Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Green Synthesis Derived Novel Fe2O3/ZnO Nanocomposite for Efficient Photocatalytic Degradation of Methyl Orange Dye

Author(s): Nimisha Jadon*, Bhupinder Kour, Bilal Ahmad Bhat and Harendra K. Sharma*

Volume 20, Issue 3, 2024

Published on: 23 January, 2024

Page: [162 - 174] Pages: 13

DOI: 10.2174/0115734110297844240119062857

Price: $65

Abstract

Introduction: An eco-friendly method was reported for the synthesis of ferric oxide nanoparticles (Fe2O3), zinc oxide nanoparticles (ZnO) and Fe2O3/ZnO nanocomposite using Mangifera indica plant leaf extract as a natural reducing agent.

Methods: The synthesized nanomaterials were successfully characterized by X-ray diffraction, UVvisible spectrophotometer, Photoluminescence spectroscopy and Transmission electron microscopy. The obtained XRD spectrums revealed the crystalline nature of synthesized materials and the average diameters of Fe2O3 nanoparticles, ZnO nanoparticles and Fe2O3/ZnO nanocomposite came out to be 11.33 nm, 14.31 nm and 9.80 nm, respectively. The UV-visible absorbance spectra and photoluminescence spectrums confirmed that the Fe2O3/ZnO nanocomposite was visible light active and had excitation peaks in the visible range.

Results: The TEM analysis confirmed the composite and semiconductor nature of the synthesized Fe2O3/ZnO nanocomposite. Furthermore, the photocatalytic activity of Fe2O3/ZnO nanocomposite reaches about 91.07% degradation of methyl orange dye within a time period of 150 min at an optimized catalyst dose. Adsorption isotherm and kinetic study were also applied to validate the study.

Conclusion: It was found that there was monolayer adsorption of methyl orange dye molecules on the surface of the synthesized catalyst under optimized experimental conditions and also, the adsorption process follows the pseudo-second-order kinetic model.

Graphical Abstract

[1]
Boruah, P.K.; Borthakur, P.; Das, M.R. Magnetic metal/metal oxide nanoparticles and nanocomposite materials for water purification; Nanoscale Materials in Water Purification, 2019, pp. 473-503.
[http://dx.doi.org/10.1016/B978-0-12-813926-4.00024-0]
[2]
Indira, K.; Shanmugam, S.; Hari, A.; Vasantharaj, S.; Sathiyavimal, S.; Brindhadevi, K.; El Askary, A.; Elfasakhany, A.; Pugazhendhi, A. Photocatalytic degradation of congo red dye using nickel–titanium dioxide nanoflakes synthesized by Mukia madrasapatna leaf extract. Environ. Res., 2021, 202, 111647.
[http://dx.doi.org/10.1016/j.envres.2021.111647] [PMID: 34237334]
[3]
Sadhukhan, S.; Bhattacharyya, A.; Rana, D.; Ghosh, T.K.; Orasugh, J.T.; Khatua, S.; Acharya, K.; Chattopadhyay, D. Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys., 2020, 247, 122906.
[http://dx.doi.org/10.1016/j.matchemphys.2020.122906]
[4]
Lateef, A.; Nazir, R. Metal nanocomposites: synthesis, characterization and their applications. Sci. Appl; Tailored Nanostructures, 2017, pp. 239-256.
[5]
Said, R.A.M.; Hasan, M.A.; Abdelzaher, A.M.; Abdel-Raoof, A.M. Review—insights into the developments of nanocomposites for its processing and application as sensing materials. J. Electrochem. Soc., 2020, 167(3), 037549.
[http://dx.doi.org/10.1149/1945-7111/ab697b]
[6]
Arun, L.; Karthikeyan, C.; Philip, D.; Unni, C. Optical, magnetic, electrical, and chemo-catalytic properties of bio-synthesized CuO/NiO nanocomposites. J. Phys. Chem. Solids, 2020, 136, 109155.
[http://dx.doi.org/10.1016/j.jpcs.2019.109155]
[7]
Oyewo, O.A.; Elemike, E.E.; Onwudiwe, D.C.; Onyango, M.S. Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int. J. Biol. Macromol., 2020, 164, 2477-2496.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.074] [PMID: 32795574]
[8]
Das, M.; Chatterjee, S. Green synthesis of metal/metal oxide nanoparticles toward biomedical applications: Boon or bane; Green Synthesis, Characterization and Applications of Nanoparticles, 2019, pp. 265-301.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00011-3]
[9]
Maham, M.; Nasrollahzadeh, M.; Sajadi, S.M.; Nekoei, M. Biosynthesis of Ag/reduced graphene oxide/Fe3O4 using Lotus garcinii leaf extract and its application as a recyclable nanocatalyst for the reduction of 4-nitrophenol and organic dyes. J. Colloid Interface Sci., 2017, 497, 33-42.
[http://dx.doi.org/10.1016/j.jcis.2017.02.064] [PMID: 28260673]
[10]
Prabhu, S.; Daniel Thangadurai, T.; Vijai Bharathy, P.; Kalugasalam, P. Synthesis and characterization of nickel oxide nanoparticles using Clitoria ternatea flower extract: Photocatalytic dye degradation under sunlight and antibacterial activity applications. Results Chem., 2022, 4, 100285.
[http://dx.doi.org/10.1016/j.rechem.2022.100285]
[11]
Bordbar, M.; Negahdar, N.; Nasrollahzadeh, M. Melissa Officinalis L. leaf extract assisted green synthesis of CuO/ZnO nanocomposite for the reduction of 4-nitrophenol and Rhodamine B. Separ. Purif. Tech., 2018, 191, 295-300.
[http://dx.doi.org/10.1016/j.seppur.2017.09.044]
[12]
Bhavyasree, P.G.; Xavier, T.S. Green synthesis of copper oxide/carbon nanocomposites using the leaf extract of adhatoda vasica nees, their characterization and antimicrobial activity. Heliyon, 2020, 6(2), e03323.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03323] [PMID: 32072042]
[13]
Elemike, E.E.; Onwudiwe, D.C.; Wei, L.; Lou, C.; Zhao, Z. Synthesis of nanostructured ZnO, AgZnO and the composites with reduced graphene oxide (rGO-AgZnO) using leaf extract of Stigmaphyllon ovatum. J. Environ. Chem. Eng., 2019, 7(3), 103190.
[http://dx.doi.org/10.1016/j.jece.2019.103190]
[14]
Atarod, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO 2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water. J. Colloid Interface Sci., 2016, 462, 272-279.
[http://dx.doi.org/10.1016/j.jcis.2015.09.073] [PMID: 26469545]
[15]
Sajjadi, M.; Nasrollahzadeh, M.; Mohammad Sajadi, S. Green synthesis of Ag/Fe 3 O 4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity. J. Colloid Interface Sci., 2017, 497, 1-13.
[http://dx.doi.org/10.1016/j.jcis.2017.02.037] [PMID: 28260670]
[16]
Sharma, M.V.; Sharma, H.K.; Jadon, N. A study on degradation of methyl orange under UV light irradiation and ammonia gas sensing by polypyrrole/ lead selenide nanocomposite. Adv. Biores., 2021, 12(2), 1-12.
[17]
Jadon, N.; Bhat, G.A.; Sharma, M.V.; Sharma, H.K. Photocatalytic degradation of methyl orange dye with synthesized chitosan/Fe2O3nanocomposite and its isotherm studies. Curr. Nanosci., 2022, 18(1), 78-85.
[http://dx.doi.org/10.2174/1573413716666201217123318]
[18]
Sharma, M.V.; Sharma, H.K. Application of polypyrrole/lead sulphide nanocomposite in UV light assisted photocatalysis and gas sensing. J. Polym. Compos., 2021, 9, 13-27.
[19]
Samari, F.; Salehipoor, H.; Eftekhar, E.; Yousefinejad, S. Low-temperature biosynthesis of silver nanoparticles using mango leaf extract: catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New J. Chem., 2018, 42(19), 15905-15916.
[http://dx.doi.org/10.1039/C8NJ03156H]
[20]
Neto, V.D.O.S.; Freire, T.M.; Saraiva, G.D.; Muniz, C.; Cunha, M.S.; Fechine, P.B.A.; Nascimento, R.F. Water Treatment Devices Based on Zero-Valent Metal and Metal Oxide Nanomaterials; Nanomaterials Applications for Environmental Matrices, 2019, pp. 187-225.
[21]
Avasarala, B.K.; Tirukkovalluri, S.R.; Bojja, S. Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye. Int. J. Mater. Res., 2010, 101(12), 1563-1570.
[http://dx.doi.org/10.3139/146.110438]
[22]
Hashim, F.S.; Alkaim, A.F.; Mahdi, S.M.; Omran Alkhayatt, A.H. Photocatalytic degradation of GRL dye from aqueous solutions in the presence of ZnO/Fe2O3 nanocomposites. Composites Communications, 2019, 16, 111-116.
[http://dx.doi.org/10.1016/j.coco.2019.09.008]
[23]
Parvaz, S.; Rabbani, M.; Rahimi, R. Fabrication of novel magnetic ZnO hollow spheres/pumice nanocomposites for photodegradation of Rhodamine B under visible light irradiation. Mater. Sci. Eng. B, 2021, 263, 114863.
[http://dx.doi.org/10.1016/j.mseb.2020.114863]
[24]
Lakshminarayanan, S.; Shereen, M.F.; Niraimathi, K.L.; Brindha, P.; Arumugam, A. One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein. Sci. Rep., 2021, 11(1), 8643.
[http://dx.doi.org/10.1038/s41598-021-87960-y] [PMID: 33883589]
[25]
Kahsay, M.H.; Tadesse, A.; RamaDevi, D.; Belachew, N.; Basavaiah, K. Green synthesis of zinc oxide nanostructures and investigation of their photocatalytic and bactericidal applications. RSC Advances, 2019, 9(63), 36967-36981.
[http://dx.doi.org/10.1039/C9RA07630A] [PMID: 35539084]
[26]
Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 143, 304-308.
[http://dx.doi.org/10.1016/j.saa.2015.01.124] [PMID: 25756552]
[27]
Mekarsari, H.E.S.T.I.; Taftazani, A.G.U.S.; Kamari, A.Z.L.A.N.; Fatimah, I. Green synthesized Fe2O3 nanoparticles and immobilization onto biogenic silica as photocatalyst for photo-decolorization of bromophenol blue. J. Eng. Sci. Technol., 2020, 15(6), 4356-4366.
[28]
Ganeshraja, A.S.; Clara, A.S.; Rajkumar, K.; Wang, Y.; Wang, Y.; Wang, J.; Anbalagan, K. Simple hydrothermal synthesis of metal oxides coupled nanocomposites: Structural, optical, magnetic and photocatalytic studies. Appl. Surf. Sci., 2015, 353, 553-563.
[http://dx.doi.org/10.1016/j.apsusc.2015.06.118]
[29]
Khan, A.; Shah, S.J.; Mehmood, K.; Awais, A.N.; Ali, N.; Khan, H. Synthesis of potent chitosan beads a suitable alternative for textile dye reduction in sunlight. J. Mater. Sci. Mater. Electron., 2019, 30(1), 406-414.
[http://dx.doi.org/10.1007/s10854-018-0305-5]
[30]
Munyai, S.; Mahlaule-Glory, L.M.; Hintsho-Mbita, N.C. Green synthesis of Zinc sulphide (ZnS) nanostructures using S. frutescences plant extract for photocatalytic degradation of dyes and antibiotics. Mater. Res. Express, 2022, 9(1), 015001.
[http://dx.doi.org/10.1088/2053-1591/ac4409]
[31]
Muruganandham, M.; Swaminathan, M. Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO-UV process. Dyes Pigments, 2006, 68(2-3), 133-142.
[http://dx.doi.org/10.1016/j.dyepig.2005.01.004]
[32]
Kamble, S.P.; Sawant, S.B.; Schouten, J.C.; Pangarkar, V.G. Photocatalytic and photochemical degradation of aniline using concentrated solar radiation. J. Chem. Technol. Biotechnol., 2003, 78(8), 865-872.
[http://dx.doi.org/10.1002/jctb.867]
[33]
Aziz, A.; Ali, N.; Khan, A.; Bilal, M.; Malik, S.; Ali, N.; Khan, H. Chitosan zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int. J. Biol. Macromol., 2020, 153, 502-512.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.310] [PMID: 32126200]
[34]
Ahmad, N.; Sultana, S.; Sabir, S.; Khan, M.Z. Exploring the visible light driven photocatalysis by reduced graphene oxide supported Ppy/CdS nanocomposites for the degradation of organic pollutants. J. Photochem. Photobiol. Chem., 2020, 386, 112129.
[http://dx.doi.org/10.1016/j.jphotochem.2019.112129]
[35]
Xie, J.; Zhou, Z.; Lian, Y.; Hao, Y.; Li, P.; Wei, Y. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram. Int., 2015, 41(2), 2622-2625.
[http://dx.doi.org/10.1016/j.ceramint.2014.10.043]
[36]
Tian, N.; Huang, H.; He, Y.; Guo, Y.; Zhang, T.; Zhang, Y. Mediator-free direct Z-scheme photocatalytic system: BiVO 4 /g-C 3 N 4 organic–inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans., 2015, 44(9), 4297-4307.
[http://dx.doi.org/10.1039/C4DT03905J] [PMID: 25635354]
[37]
Guo, F.; Chen, J.; Zhao, J.; Chen, Z.; Xia, D.; Zhan, Z.; Wang, Q. Z-scheme heterojunction g-C3N4@PDA/BiOBr with biomimetic polydopamine as electron transfer mediators for enhanced visible-light driven degradation of sulfamethoxazole. Chem. Eng. J., 2020, 386, 124014.
[http://dx.doi.org/10.1016/j.cej.2020.124014]
[38]
Zaman, F.; Xie, B.; Zhang, J.; Gong, T.; Cui, K.; Hou, L.; Xu, J.; Zhai, Z.; Yuan, C. MOFs derived hetero-ZnO/Fe2O3 nanoflowers with enhanced photocatalytic performance towards efficient degradation of organic dyes. Nanomaterials, 2021, 11(12), 3239.
[http://dx.doi.org/10.3390/nano11123239] [PMID: 34947588]
[39]
Lachheb, H.; Ajala, F.; Hamrouni, A.; Houas, A.; Parrino, F.; Palmisano, L. Electron transfer in ZnO–Fe2O3 aqueous slurry systems and its effects on visible light photocatalytic activity. Catal. Sci. Technol., 2017, 7(18), 4041-4047.
[http://dx.doi.org/10.1039/C7CY01085K]
[40]
Babar, S.; Gavade, N.; Shinde, H.; Mahajan, P.; Lee, K.H.; Mane, N.; Deshmukh, A.; Garadkar, K.; Bhuse, V. Evolution of waste iron rust into magnetically separable g-C3N4-Fe2O3 photocatalyst: An efficient and economical waste management approach. ACS Appl. Nano Mater., 2018, 1(9), 4682-4694.
[http://dx.doi.org/10.1021/acsanm.8b00936]
[41]
Zheng, S.; Du, H.; Yang, L.; Tan, M.; Li, N.; Fu, Y.; Hao, D.; Wang, Q. PDINH bridged NH2-UiO-66(Zr) Z-scheme heterojunction for promoted photocatalytic Cr(VI) reduction and antibacterial activity. J. Hazard. Mater., 2023, 447, 130849.
[http://dx.doi.org/10.1016/j.jhazmat.2023.130849] [PMID: 36701978]
[42]
Xue, B.; Li, Q.; Wang, L.; Deng, M.; Zhou, H.; Li, N.; Tan, M.; Hao, D.; Du, H.; Wang, Q. Ferric-ellagate complex: A promising multifunctional photocatalyst. Chemosphere, 2023, 332, 138829.
[http://dx.doi.org/10.1016/j.chemosphere.2023.138829] [PMID: 37156288]
[43]
Zheng, X.; Yuan, J.; Shen, J.; Liang, J.; Che, J.; Tang, B.; He, G.; Chen, H. A carnation-like rGO/Bi2O2CO3/BiOCl composite: Efficient photocatalyst for the degradation of ciprofloxacin. J. Mater. Sci. Mater. Electron., 2019, 30(6), 5986-5994.
[http://dx.doi.org/10.1007/s10854-019-00898-w]
[44]
Wang, Q.; Wang, L.; Zheng, S.; Tan, M.; Yang, L.; Fu, Y.; Li, Q.; Du, H.; Yang, G. The strong interaction and confinement effect of Ag@NH2-MIL-88B for improving the conversion and durability of photocatalytic Cr(VI) reduction in the presence of a hole scavenger. J. Hazard. Mater., 2023, 451, 131149.
[http://dx.doi.org/10.1016/j.jhazmat.2023.131149] [PMID: 36924745]
[45]
Fu, Y.; Xu, Y.; Mao, Y.; Tan, M.; He, Q.; Mao, H.; Du, H.; Hao, D.; Wang, Q. Multi-functional Ag/Ag3PO4/AgPMo with S-scheme heterojunction for boosted photocatalytic performance. Separ. Purif. Tech., 2023, 317, 123922.
[http://dx.doi.org/10.1016/j.seppur.2023.123922]
[46]
Du, H.; Li, N.; Yang, L.; Li, Q.; Yang, G.; Wang, Q. Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: Performance and mechanism. Separ. Purif. Tech., 2023, 304, 122204.
[http://dx.doi.org/10.1016/j.seppur.2022.122204]
[47]
Li, S.; Lin, Q.; Liu, X.; Yang, L.; Ding, J.; Dong, F.; Li, Y.; Irfan, M.; Zhang, P. Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu 2 O–Cu nanocomposites. RSC Advances, 2018, 8(36), 20277-20286.
[http://dx.doi.org/10.1039/C8RA03117G] [PMID: 35541679]
[48]
Billany, M.R.; Khatib, K.; Gordon, M.; Sugden, J.K. Alcohols and ethanolamines as hydroxyl radical scavengers. Int. J. Pharm., 1996, 137(2), 143-147.
[http://dx.doi.org/10.1016/0378-5173(96)04246-9]
[49]
Zheng, X.; Zhang, D.; Gao, Y.; Wu, Y.; Liu, Q.; Zhu, X. Synthesis and characterization of cubic Ag/TiO2 nanocomposites for the photocatalytic degradation of methyl orange in aqueous solutions. Inorg. Chem. Commun., 2019, 110, 107589.
[http://dx.doi.org/10.1016/j.inoche.2019.107589]
[50]
Shah, R.K. Efficient photocatalytic degradation of methyl orange dye using facilely synthesized α-Fe2O3 nanoparticles. Arab. J. Chem., 2023, 16(2), 104444.
[http://dx.doi.org/10.1016/j.arabjc.2022.104444]
[51]
Regraguy, B.; Rahmani, M.; Mabrouki, J.; Drhimer, F.; Ellouzi, I.; Mahmou, C.; Dahchour, A.; Mrabet, M.E.; Hajjaji, S.E. Photocatalytic degradation of methyl orange in the presence of nanoparticles NiSO4/TiO2. Nanotechnol. Environ. Eng., 2022, 7(1), 157-171.
[http://dx.doi.org/10.1007/s41204-021-00206-0]
[52]
Dey, P.C.; Das, R. Enhanced photocatalytic degradation of methyl orange dye on interaction with synthesized ligand free CdS nanocrystals under visible light illumination. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 231, 118122.
[http://dx.doi.org/10.1016/j.saa.2020.118122] [PMID: 32044711]
[53]
Vadivelan, V.; Kumar, K.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci., 2005, 286(1), 90-100.
[http://dx.doi.org/10.1016/j.jcis.2005.01.007] [PMID: 15848406]
[54]
Ho, Y.; McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res., 2000, 34(3), 735-742.
[http://dx.doi.org/10.1016/S0043-1354(99)00232-8]
[55]
Ho, Y.; Ofomaja, A. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J. Hazard. Mater., 2006, 129(1-3), 137-142.
[http://dx.doi.org/10.1016/j.jhazmat.2005.08.020] [PMID: 16188379]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy