood–brain barrier in health and disease. Ann. Neurol., 2012, 72(5), 648-672.
[http://dx.doi.org/10.1002/ana.23648] [PMID: 23280789]
[7]
Mulvihill, J.J.E.; Cunnane, E.M.; Ross, A.M.; Duskey, J.T.; Tosi, G.; Grabrucker, A.M. Drug delivery across the blood–brain barrier: Recent advances in the use of nanocarriers. Nanomedicine, 2020, 15(2), 205-214.
[http://dx.doi.org/10.2217/nnm-2019-0367] [PMID: 31916480]
[8]
Dhanawat, M.; Gupta, S.; Mehta, D.K.; Das, R. Design, synthesis and enhanced bbb penetration studies of l-serine-tethered nipecotic acid-prodrug. Drug Res., 2021, 71(2), 94-103.
[http://dx.doi.org/10.1055/a-1290-0119] [PMID: 33241549]
[9]
Dhanawat, M.; Gupta, S.; Das, R.; Mehta, D.K. Lat1: A potential cerebrovascular target to breach Bbb. Indian Drugs, 2022, 59(3)
[http://dx.doi.org/10.53879/id.59.03.12953]
[10]
Patel, M.M.; Patel, B.M. Crossing the blood–brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[11]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412.
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[12]
Pardridge, W.M. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS, 2011, 8(1), 7.
[http://dx.doi.org/10.1186/2045-8118-8-7] [PMID: 21349155]
[13]
Leece, R.; Xu, J.; Ostrom, Q.T.; Chen, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro-oncol., 2017, 19(11), 1553-1564.
[http://dx.doi.org/10.1093/neuonc/nox091] [PMID: 28482030]
[14]
DeAngelis, L.M. Chemotherapy for brain tumors—a new beginning; Mass Medical Soc., 2005, pp. 1036-1038.
[15]
Sampson, J.H.; Maus, M.V.; June, C.H. Immunotherapy for brain tumors. J. Clin. Oncol., 2017, 35(21), 2450-2456.
[http://dx.doi.org/10.1200/JCO.2017.72.8089] [PMID: 28640704]
[16]
Burns, M.J.; Weiss, W. Targeted therapy of brain tumors utilizing neural stem and progenitor cells. Front. Biosci., 2003, 8(5), 953.
[http://dx.doi.org/10.2741/953] [PMID: 12456351]
[17]
Bobo, R.H.; Laske, D.W.; Akbasak, A.; Morrison, P.F.; Dedrick, R.L.; Oldfield, E.H. Convection-enhanced delivery of macromolecules in the brain. Proc. Natl. Acad. Sci., 1994, 91(6), 2076-2080.
[http://dx.doi.org/10.1073/pnas.91.6.2076] [PMID: 8134351]
[18]
Morrison, P.F.; Laske, D.W.; Bobo, H.; Oldfield, E.H.; Dedrick, R.L. High-flow microinfusion: Tissue penetration and pharmacodynamics. Am. J. Physiol., 1994, 266(1 Pt 2), R292-R305.
[PMID: 8304553]
[19]
Lonser, R.R.; Walbridge, S.; Garmestani, K.; Butman, J.A.; Walters, H.A.; Vortmeyer, A.O.; Morrison, P.F.; Brechbiel, M.W.; Oldfield, E.H. Successful and safe perfusion of the primate brainstem: In vivo magnetic resonance imaging of macromolecular distribution during infusion. J. Neurosurg., 2002, 97(4), 905-913.
[http://dx.doi.org/10.3171/jns.2002.97.4.0905] [PMID: 12405380]
[20]
Nguyen, T.T.; Pannu, Y.S.; Sung, C.; Dedrick, R.L.; Walbridge, S.; Brechbiel, M.W.; Garmestani, K.; Beitzel, M.; Yordanov, A.T.; Oldfield, E.H. Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J. Neurosurg., 2003, 98(3), 584-590.
[http://dx.doi.org/10.3171/jns.2003.98.3.0584] [PMID: 12650432]
[21]
Barua, N.U.; Gill, S.S.; Love, S. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol., 2014, 24(2), 117-127.
[http://dx.doi.org/10.1111/bpa.12082] [PMID: 23944716]
[22]
Corem-Salkmon, E.; Ram, Z.; Daniels, D.; Perlstein, B.; Last, D.; Salomon, S.; Tamar, G.; Shneor, R.; Guez, D.; Margel, S.; Mardor, Y. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int. J. Nanomedicine, 2011, 6, 1595-1602.
[PMID: 21904449]
[23]
Mehta, A.M.; Sonabend, A.M.; Bruce, J.N. Convection-enhanced delivery. Neurotherapeutics, 2017, 14(2), 358-371.
[http://dx.doi.org/10.1007/s13311-017-0520-4] [PMID: 28299724]
[24]
Heiss, J.D.; Walbridge, S.; Morrison, P.; Hampton, R.R.; Sato, S.; Vortmeyer, A.; Butman, J.A.; O’Malley, J.; Vidwan, P.; Dedrick, R.L.; Oldfield, E.H. Local distribution and toxicity of prolonged hippocampal infusion of muscimol. J. Neurosurg., 2005, 103(6), 1035-1045.
[http://dx.doi.org/10.3171/jns.2005.103.6.1035] [PMID: 16381190]
[25]
Lieberman, D.M.; Laske, D.W.; Morrison, P.F.; Bankiewicz, K.S.; Oldfield, E.H. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J. Neurosurg., 1995, 82(6), 1021-1029.
[http://dx.doi.org/10.3171/jns.1995.82.6.1021] [PMID: 7539062]
[26]
Ksendzovsky, A.; Walbridge, S.; Saunders, R.C.; Asthagiri, A.R.; Heiss, J.D.; Lonser, R.R. Convection-enhanced delivery of M13 bacteriophage to the brain. J. Neurosurg., 2012, 117(2), 197-203.
[http://dx.doi.org/10.3171/2012.4.JNS111528] [PMID: 22606981]
[27]
Barker, F.G., II; Chang, S.M.; Gutin, P.H.; Malec, M.K.; McDermott, M.W.; Prados, M.D.; Wilson, C.B. Survival and functional status after resection of recurrent glioblastoma multiforme. Neurosurgery, 1998, 42(4), 709-719.
[http://dx.doi.org/10.1097/00006123-199804000-00013] [PMID: 9574634]
[28]
Raghavan, R.; Brady, M.L.; Rodríguez-Ponce, M.I.; Hartlep, A.; Pedain, C.; Sampson, J.H. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg. Focus, 2006, 20(4), E12.
[http://dx.doi.org/10.3171/foc.2006.20.4.7] [PMID: 16709017]
[29]
Yun, J.; Rothrock, R.J.; Canoll, P.; Bruce, J.N. Convection-enhanced delivery for targeted delivery of antiglioma agents: The translational experience. J. Drug Deliv., 2013, 2013, 107573.
[http://dx.doi.org/10.1155/2013/107573]
[30]
Murad, G.J.A.; Walbridge, S.; Morrison, P.F.; Szerlip, N.; Butman, J.A.; Oldfield, E.H.; Lonser, R.R. Image-guided convection-enhanced delivery of gemcitabine to the brainstem. J. Neurosurg., 2007, 106(2), 351-356.
[http://dx.doi.org/10.3171/jns.2007.106.2.351] [PMID: 17410722]
[31]
Asthagiri, A.R.; Walbridge, S.; Heiss, J.D.; Lonser, R.R. Effect of concentration on the accuracy of convective imaging distribution of a gadolinium-based surrogate tracer. J. Neurosurg., 2011, 115(3), 467-473.
[http://dx.doi.org/10.3171/2011.3.JNS101381] [PMID: 21619409]
[32]
Huynh, N.T.; Passirani, C.; Allard-Vannier, E.; Lemaire, L.; Roux, J.; Garcion, E.; Vessieres, A.; Benoit, J.P. Administration-dependent efficacy of ferrociphenol lipid nanocapsules for the treatment of intracranial 9L rat gliosarcoma. Int. J. Pharm., 2012, 423(1), 55-62.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.037] [PMID: 21536115]
[33]
Raghavan, R.; Brady, M.L.; Sampson, J.H. Delivering therapy to target: Improving the odds for successful drug development. Ther. Deliv., 2016, 7(7), 457-481.
[http://dx.doi.org/10.4155/tde-2016-0016] [PMID: 27403630]
[34]
Ung, T.H.; Malone, H.; Canoll, P.; Bruce, J.N. Convection-enhanced delivery for glioblastoma: Targeted delivery of antitumor therapeutics. CNS Oncol., 2015, 4(4), 225-234.
[http://dx.doi.org/10.2217/cns.15.12] [PMID: 26103989]
[35]
Wolf, K.J.; Chen, J.; Coombes, J.D.; Aghi, M.K.; Kumar, S. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nat. Rev. Mater., 2019, 4(10), 651-668.
[http://dx.doi.org/10.1038/s41578-019-0135-y] [PMID: 32647587]
[36]
Sonabend, A.M.; Stuart, R.M.; Yun, J.; Yanagihara, T.; Mohajed, H.; Dashnaw, S.; Bruce, S.S.; Brown, T.; Romanov, A.; Sebastian, M.; Arias-Mendoza, F.; Bagiella, E.; Canoll, P.; Bruce, J.N. Prolonged intracerebral convection-enhanced delivery of topotecan with a subcutaneously implantable infusion pump. Neuro-oncol., 2011, 13(8), 886-893.
[http://dx.doi.org/10.1093/neuonc/nor051] [PMID: 21750007]
[37]
Lonser, R.R.; Sarntinoranont, M.; Morrison, P.F.; Oldfield, E.H. Convection-enhanced delivery to the central nervous system. J. Neurosurg., 2015, 122(3), 697-706.
[http://dx.doi.org/10.3171/2014.10.JNS14229] [PMID: 25397365]
[38]
Casanova, F.; Carney, P.R.; Sarntinoranont, M. Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain. PLoS One, 2014, 9(4), e94919.
[http://dx.doi.org/10.1371/journal.pone.0094919] [PMID: 24776986]
[39]
Sillay, K.A.; McClatchy, S.G.; Shepherd, B.A.; Venable, G.T.; Fuehrer, T.S. Image-guided convection-enhanced delivery into agarose gel models of the brain. J. Vis. Exp., 2014, (87), e51466. [Journal of Visualized Experiments].
[PMID: 24894268]
[40]
Jain, R.K.; Baxter, L.T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res., 1988, 48(24 Pt 1), 7022-7032.
[PMID: 3191477]
[41]
Groothuis, D.R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro-oncol., 2000, 2(1), 45-59.
[http://dx.doi.org/10.1093/neuonc/2.1.45] [PMID: 11302254]
[42]
Groothuis, D.R.; Ward, S.; Itskovich, A.C.; Dobrescu, C.; Allen, C.V.; Dills, C.; Levy, R.M. Comparison of 14C-sucrose delivery to the brain by intravenous, intraventricular, and convection-enhanced intracerebral infusion. J. Neurosurg., 1999, 90(2), 321-331.
[http://dx.doi.org/10.3171/jns.1999.90.2.0321] [PMID: 9950504]
[43]
Warren, K.E. Beyond the blood:brain barrier: The importance of central nervous system (cns) pharmacokinetics for the treatment of cns tumors, including diffuse intrinsic pontine glioma. Front. Oncol., 2018, 8, 239.
[http://dx.doi.org/10.3389/fonc.2018.00239] [PMID: 30018882]
[44]
Tosi, U.; Souweidane, M. Convection enhanced delivery for diffuse intrinsic pontine glioma: Review of a single institution experience. Pharmaceutics, 2020, 12(7), 660.
[http://dx.doi.org/10.3390/pharmaceutics12070660] [PMID: 32674336]
[45]
Chen, P.Y.; Ozawa, T.; Drummond, D.C.; Kalra, A.; Fitzgerald, J.B.; Kirpotin, D.B.; Wei, K.C.; Butowski, N.; Prados, M.D.; Berger, M.S.; Forsayeth, J.R.; Bankiewicz, K.; James, C.D. Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts. Neuro-oncol., 2013, 15(2), 189-197.
[http://dx.doi.org/10.1093/neuonc/nos305] [PMID: 23262509]
[46]
Chen, M.Y.; Lonser, R.R.; Morrison, P.F.; Governale, L.S.; Oldfield, E.H. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue—cannula sealing time. J. Neurosurg., 1999, 90(2), 315-320.
[http://dx.doi.org/10.3171/jns.1999.90.2.0315] [PMID: 9950503]
[47]
Morrison, P.F.; Chen, M.Y.; Chadwick, R.S.; Lonser, R.R.; Oldfield, E.H. Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am. J. Physiol., 1999, 277(4), R1218-R1229.
[PMID: 10516265]
[48]
Stine, C.A.; Munson, J.M. Convection-enhanced delivery: Connection to and impact of interstitial fluid flow. Front. Oncol., 2019, 9, 966.
[http://dx.doi.org/10.3389/fonc.2019.00966] [PMID: 31632905]
[49]
Fiandaca, M.S.; Forsayeth, J.R.; Dickinson, P.J.; Bankiewicz, K.S. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics, 2008, 5(1), 123-127.
[http://dx.doi.org/10.1016/j.nurt.2007.10.064] [PMID: 18164491]
[50]
Zhou, Z.; Singh, R.; Souweidane, M.M. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment. Curr. Neuropharmacol., 2017, 15(1), 116-128.
[http://dx.doi.org/10.2174/1570159X14666160614093615] [PMID: 27306036]
[51]
Bidros, D.S.; Liu, J.K.; Vogelbaum, M.A. Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol., 2010, 6(1), 117-125.
[http://dx.doi.org/10.2217/fon.09.135] [PMID: 20021213]
[52]
Olson, J.J.; Zhang, Z.; Dillehay, D.; Stubbs, J. Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery. J. Neurooncol., 2008, 89(2), 159-168.
[http://dx.doi.org/10.1007/s11060-008-9612-7] [PMID: 18458816]
[53]
Olivi, A.; Grossman, S.A.; Tatter, S.; Barker, F.; Judy, K.; Olsen, J.; Bruce, J.; Hilt, D.; Fisher, J.; Piantadosi, S. Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: A new approaches to brain tumor therapy CNS consortium trial. J. Clin. Oncol., 2003, 21(9), 1845-1849.
[http://dx.doi.org/10.1200/JCO.2003.09.041] [PMID: 12721262]
[54]
Sampson, H.; Raghavan, R.; Brady, M.L.; Provenzale, M.; Herndon, E.I.I.; Croteau, D.; Friedman, A.H.; Reardon, D.A.; Coleman, R.E.; Wong, T.; Bigner, D.D.; Pastan, I.; Rodríguez-Ponce, M.I.; Tanner, P.; Puri, R.; Pedain, C. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro-oncol., 2007, 9(3), 343-353.
[http://dx.doi.org/10.1215/15228517-2007-007] [PMID: 17435179]
[55]
Vogelbaum, M.A.; Brewer, C.; Barnett, G.H.; Mohammadi, A.M.; Peereboom, D.M.; Ahluwalia, M.S.; Gao, S. First-in-human evaluation of the cleveland multiport catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: Results of pilot trial 1. J. Neurosurg., 2018, 130(2), 1-10.
[http://dx.doi.org/10.3171/2017.10.JNS171845] [PMID: 29652233]
[56]
Spinazzi, E.F.; Argenziano, M.G.; Upadhyayula, P.S.; Banu, M.A.; Neira, J.A.; Higgins, D.M.O.; Wu, P.B.; Pereira, B.; Mahajan, A.; Humala, N.; Al-Dalahmah, O.; Zhao, W.; Save, A.V.; Gill, B.J.A.; Boyett, D.M.; Marie, T.; Furnari, J.L.; Sudhakar, T.D.; Stopka, S.A.; Regan, M.S.; Catania, V.; Good, L.; Zacharoulis, S.; Behl, M.; Petridis, P.; Jambawalikar, S.; Mintz, A.; Lignelli, A.; Agar, N.Y.R.; Sims, P.A.; Welch, M.R.; Lassman, A.B.; Iwamoto, F.M.; D’Amico, R.S.; Grinband, J.; Canoll, P.; Bruce, J.N. Chronic convection-enhanced delivery of topotecan for patients with recurrent glioblastoma: A first-in-patient, single-centre, single-arm, phase 1b trial. Lancet Oncol., 2022, 23(11), 1409-1418.
[http://dx.doi.org/10.1016/S1470-2045(22)00599-X] [PMID: 36243020]
[57]
Ellingson, B.M.; Sampson, J.; Achrol, A.S.; Aghi, M.K.; Bankiewicz, K.; Wang, C.; Bexon, M.; Brem, S.; Brenner, A.; Chowdhary, S.; Floyd, J.R.; Han, S.; Kesari, S.; Randazzo, D.; Vogelbaum, M.A.; Vrionis, F.; Zabek, M.; Butowski, N.; Coello, M.; Merchant, N.; Merchant, F. Modified RANO, Immunotherapy RANO, and Standard RANO Response to Convection-Enhanced Delivery of IL4R-Targeted Immunotoxin MDNA55 in Recurrent Glioblastoma. Clin. Cancer Res., 2021, 27(14), 3916-3925.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0446] [PMID: 33863808]
[58]
Zhan, W.; Wang, C.H. Convection enhanced delivery of chemotherapeutic drugs into brain tumour. J. Control. Release, 2018, 271, 74-87.
[http://dx.doi.org/10.1016/j.jconrel.2017.12.020] [PMID: 29274437]
[59]
Zhan, W. Convection enhanced delivery of anti-angiogenic and cytotoxic agents in combination therapy against brain tumour. Eur. J. Pharm. Sci., 2020, 141, 105094.
[http://dx.doi.org/10.1016/j.ejps.2019.105094] [PMID: 31626962]
[60]
Zhan, W.; Wang, C.H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy. J. Control. Release, 2018, 285, 212-229.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.006] [PMID: 30009891]
[61]
Zhang, C.; Nance, E.A.; Mastorakos, P.; Chisholm, J.; Berry, S.; Eberhart, C.; Tyler, B.; Brem, H.; Suk, J.S.; Hanes, J. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J. Control. Release, 2017, 263, 112-119.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.007] [PMID: 28279797]
[62]
Wei, H.-J.; Upadhyayula, P.S.; Pouliopoulos, A.N.; Englander, Z.K.; Zhang, X.; Jan, C.-I.; Guo, J.; Mela, A.; Zhang, Z.; Wang, T.J. Focused ultrasound-mediated blood-brain barrier opening increases delivery and efficacy of etoposide for glioblastoma treatment. International Journal of Radiation Oncology* Biology* Physics, 2021, 110(2), 539-550.
[http://dx.doi.org/10.1016/j.ijrobp.2020.12.019]
[63]
Bhandari, A.; Jaiswal, K.; Singh, A.; Zhan, W. Convection-enhanced delivery of antiangiogenic drugs and liposomal cytotoxic drugs to heterogeneous brain tumor for combination therapy. Cancers, 2022, 14(17), 4177.
[http://dx.doi.org/10.3390/cancers14174177] [PMID: 36077714]
[64]
Young, J.S.; Bernal, G.; Polster, S.P.; Nunez, L.; Larsen, G.F.; Mansour, N.; Podell, M.; Yamini, B. Convection-enhanced delivery of polymeric nanoparticles encapsulating chemotherapy in canines with spontaneous supratentorial tumors. World Neurosurg., 2018, 117, e698-e704.
[http://dx.doi.org/10.1016/j.wneu.2018.06.114] [PMID: 29960096]
[65]
Nordling-David, M.M.; Yaffe, R.; Guez, D.; Meirow, H.; Last, D.; Grad, E.; Salomon, S.; Sharabi, S.; Levi-Kalisman, Y.; Golomb, G.; Mardor, Y. Liposomal temozolomide drug delivery using convection enhanced delivery. J. Control. Release, 2017, 261, 138-146.
[http://dx.doi.org/10.1016/j.jconrel.2017.06.028] [PMID: 28666727]
[66]
Chen, E.M.; Quijano, A.R.; Seo, Y.E.; Jackson, C.; Josowitz, A.D.; Noorbakhsh, S.; Merlettini, A.; Sundaram, R.K.; Focarete, M.L.; Jiang, Z.; Bindra, R.S.; Saltzman, W.M. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials, 2018, 178, 193-203.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.024] [PMID: 29936153]
[67]
Chaudhary, R.; Rohilla, M.; Chauhan, S.; Saini, M.; Aman, S.; Singla, H.; Ahmed, S.; Shriwastav, S.; Kaur, N.; Dev, J.; Chalotra, R. The pandemic’s unseen wounds: COVID-19’s profound effects on mental health. Ann. Med. Surg., 2023, 85(10), 4954-4963.
[http://dx.doi.org/10.1097/MS9.0000000000001223]
[68]
Debinski, W.; Tatter, S.B. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev. Neurother., 2009, 9(10), 1519-1527.
[http://dx.doi.org/10.1586/ern.09.99] [PMID: 19831841]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy