Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Review Article

Insights into Kinases of ESKAPE Pathogens for Therapeutic Interventions

Author(s): Deepansh Mody, Priyanka Joshi, Monika Antil, Rakesh K. Gupta and Vibha Gupta*

Volume 22, Issue 3, 2024

Published on: 24 January, 2024

Page: [276 - 297] Pages: 22

DOI: 10.2174/0118715257267497231128093529

Price: $65

Abstract

Multidrug-resistant ESKAPE pathogens are the leading cause of hospital-acquired infections across the globe, posing challenges for clinicians. Random genetic mutations and constant exposure to antibiotics in healthcare settings result in strains resistant to commonly used antibiotics, creating life-threatening conditions. If the magic of “antibiotics” is to be sustained, a new class of antimicrobials against novel targets is urgently needed. This necessitates understanding and identifying novel biochemical pathways and bacterial virulence factors that can be targeted for therapeutic interventions. Keeping in view the unambiguous role of the kinome in bacterial survival and virulence, this review provides a survey of effector bacterial kinases involved in evading host immune responses and drug resistance. The formation of biofilms is a critical feature associated with the pathogenesis and survival of ESKAPE organisms in the hostile host milieu. Hence, kinases involved in the biofilm pathway are also elucidated for clinical relevance. In addition, endeavors in the development of therapeutics against ESKAPE kinases are also summarized to provide direction to researchers pursuing the field.

[1]
WHO. Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics, 2017.
[2]
Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS One, 2023, 18(5), e0285170.
[http://dx.doi.org/10.1371/journal.pone.0285170] [PMID: 37155660]
[3]
Ma, P.; Phillips-Jones, M.K. Membrane Sensor Histidine Kinases: Insights from structural, ligand and inhibitor studies of full-length proteins and signalling domains for antibiotic discovery. Molecules, 2021, 26(16), 5110.
[http://dx.doi.org/10.3390/molecules26165110] [PMID: 34443697]
[4]
King, A.; Blackledge, M.S. Evaluation of small molecule kinase inhibitors as novel antimicrobial and antibiofilm agents. Chem. Biol. Drug Des., 2021, 98(6), 1038-1064.
[http://dx.doi.org/10.1111/cbdd.13962] [PMID: 34581492]
[5]
C Reygaert, W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[6]
De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev., 2020, 33(3), e00181-e19.
[http://dx.doi.org/10.1128/CMR.00181-19] [PMID: 32404435]
[7]
Tsai, Y.K.; Fung, C.P.; Lin, J.C.; Chen, J.H.; Chang, F.Y.; Chen, T.L.; Siu, L.K. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother., 2011, 55(4), 1485-1493.
[http://dx.doi.org/10.1128/AAC.01275-10] [PMID: 21282452]
[8]
Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev., 2013, 26(2), 185-230.
[http://dx.doi.org/10.1128/CMR.00059-12] [PMID: 23554414]
[9]
El-Mahallawy, H.A.; Hassan, S.S.; El-Wakil, M.; Moneer, M.M. Bacteremia due to ESKAPE pathogens: An emerging problem in cancer patients. J. Egypt. Natl. Canc. Inst., 2016, 28(3), 157-162.
[http://dx.doi.org/10.1016/j.jnci.2016.05.002] [PMID: 27268592]
[10]
Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The mortality burden of multidrug-resistant pathogens in India: A retrospective, observational study. Clin. Infect. Dis., 2019, 69(4), 563-570.
[http://dx.doi.org/10.1093/cid/ciy955] [PMID: 30407501]
[11]
Mehta, Y.; Jaggi, N.; Rosenthal, V.D.; Kavathekar, M.; Sakle, A.; Munshi, N.; Chakravarthy, M.; Todi, S.K.; Saini, N.; Rodrigues, C.; Varma, K.; Dubey, R.; Kazi, M.M.; Udwadia, F.E.; Myatra, S.N.; Shah, S.; Dwivedy, A.; Karlekar, A.; Singh, S.; Sen, N.; Limaye-Joshi, K.; Ramachandran, B.; Sahu, S.; Pandya, N.; Mathur, P.; Sahu, S.; Singh, S.P.; Bilolikar, A.K.; Kumar, S.; Mehta, P.; Padbidri, V.; Gita, N.; Patnaik, S.K.; Francis, T.; Warrier, A.R.; Muralidharan, S.; Nair, P.K.; Subhedar, V.R.; Gopinath, R.; Azim, A.; Sood, S. Device-associated infection rates in 20 Cities of India, Data Summary for 2004–2013: Findings of the international nosocomial infection control consortium. Infect. Control Hosp. Epidemiol., 2016, 37(2), 172-181.
[http://dx.doi.org/10.1017/ice.2015.276] [PMID: 26607300]
[12]
Leonard, C.J.; Aravind, L.; Koonin, E.V. Novel families of putative protein kinases in bacteria and archaea: Evolution of the “eukaryotic” protein kinase superfamily. Genome Res., 1998, 8(10), 1038-1047.
[http://dx.doi.org/10.1101/gr.8.10.1038] [PMID: 9799791]
[13]
Cuthbertson, L.; Nodwell, J.R. The TetR family of regulators. Microbiol. Mol. Biol. Rev., 2013, 77(3), 440-475.
[http://dx.doi.org/10.1128/MMBR.00018-13] [PMID: 24006471]
[14]
Hoch, J.A. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol., 2000, 3(2), 165-170.
[http://dx.doi.org/10.1016/S1369-5274(00)00070-9] [PMID: 10745001]
[15]
Galperin, M.Y. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol., 2006, 188(12), 4169-4182.
[http://dx.doi.org/10.1128/JB.01887-05] [PMID: 16740923]
[16]
Dawan, J.; Ahn, J. Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms, 2022, 10(7), 1385.
[http://dx.doi.org/10.3390/microorganisms10071385] [PMID: 35889104]
[17]
Xu, T.; Wu, Y.; Lin, Z.; Bertram, R.; Götz, F.; Zhang, Y.; Qu, D. Identification of genes controlled by the essential YycFG two-component system reveals a role for biofilm modulation in Staphylococcus epidermidis. Front. Microbiol., 2017, 8, 724.
[http://dx.doi.org/10.3389/fmicb.2017.00724] [PMID: 28491057]
[18]
Liu, C.; Sun, D.; Zhu, J.; Liu, W. Two-component signal transduction systems: A major strategy for connecting input stimuli to biofilm formation. Front. Microbiol., 2019, 9, 3279.
[http://dx.doi.org/10.3389/fmicb.2018.03279] [PMID: 30687268]
[19]
Xie, M.; Wu, M.; Han, A. Structural insights into the signal transduction mechanism of the K + -sensing two-component system KdpDE. Sci. Signal., 2020, 13(643), eaaz2970.
[http://dx.doi.org/10.1126/scisignal.aaz2970] [PMID: 32753477]
[20]
Buelow, D.R.; Raivio, T.L. Three (and more) component regulatory systems-auxiliary regulators of bacterial histidine kinases. Mol. Microbiol., 2010, 75(3), 547-566.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06982.x] [PMID: 19943903]
[21]
Tomich, M.; Mohr, C.D. Genetic characterization of a multicomponent signal transduction system controlling the expression of cable pili in Burkholderia cenocepacia. J. Bacteriol., 2004, 186(12), 3826-3836.
[http://dx.doi.org/10.1128/JB.186.12.3826-3836.2004] [PMID: 15175296]
[22]
Pereira, S.F.F.; Goss, L.; Dworkin, J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol. Mol. Biol. Rev., 2011, 75(1), 192-212.
[http://dx.doi.org/10.1128/MMBR.00042-10] [PMID: 21372323]
[23]
Janczarek, M.; Vinardell, J.M.; Lipa, P.; Karaś, M. Hanks-Type Serine/Threonine Protein Kinases and Phosphatases in Bacteria: Roles in signaling and adaptation to various environments. Int. J. Mol. Sci., 2018, 19(10), 2872.
[http://dx.doi.org/10.3390/ijms19102872] [PMID: 30248937]
[24]
Kannan, N.; Taylor, S.S.; Zhai, Y.; Venter, J.C.; Manning, G. Structural and functional diversity of the microbial kinome. PLoS Biol., 2007, 5(3), e17.
[http://dx.doi.org/10.1371/journal.pbio.0050017] [PMID: 17355172]
[25]
Grishin, A.M.; Cherney, M.; Anderson, D.H.; Phanse, S.; Babu, M.; Cygler, M. NleH defines a new family of bacterial effector kinases. Structure, 2014, 22(2), 250-259.
[http://dx.doi.org/10.1016/j.str.2013.11.006] [PMID: 24373767]
[26]
Shi, L.; Pigeonneau, N.; Ravikumar, V.; Dobrinic, P.; Macek, B.; Franjevic, D.; Noirot-Gros, M.F.; Mijakovic, I. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. Front. Microbiol., 2014, 5, 495.
[http://dx.doi.org/10.3389/fmicb.2014.00495] [PMID: 25278935]
[27]
Libby, E.A.; Goss, L.A.; Dworkin, J. The Eukaryotic-Like Ser/Thr Kinase PrkC regulates the essential walrk two-component system in bacillus subtilis. PLoS Genet., 2015, 11(6), e1005275.
[http://dx.doi.org/10.1371/journal.pgen.1005275] [PMID: 26102633]
[28]
Magaña, A.J.; Sklenicka, J.; Pinilla, C.; Giulianotti, M.; Chapagain, P.; Santos, R.; Ramirez, M.S.; Tolmasky, M.E. Restoring susceptibility to aminoglycosides: Identifying small molecule inhibitors of enzymatic inactivation. RSC Medicinal Chemistry, 2023, 14(9), 1591-1602.
[http://dx.doi.org/10.1039/D3MD00226H] [PMID: 37731693]
[29]
Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation. Ecosal Plus, 2018, 8(1)
[http://dx.doi.org/10.1128/ecosalplus.ESP-0002-2018] [PMID: 30447062]
[30]
Lebreton, F.; van Schaik, W.; Manson McGuire, A.; Godfrey, P.; Griggs, A.; Mazumdar, V.; Corander, J.; Cheng, L.; Saif, S.; Young, S.; Zeng, Q.; Wortman, J.; Birren, B.; Willems, R.J.L.; Earl, A.M.; Gilmore, M.S. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio, 2013, 4(4), e00534-e13.
[http://dx.doi.org/10.1128/mBio.00534-13] [PMID: 23963180]
[31]
Kwun, M.J.; Novotna, G.; Hesketh, A.R.; Hill, L.; Hong, H.J. In vivo studies suggest that induction of VanS-dependent vancomycin resistance requires binding of the drug to D-Ala-D-Ala termini in the peptidoglycan cell wall. Antimicrob. Agents Chemother., 2013, 57(9), 4470-4480.
[http://dx.doi.org/10.1128/AAC.00523-13] [PMID: 23836175]
[32]
Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther., 2014, 12(10), 1221-1236.
[http://dx.doi.org/10.1586/14787210.2014.956092] [PMID: 25199988]
[33]
Kellogg, S.L.; Little, J.L.; Hoff, J.S.; Kristich, C.J. Requirement of the CroRS two-component system for resistance to cell wall-targeting antimicrobials in Enterococcus faecium. Antimicrob. Agents Chemother., 2017, 61(5), e02461-e16.
[http://dx.doi.org/10.1128/AAC.02461-16] [PMID: 28223383]
[34]
Hunashal, Y.; Kumar, G.S.; Choy, M.S.; D’Andréa, É.D.; Da Silva Santiago, A.; Schoenle, M.V.; Desbonnet, C.; Arthur, M.; Rice, L.B.; Page, R.; Peti, W. Molecular basis of β-lactam antibiotic resistance of ESKAPE bacterium E. faecium Penicillin Binding Protein PBP5. Nat. Commun., 2023, 14(1), 4268.
[http://dx.doi.org/10.1038/s41467-023-39966-5] [PMID: 37460557]
[35]
Diaz, L.; Tran, T.T.; Munita, J.M.; Miller, W.R.; Rincon, S.; Carvajal, L.P.; Wollam, A.; Reyes, J.; Panesso, D.; Rojas, N.L.; Shamoo, Y.; Murray, B.E.; Weinstock, G.M.; Arias, C.A. Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin MICs. Antimicrob. Agents Chemother., 2014, 58(8), 4527-4534.
[http://dx.doi.org/10.1128/AAC.02686-14] [PMID: 24867964]
[36]
Guzmán Prieto, A.M.; Wijngaarden, J.; Braat, J.C.; Rogers, M.R.C.; Majoor, E.; Brouwer, E.C.; Zhang, X.; Bayjanov, J.R.; Bonten, M.J.M.; Willems, R.J.L.; van Schaik, W. The two-component system chtrs contributes to chlorhexidine tolerance in Enterococcus faecium. Antimicrob. Agents Chemother., 2017, 61(5), e02122-e16.
[http://dx.doi.org/10.1128/AAC.02122-16] [PMID: 28242664]
[37]
Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Author Correction: Biofilm-associated infection by enterococci. Nat. Rev. Microbiol., 2019, 17(2), 124.
[http://dx.doi.org/10.1038/s41579-018-0128-7] [PMID: 30459455]
[38]
Hancock, L.E.; Perego, M. The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J. Bacteriol., 2004, 186(17), 5629-5639.
[http://dx.doi.org/10.1128/JB.186.17.5629-5639.2004] [PMID: 15317767]
[39]
Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol., 2020, 10, 107.
[http://dx.doi.org/10.3389/fcimb.2020.00107] [PMID: 32257966]
[40]
Périchon, B.; Courvalin, P. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2009, 53(11), 4580-4587.
[http://dx.doi.org/10.1128/AAC.00346-09] [PMID: 19506057]
[41]
Miragaia, M. Factors contributing to the evolution of mecA-Mediated β-lactam resistance in staphylococci: Update and new insights from Whole Genome Sequencing (WGS). Front. Microbiol., 2018, 9, 2723.
[http://dx.doi.org/10.3389/fmicb.2018.02723] [PMID: 30483235]
[42]
Katayama, Y.; Sekine, M.; Hishinuma, T.; Aiba, Y.; Hiramatsu, K. Complete reconstitution of the vancomycin-intermediate staphylococcus aureus phenotype of strain Mu50 in Vancomycin-Susceptible S. aureus. Antimicrob. Agents Chemother., 2016, 60(6), 3730-3742.
[http://dx.doi.org/10.1128/AAC.00420-16] [PMID: 27067329]
[43]
Kraus, D.; Herbert, S.; Kristian, S.A.; Khosravi, A.; Nizet, V.; Götz, F.; Peschel, A. The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol., 2008, 8(1), 85.
[http://dx.doi.org/10.1186/1471-2180-8-85] [PMID: 18518949]
[44]
Meehl, M.; Herbert, S.; Götz, F.; Cheung, A. Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 2007, 51(8), 2679-2689.
[http://dx.doi.org/10.1128/AAC.00209-07] [PMID: 17502406]
[45]
Howden, B.P.; McEvoy, C.R.E.; Allen, D.L.; Chua, K.; Gao, W.; Harrison, P.F.; Bell, J.; Coombs, G.; Bennett-Wood, V.; Porter, J.L.; Robins-Browne, R.; Davies, J.K.; Seemann, T.; Stinear, T.P. Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog., 2011, 7(11), e1002359.
[http://dx.doi.org/10.1371/journal.ppat.1002359] [PMID: 22102812]
[46]
Yang, S.J.; Xiong, Y.Q.; Yeaman, M.R.; Bayles, K.W.; Abdelhady, W.; Bayer, A.S. Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob. Agents Chemother., 2013, 57(8), 3875-3882.
[http://dx.doi.org/10.1128/AAC.00412-13] [PMID: 23733465]
[47]
Bischoff, M.; Brelle, S.; Minatelli, S.; Molle, V. Stk1-mediated phosphorylation stimulates the DNA-binding properties of the Staphylococcus aureus SpoVG transcriptional factor. Biochem. Biophys. Res. Commun., 2016, 473(4), 1223-1228.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.044] [PMID: 27091430]
[48]
Liu, X.; Zhang, S.; Sun, B. SpoVG regulates cell wall metabolism and oxacillin resistance in methicillin-resistant staphylococcus aureus strain N315. Antimicrob. Agents Chemother., 2016, 60(6), 3455-3461.
[http://dx.doi.org/10.1128/AAC.00026-16] [PMID: 27001809]
[49]
Hackbarth, C.J.; Chambers, H.F. blaI and blaR1 regulate beta-lactamase and PBP 2a production in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1993, 37(5), 1144-1149.
[http://dx.doi.org/10.1128/AAC.37.5.1144] [PMID: 8517704]
[50]
Hürlimann-Dalel, R.L.; Ryffel, C.; Kayser, F.H.; Berger-Bächi, B. Survey of the methicillin resistance-associated genes mecA, mecR1-mecI, and femA-femB in clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1992, 36(12), 2617-2621.
[http://dx.doi.org/10.1128/AAC.36.12.2617] [PMID: 1362343]
[51]
Zheng, W.; Cai, X.; Li, S.; Li, Z. Autophosphorylation Mechanism of the Ser/Thr Kinase Stk1 From Staphylococcus aureus. Front. Microbiol., 2018, 9, 758.
[http://dx.doi.org/10.3389/fmicb.2018.00758] [PMID: 29731745]
[52]
Sun, F.; Ding, Y.; Ji, Q.; Liang, Z.; Deng, X.; Wong, C.C.L.; Yi, C.; Zhang, L.; Xie, S.; Alvarez, S.; Hicks, L.M.; Luo, C.; Jiang, H.; Lan, L.; He, C. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc. Natl. Acad. Sci. USA, 2012, 109(38), 15461-15466.
[http://dx.doi.org/10.1073/pnas.1205952109] [PMID: 22927394]
[53]
Lomas-Lopez, R.; Paracuellos, P.; Riberty, M.; Cozzone, A.J.; Duclos, B. Several enzymes of the central metabolism are phosphorylated in Staphylococcus aureus. FEMS Microbiol. Lett., 2007, 272(1), 35-42.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00742.x] [PMID: 17498211]
[54]
Leiba, J.; Hartmann, T.; Cluzel, M.E.; Cohen-Gonsaud, M.; Delolme, F.; Bischoff, M.; Molle, V. A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation. J. Biol. Chem., 2012, 287(52), 43607-43619.
[http://dx.doi.org/10.1074/jbc.M112.418913] [PMID: 23132867]
[55]
Mashruwala, A.A.; Gries, C.M.; Scherr, T.D.; Kielian, T.; Boyd, J.M. SaeRS is responsive to cellular respiratory status and regulates fermentative biofilm formation in staphylococcus aureus. Infect. Immun., 2017, 85(8), e00157-e17.
[http://dx.doi.org/10.1128/IAI.00157-17] [PMID: 28507069]
[56]
Dubrac, S.; Boneca, I.G.; Poupel, O.; Msadek, T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J. Bacteriol., 2007, 189(22), 8257-8269.
[http://dx.doi.org/10.1128/JB.00645-07] [PMID: 17827301]
[57]
Ericson, M.E.; Subramanian, C.; Frank, M.W.; Rock, C.O. Role of fatty acid kinase in cellular lipid homeostasis and SaeRS-dependent virulence factor expression in Staphylococcus aureus. MBio, 2017, 8(4), e00988-e17.
[http://dx.doi.org/10.1128/mBio.00988-17] [PMID: 28765222]
[58]
Vasu, D. Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech, 2015, 5(4), 505-512.
[59]
Vasu, D.; Kumar, P.S.; Prasad, U.V.; Swarupa, V.; Yeswanth, S.; Srikanth, L.; Sunitha, M.M.; Choudhary, A.; Sarma, P.V.G.K. Phosphorylation of staphylococcus aureus protein-tyrosine kinase affects the function of glucokinase and biofilm formation. Iran. Biomed. J., 2017, 21(2), 94-105.
[http://dx.doi.org/10.18869/acadpub.ibj.21.2.94] [PMID: 27695030]
[60]
Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[http://dx.doi.org/10.1016/S1473-3099(15)00424-7] [PMID: 26603172]
[61]
Doorduijn, D.J.; Rooijakkers, S.H.M.; van Schaik, W.; Bardoel, B.W. Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology, 2016, 221(10), 1102-1109.
[http://dx.doi.org/10.1016/j.imbio.2016.06.014] [PMID: 27364766]
[62]
Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[63]
Lee, C.R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: Epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front. Cell. Infect. Microbiol., 2017, 7, 483.
[http://dx.doi.org/10.3389/fcimb.2017.00483] [PMID: 29209595]
[64]
Srinivasan, V.B.; Vaidyanathan, V.; Mondal, A.; Rajamohan, G. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044. PLoS One, 2012, 7(4), e33777.
[http://dx.doi.org/10.1371/journal.pone.0033777] [PMID: 22496764]
[65]
Kidd, T.J.; Mills, G.; Sá-Pessoa, J.; Dumigan, A.; Frank, C.G.; Insua, J.L.; Ingram, R.; Hobley, L.; Bengoechea, J.A. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol. Med., 2017, 9(4), 430-447.
[http://dx.doi.org/10.15252/emmm.201607336] [PMID: 28202493]
[66]
Srinivasan, V.B.; Venkataramaiah, M.; Mondal, A.; Vaidyanathan, V.; Govil, T.; Rajamohan, G. Functional characterization of a novel outer membrane porin KpnO, regulated by PhoBR two-component system in Klebsiella pneumoniae NTUH-K2044. PLoS One, 2012, 7(7), e41505.
[http://dx.doi.org/10.1371/journal.pone.0041505] [PMID: 22848515]
[67]
Cannatelli, A.; Di Pilato, V.; Giani, T.; Arena, F.; Ambretti, S.; Gaibani, P.; D’Andrea, M.M.; Rossolini, G.M. In vivo evolution to colistin resistance by PmrB sensor kinase mutation in KPC-producing Klebsiella pneumoniae is associated with low-dosage colistin treatment. Antimicrob. Agents Chemother., 2014, 58(8), 4399-4403.
[http://dx.doi.org/10.1128/AAC.02555-14] [PMID: 24841267]
[68]
Cheng, Y.H.; Lin, T.L.; Lin, Y.T.; Wang, J.T. A putative RND-type efflux pump, H239_3064, contributes to colistin resistance through CrrB in Klebsiella pneumoniae. J. Antimicrob. Chemother., 2018, 73(6), 1509-1516.
[http://dx.doi.org/10.1093/jac/dky054] [PMID: 29506266]
[69]
Srinivasan, V.B.; Mondal, A.; Venkataramaiah, M.; Chauhan, N.K.; Rajamohan, G. Role of oxyR KP, a novel LysR-family transcriptional regulator, in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology, 2013, 159(Pt_7), 1301-1314.
[http://dx.doi.org/10.1099/mic.0.065052-0] [PMID: 23619002]
[70]
Padilla, E.; Llobet, E.; Doménech-Sánchez, A.; Martínez-Martínez, L.; Bengoechea, J.A.; Albertí, S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob. Agents Chemother., 2010, 54(1), 177-183.
[http://dx.doi.org/10.1128/AAC.00715-09] [PMID: 19858254]
[71]
Chen, D.; Zhao, Y.; Qiu, Y.; Xiao, L.; He, H.; Zheng, D.; Li, X.; Yu, X.; Xu, N.; Hu, X.; Chen, F.; Li, H.; Chen, Y. CusS-CusR two-component system mediates tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae. Front. Microbiol., 2020, 10, 3159.
[http://dx.doi.org/10.3389/fmicb.2019.03159] [PMID: 32047485]
[72]
Dean, C.R.; Barkan, D.T.; Bermingham, A.; Blais, J.; Casey, F.; Casarez, A.; Colvin, R.; Fuller, J.; Jones, A.K.; Li, C.; Lopez, S.; Metzger, L.E., IV; Mostafavi, M.; Prathapam, R.; Rasper, D.; Reck, F.; Ruzin, A.; Shaul, J.; Shen, X.; Simmons, R.L.; Skewes-Cox, P.; Takeoka, K.T.; Tamrakar, P.; Uehara, T.; Wei, J.R. Mode of Action of the Monobactam LYS228 and Mechanisms Decreasing In Vitro Susceptibility in Escherichia coli and Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2018, 62(10), e01200-e01218.
[http://dx.doi.org/10.1128/AAC.01200-18] [PMID: 30061293]
[73]
Ramos, P.I.P.; Custódio, M.G.F.; Quispe Saji, G.R.; Cardoso, T.; da Silva, G.L.; Braun, G.; Martins, W.M.B.S.; Girardello, R.; de Vasconcelos, A.T.R.; Fernández, E.; Gales, A.C.; Nicolás, M.F. The polymyxin B-induced transcriptomic response of a clinical, multidrug-resistant Klebsiella pneumoniae involves multiple regulatory elements and intracellular targets. BMC Genomics, 2016, 17(S8)(Suppl. 8), 737.
[http://dx.doi.org/10.1186/s12864-016-3070-y] [PMID: 27801293]
[74]
Dorman, M.J.; Feltwell, T.; Goulding, D.A.; Parkhill, J.; Short, F.L. The capsule regulatory network of Klebsiella pneumoniae defined by density-TraDISort. MBio, 2018, 9(6), e01863-e18.
[http://dx.doi.org/10.1128/mBio.01863-18] [PMID: 30459193]
[75]
Srinivasan, V.B.; Rajamohan, G. KpnEF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance. Antimicrob. Agents Chemother., 2013, 57(9), 4449-4462.
[http://dx.doi.org/10.1128/AAC.02284-12] [PMID: 23836167]
[76]
Lin, T.H.; Chen, Y.; Kuo, J.T.; Lai, Y.C.; Wu, C.C.; Huang, C.F.; Lin, C.T. Phosphorylated OmpR is required for type 3 fimbriae expression in Klebsiella pneumoniae under hypertonic conditions. Front. Microbiol., 2018, 9, 2405.
[http://dx.doi.org/10.3389/fmicb.2018.02405] [PMID: 30369914]
[77]
Singh, A.K.; Yadav, S.; Chauhan, B.S.; Nandy, N.; Singh, R.; Neogi, K.; Roy, J.K.; Srikrishna, S.; Singh, R.K.; Prakash, P. Classification of clinical isolates of Klebsiella pneumoniae based on their in vitro biofilm forming capabilities and elucidation of the biofilm matrix chemistry with special reference to the protein content. Front. Microbiol., 2019, 10, 669.
[http://dx.doi.org/10.3389/fmicb.2019.00669] [PMID: 31019496]
[78]
Poirel, L.; Bonnin, R.A.; Nordmann, P. Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life, 2011, 63(12), 1061-1067.
[http://dx.doi.org/10.1002/iub.532] [PMID: 21990280]
[79]
Bonnin, R.A.; Nordmann, P.; Poirel, L. Screening and deciphering antibiotic resistance in Acinetobacter baumannii: a state of the art. Expert Rev. Anti Infect. Ther., 2013, 11(6), 571-583.
[http://dx.doi.org/10.1586/eri.13.38] [PMID: 23750729]
[80]
Magnet, S.; Courvalin, P.; Lambert, T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother., 2001, 45(12), 3375-3380.
[http://dx.doi.org/10.1128/AAC.45.12.3375-3380.2001] [PMID: 11709311]
[81]
Martínez-Trejo, A.; Ruiz-Ruiz, J.M.; Gonzalez-Avila, L.U.; Saldaña-Padilla, A.; Hernández-Cortez, C.; Loyola-Cruz, M.A.; Bello-López, J.M.; Castro-Escarpulli, G. Evasion of antimicrobial activity in Acinetobacter baumannii by target site modifications: An effective resistance mechanism. Int. J. Mol. Sci., 2022, 23(12), 6582.
[http://dx.doi.org/10.3390/ijms23126582] [PMID: 35743027]
[82]
Lean, S.S.; Yeo, C.C.; Suhaili, Z.; Thong, K.L. Comparative genomics of two ST 195 carbapenem-resistant acinetobacter baumannii with different susceptibility to polymyxin revealed underlying resistance mechanism. Front. Microbiol., 2016, 6, 1445.
[http://dx.doi.org/10.3389/fmicb.2015.01445] [PMID: 26779129]
[83]
Bhagirath, A.Y.; Li, Y.; Patidar, R.; Yerex, K.; Ma, X.; Kumar, A.; Duan, K. Two component regulatory systems and antibiotic resistance in gram-negative pathogens. Int. J. Mol. Sci., 2019, 20(7), 1781.
[http://dx.doi.org/10.3390/ijms20071781] [PMID: 30974906]
[84]
Sun, J.R.; Perng, C.L.; Chan, M.C.; Morita, Y.; Lin, J.C.; Su, C.M.; Wang, W.Y.; Chang, T.Y.; Chiueh, T.S. A truncated AdeS kinase protein generated by ISAba1 insertion correlates with tigecycline resistance in Acinetobacter baumannii. PLoS One, 2012, 7(11), e49534.
[http://dx.doi.org/10.1371/journal.pone.0049534] [PMID: 23166700]
[85]
Lin, M.F.; Lin, Y.Y.; Yeh, H.W.; Lan, C.Y. Role of the BaeSR two-component system in the regulation of Acinetobacter baumannii adeAB genes and its correlation with tigecycline susceptibility. BMC Microbiol., 2014, 14(1), 119.
[http://dx.doi.org/10.1186/1471-2180-14-119] [PMID: 24885279]
[86]
Cerqueira, G.M.; Kostoulias, X.; Khoo, C.; Aibinu, I.; Qu, Y.; Traven, A.; Peleg, A.Y. A global virulence regulator in Acinetobacter baumannii and its control of the phenylacetic acid catabolic pathway. J. Infect. Dis., 2014, 210(1), 46-55.
[http://dx.doi.org/10.1093/infdis/jiu024] [PMID: 24431277]
[87]
Tipton, K.A.; Rather, P.N. An ompR-envZ two-component system ortholog regulates phase variation, osmotic tolerance, motility, and virulence in acinetobacter baumannii strain AB5075. J. Bacteriol., 2017, 199(3), e00705-e00716.
[http://dx.doi.org/10.1128/JB.00705-16] [PMID: 27872182]
[88]
Wang, L.; Wang, L. Acinetobacter baumannii biofilm resistance mechanisms and prevention and control of progress. Discuss. Clin. Cases., 2016, 3, 22-2.
[http://dx.doi.org/10.14725/dcc.v3n2p22]
[89]
Gedefie, A.; Demsiss, W.; Belete, M.A.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm formation and its role in disease pathogenesis: A review. Infect. Drug Resist., 2021, 14, 3711-3719.
[http://dx.doi.org/10.2147/IDR.S332051] [PMID: 34531666]
[90]
Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies. Front. Cell. Infect. Microbiol., 2021, 11, 665759.
[http://dx.doi.org/10.3389/fcimb.2021.665759] [PMID: 33937104]
[91]
Muller, C.; Plésiat, P.; Jeannot, K. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2011, 55(3), 1211-1221.
[http://dx.doi.org/10.1128/AAC.01252-10] [PMID: 21149619]
[92]
Swaraj Mohanty, B.B. Antimicrobial Resistance in Pseudomonas aeruginosa: A Concise Review; A One Health Perspective; IntechOpen, 2020.
[93]
Lau, C.H.F.; Krahn, T.; Gilmour, C.; Mullen, E.; Poole, K. AmgRS‐mediated envelope stress‐inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. MicrobiologyOpen, 2015, 4(1), 121-135.
[http://dx.doi.org/10.1002/mbo3.226] [PMID: 25450797]
[94]
Perron, K.; Caille, O.; Rossier, C.; van Delden, C.; Dumas, J.L.; Köhler, T. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem., 2004, 279(10), 8761-8768.
[http://dx.doi.org/10.1074/jbc.M312080200] [PMID: 14679195]
[95]
Caille, O.; Rossier, C.; Perron, K. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. J. Bacteriol., 2007, 189(13), 4561-4568.
[http://dx.doi.org/10.1128/JB.00095-07] [PMID: 17449606]
[96]
Macfarlane, E.L.A.; Kwasnicka, A.; Ochs, M.M.; Hancock, R.E.W. PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer‐membrane protein OprH and polymyxin B resistance. Mol. Microbiol., 1999, 34(2), 305-316.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01600.x] [PMID: 10564474]
[97]
Gutu, A.D.; Sgambati, N.; Strasbourger, P.; Brannon, M.K.; Jacobs, M.A.; Haugen, E.; Kaul, R.K.; Johansen, H.K.; Høiby, N.; Moskowitz, S.M. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob. Agents Chemother., 2013, 57(5), 2204-2215.
[http://dx.doi.org/10.1128/AAC.02353-12] [PMID: 23459479]
[98]
McPhee, J.B.; Lewenza, S.; Hancock, R.E.W. Cationic antimicrobial peptides activate a two‐component regulatory system, PmrA‐PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol., 2003, 50(1), 205-217.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03673.x] [PMID: 14507375]
[99]
Wilton, M.; Charron-Mazenod, L.; Moore, R.; Lewenza, S. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2016, 60(1), 544-553.
[http://dx.doi.org/10.1128/AAC.01650-15] [PMID: 26552982]
[100]
Sivaneson, M.; Mikkelsen, H.; Ventre, I.; Bordi, C.; Filloux, A. Two‐component regulatory systems in Pseudomonas aeruginosa: An intricate network mediating fimbrial and efflux pump gene expression. Mol. Microbiol., 2011, 79(5), 1353-1366.
[http://dx.doi.org/10.1111/j.1365-2958.2010.07527.x] [PMID: 21205015]
[101]
Chambonnier, G.; Roux, L.; Redelberger, D.; Fadel, F.; Filloux, A.; Sivaneson, M.; de Bentzmann, S.; Bordi, C. The hybrid histidine kinase lads forms a multicomponent signal transduction system with the GacS/GacA two-component system in pseudomonas aeruginosa. PLoS Genet., 2016, 12(5), e1006032.
[http://dx.doi.org/10.1371/journal.pgen.1006032] [PMID: 27176226]
[102]
Mikkelsen, H.; Hui, K.; Barraud, N.; Filloux, A. The pathogenicity island encoded PVRSR/RCSCB regulatory network controls biofilm formation and dispersal inP seudomonas aeruginosaPA 14. Mol. Microbiol., 2013, 89(3), 450-463.
[http://dx.doi.org/10.1111/mmi.12287] [PMID: 23750818]
[103]
Yeung, A.T.Y.; Bains, M.; Hancock, R.E.W. The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J. Bacteriol., 2011, 193(4), 918-931.
[http://dx.doi.org/10.1128/JB.00911-10] [PMID: 21169488]
[104]
Wang, Y.; Ha, U.; Zeng, L.; Jin, S. Regulation of membrane permeability by a two-component regulatory system in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2003, 47(1), 95-101.
[http://dx.doi.org/10.1128/AAC.47.1.95-101.2003] [PMID: 12499175]
[105]
Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci., 2020, 21(22), 8671.
[http://dx.doi.org/10.3390/ijms21228671] [PMID: 33212950]
[106]
Kulasekara, H.D.; Ventre, I.; Kulasekara, B.R.; Lazdunski, A.; Filloux, A.; Lory, S. A novel two‐component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol., 2005, 55(2), 368-380.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04402.x] [PMID: 15659157]
[107]
Morici, L.A.; Carterson, A.J.; Wagner, V.E.; Frisk, A.; Schurr, J.R.; zu Bentrup, K.H.; Hassett, D.J.; Iglewski, B.H.; Sauer, K.; Schurr, M.J. Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J. Bacteriol., 2007, 189(21), 7752-7764.
[http://dx.doi.org/10.1128/JB.01797-06] [PMID: 17766417]
[108]
Gooderham, W.J.; Hancock, R.E.W. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev., 2009, 33(2), 279-294.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00135.x] [PMID: 19243444]
[109]
Hsu, J.L.; Chen, H.C.; Peng, H.L.; Chang, H.Y. Characterization of the histidine-containing phosphotransfer protein B-mediated multistep phosphorelay system in Pseudomonas aeruginosa PAO1. J. Biol. Chem., 2008, 283(15), 9933-9944.
[http://dx.doi.org/10.1074/jbc.M708836200] [PMID: 18256026]
[110]
Hickman, J.W.; Tifrea, D.F.; Harwood, C.S. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA, 2005, 102(40), 14422-14427.
[http://dx.doi.org/10.1073/pnas.0507170102] [PMID: 16186483]
[111]
Borlee, B.R.; Goldman, A.D.; Murakami, K.; Samudrala, R.; Wozniak, D.J.; Parsek, M.R. Pseudomonas aeruginosa uses a cyclic‐di‐GMP‐regulated adhesin to reinforce the biofilm extracellular matrix. Mol. Microbiol., 2010, 75(4), 827-842.
[http://dx.doi.org/10.1111/j.1365-2958.2009.06991.x] [PMID: 20088866]
[112]
de Bentzmann, S.; Giraud, C.; Bernard, C.S.; Calderon, V.; Ewald, F.; Plésiat, P.; Nguyen, C.; Grunwald, D.; Attree, I.; Jeannot, K.; Fauvarque, M.O.; Bordi, C. Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog., 2012, 8(11), e1003052.
[http://dx.doi.org/10.1371/journal.ppat.1003052] [PMID: 23209420]
[113]
Kilmury, S.L.N.; Burrows, L.L. The Pseudomonas aeruginosa PilSR two-component system regulates both twitching and swimming motilities. MBio, 2018, 9(4), e01310-e01318.
[http://dx.doi.org/10.1128/mBio.01310-18] [PMID: 30042200]
[114]
Petrova, O.E.; Sauer, K. A novel signaling network essential for regulating Pseudomonas aeruginosa biofilm development. PLoS Pathog., 2009, 5(11), e1000668.
[http://dx.doi.org/10.1371/journal.ppat.1000668] [PMID: 19936057]
[115]
Van Alst, N.E.; Picardo, K.F.; Iglewski, B.H.; Haidaris, C.G. Nitrate sensing and metabolism modulate motility, biofilm formation, and virulence in Pseudomonas aeruginosa. Infect. Immun., 2007, 75(8), 3780-3790.
[http://dx.doi.org/10.1128/IAI.00201-07] [PMID: 17526746]
[116]
Davin-Regli, A.; Lavigne, J.P.; Pagès, J.M. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin. Microbiol. Rev., 2019, 32(4), e00002-e00019.
[http://dx.doi.org/10.1128/CMR.00002-19] [PMID: 31315895]
[117]
Paul-Satyaseela, M.; Hariharan, P.; Bharani, T.; Franklyne, J.S.; Biswas, P.; Solanki, S.S. Antibiotic susceptibility pattern of Enterobacteriaceae and non-fermenter Gram-negative clinical isolates of microbial resource orchid. J. Nat. Sci. Biol. Med., 2015, 6(1), 198-201.
[http://dx.doi.org/10.4103/0976-9668.149121] [PMID: 25810660]
[118]
Cai, S.J.; Inouye, M. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J. Biol. Chem., 2002, 277(27), 24155-24161.
[http://dx.doi.org/10.1074/jbc.M110715200] [PMID: 11973328]
[119]
Batchelor, E.; Walthers, D.; Kenney, L.J.; Goulian, M. The escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J. Bacteriol., 2005, 187(16), 5723-5731.
[http://dx.doi.org/10.1128/JB.187.16.5723-5731.2005] [PMID: 16077119]
[120]
Kurabayashi, K.; Hirakawa, Y.; Tanimoto, K.; Tomita, H.; Hirakawa, H. Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. J. Bacteriol., 2014, 196(2), 248-256.
[http://dx.doi.org/10.1128/JB.01151-13] [PMID: 24163343]
[121]
Masi, M.; Pinet, E.; Pagès, J.M. Complex response of the CpxAR two-component system to β-lactams on antibiotic resistance and envelope homeostasis in Enterobacteriaceae. Antimicrob. Agents Chemother., 2020, 64(6), e00291-e20.
[http://dx.doi.org/10.1128/AAC.00291-20] [PMID: 32229490]
[122]
Philippe, N.; Maigre, L.; Santini, S.; Pinet, E.; Claverie, J.M.; Davin-Régli, A.V.; Pagès, J.M.; Masi, M. In vivo evolution of bacterial resistance in two cases of enterobacter aerogenes infections during treatment with imipenem. PLoS One, 2015, 10(9), e0138828.
[http://dx.doi.org/10.1371/journal.pone.0138828] [PMID: 26398358]
[123]
Guérin, F.; Lallement, C.; Isnard, C.; Dhalluin, A.; Cattoir, V.; Giard, J.C. Landscape of Resistance-Nodulation-Cell Division (RND)-type efflux pumps in Enterobacter cloacae Complex. Antimicrob. Agents Chemother., 2016, 60(4), 2373-2382.
[http://dx.doi.org/10.1128/AAC.02840-15] [PMID: 26856831]
[124]
Rubin, E.J.; Herrera, C.M.; Crofts, A.A.; Trent, M.S. PmrD is required for modifications to escherichia coli endotoxin that promote antimicrobial resistance. Antimicrob. Agents Chemother., 2015, 59(4), 2051-2061.
[http://dx.doi.org/10.1128/AAC.05052-14] [PMID: 25605366]
[125]
Sacco, E.; Cortes, M.; Josseaume, N.; Rice, L.B.; Mainardi, J.L.; Arthur, M. Serine/threonine protein phosphatase-mediated control of the peptidoglycan cross-linking L,D-transpeptidase pathway in Enterococcus faecium. MBio, 2014, 5(4), e01446-e14.
[http://dx.doi.org/10.1128/mBio.01446-14] [PMID: 25006233]
[126]
Desbonnet, C.; Tait-Kamradt, A.; Garcia-Solache, M.; Dunman, P.; Coleman, J.; Arthur, M.; Rice, L.B. Involvement of the eukaryote-like kinase-phosphatase system and a protein that interacts with penicillin-binding protein 5 in emergence of cephalosporin resistance in cephalosporin-sensitive class A penicillin-binding protein mutants in enterococcus faecium. MBio, 2016, 7(2), e02188-e15.
[http://dx.doi.org/10.1128/mBio.02188-15] [PMID: 27048803]
[127]
Tran, T.T.; Panesso, D.; Gao, H.; Roh, J.H.; Munita, J.M.; Reyes, J.; Diaz, L.; Lobos, E.A.; Shamoo, Y.; Mishra, N.N.; Bayer, A.S.; Murray, B.E.; Weinstock, G.M.; Arias, C.A. Whole-genome analysis of a daptomycin-susceptible enterococcus faecium strain and its daptomycin-resistant variant arising during therapy. Antimicrob. Agents Chemother., 2013, 57(1), 261-268.
[http://dx.doi.org/10.1128/AAC.01454-12] [PMID: 23114757]
[128]
Yin, S.; Daum, R.S.; Boyle-Vavra, S. VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(1), 336-343.
[http://dx.doi.org/10.1128/AAC.50.1.336-343.2006] [PMID: 16377706]
[129]
Pence, M.A.; Haste, N.M.; Meharena, H.S.; Olson, J.; Gallo, R.L.; Nizet, V.; Kristian, S.A. Beta-Lactamase repressor BlaI modulates staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS One, 2015, 10(8), e0136605.
[http://dx.doi.org/10.1371/journal.pone.0136605] [PMID: 26305782]
[130]
Nielsen, L.E.; Snesrud, E.C.; Onmus-Leone, F.; Kwak, Y.I.; Avilés, R.; Steele, E.D.; Sutter, D.E.; Waterman, P.E.; Lesho, E.P. IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2014, 58(10), 6151-6156.
[http://dx.doi.org/10.1128/AAC.03053-14] [PMID: 25092708]
[131]
Palacios, M.; Miner, T.A.; Frederick, D.R.; Sepulveda, V.E.; Quinn, J.D.; Walker, K.A.; Miller, V.L. Identification of two regulators of virulence that are conserved in Klebsiella pneumoniae classical and hypervirulent strains. MBio, 2018, 9(4), e01443-e18.
[http://dx.doi.org/10.1128/mBio.01443-18] [PMID: 30087173]
[132]
Jaidane, N.; Naas, T.; Mansour, W.; Radhia, B.B.; Jerbi, S.; Boujaafar, N.; Bouallegue, O.; Bonnin, R.A. Genomic analysis of in vivo acquired resistance to colistin and rifampicin in Acinetobacter baumannii. Int. J. Antimicrob. Agents, 2018, 51(2), 266-269.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.10.016] [PMID: 29127051]
[133]
Marchand, I.; Damier-Piolle, L.; Courvalin, P.; Lambert, T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother., 2004, 48(9), 3298-3304.
[http://dx.doi.org/10.1128/AAC.48.9.3298-3304.2004] [PMID: 15328088]
[134]
Villegas, M.V.; Lolans, K.; Correa, A.; Kattan, J.N.; Lopez, J.A.; Quinn, J.P. First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing beta-lactamase. Antimicrob. Agents Chemother., 2007, 51(4), 1553-1555.
[http://dx.doi.org/10.1128/AAC.01405-06] [PMID: 17261621]
[135]
Giraud, C.; Bernard, C.S.; Calderon, V.; Yang, L.; Filloux, A.; Molin, S.; Fichant, G.; Bordi, C.; de Bentzmann, S. The PprA–PprB two‐component system activates CupE, the first non‐archetypal Pseudomonas aeruginosa chaperone–usher pathway system assembling fimbriae. Environ. Microbiol., 2011, 13(3), 666-683.
[http://dx.doi.org/10.1111/j.1462-2920.2010.02372.x] [PMID: 21091863]
[136]
Ryan, R.P.; Fouhy, Y.; Garcia, B.F.; Watt, S.A.; Niehaus, K.; Yang, L.; Tolker-Nielsen, T.; Dow, J.M. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol. Microbiol., 2008, 68(1), 75-86.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06132.x] [PMID: 18312265]
[137]
Kreamer, N.N.; Costa, F.; Newman, D.K. The ferrous iron-responsive BqsRS two-component system activates genes that promote cationic stress tolerance. MBio, 2015, 6(2), e02549-e14.
[http://dx.doi.org/10.1128/mBio.02549-14] [PMID: 25714721]
[138]
Ruer, S.; Stender, S.; Filloux, A.; de Bentzmann, S. Assembly of fimbrial structures in Pseudomonas aeruginosa: Functionality and specificity of chaperone-usher machineries. J. Bacteriol., 2007, 189(9), 3547-3555.
[http://dx.doi.org/10.1128/JB.00093-07] [PMID: 17293418]
[139]
Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol., 2014, 5, 643.
[http://dx.doi.org/10.3389/fmicb.2014.00643] [PMID: 25505462]
[140]
Johnston, T.; Hendricks, G.L.; Shen, S.; Chen, R.F.; Kwon, B.; Kelso, M.J.; Kim, W.; Burgwyn Fuchs, B.; Mylonakis, E. Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant Staphylococcus aureus and potentiates the activity of gentamicin. Future Med. Chem., 2016, 8(16), 1941-1952.
[http://dx.doi.org/10.4155/fmc-2016-0104] [PMID: 27652456]
[141]
Cheng, Y.; Schorey, J.S.; Zhang, C.C.; Tan, X. Protein kinase inhibitors as potential antimicrobial drugs against tuberculosis, Malaria and HIV. Curr. Pharm. Des., 2017, 23(29), 4369-4389.
[PMID: 28606053]
[142]
Nishal, S.; Jhawat, V.; Gupta, S.; Phaugat, P. Utilization of kinase inhibitors as novel therapeutic drug targets: A review. Oncol. Res., 2022, 30(5), 221-230.
[http://dx.doi.org/10.32604/or.2022.027549] [PMID: 37305347]
[143]
Le, P.; Kunold, E.; Macsics, R.; Rox, K.; Jennings, M.C.; Ugur, I.; Reinecke, M.; Chaves-Moreno, D.; Hackl, M.W.; Fetzer, C.; Mandl, F.A.M.; Lehmann, J.; Korotkov, V.S.; Hacker, S.M.; Kuster, B.; Antes, I.; Pieper, D.H.; Rohde, M.; Wuest, W.M.; Medina, E.; Sieber, S.A. Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nat. Chem., 2020, 12(2), 145-158.
[http://dx.doi.org/10.1038/s41557-019-0378-7] [PMID: 31844194]
[144]
Tiwari, S.; Jamal, S.B.; Hassan, S.S.; Carvalho, P.V.S.D.; Almeida, S.; Barh, D.; Ghosh, P.; Silva, A.; Castro, T.L.P.; Azevedo, V. Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: An overview. Front. Microbiol., 2017, 8, 1878.
[http://dx.doi.org/10.3389/fmicb.2017.01878] [PMID: 29067003]
[145]
Bem, A.E.; Velikova, N.; Pellicer, M.T.; Baarlen, P.; Marina, A.; Wells, J.M. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol., 2015, 10(1), 213-224.
[http://dx.doi.org/10.1021/cb5007135] [PMID: 25436989]
[146]
Ulijasz, A.T.; Weisblum, B. Dissecting the VanRS signal transduction pathway with specific inhibitors. J. Bacteriol., 1999, 181(2), 627-631.
[http://dx.doi.org/10.1128/JB.181.2.627-631.1999] [PMID: 9882679]
[147]
Weidner-Wells, M.A.; Ohemeng, K.A.; Nguyen, V.N.; Fraga-Spano, S.; Macielag, M.J.; Werblood, H.M.; Foleno, B.D.; Webb, G.C.; Barrett, J.F.; Hlasta, D.J. Amidino benzimidazole inhibitors of bacterial two-component systems. Bioorg. Med. Chem. Lett., 2001, 11(12), 1545-1548.
[http://dx.doi.org/10.1016/S0960-894X(01)00024-5] [PMID: 11412977]
[148]
Barrett, J.F.; Goldschmidt, R.M.; Lawrence, L.E.; Foleno, B.; Chen, R.; Demers, J.P.; Johnson, S.; Kanojia, R.; Fernandez, J.; Bernstein, J.; Licata, L.; Donetz, A.; Huang, S.; Hlasta, D.J.; Macielag, M.J.; Ohemeng, K.; Frechette, R.; Frosco, M.B.; Klaubert, D.H.; Whiteley, J.M.; Wang, L.; Hoch, J.A. Antibacterial agents that inhibit two-component signal transduction systems. Proc. Natl. Acad. Sci. USA, 1998, 95(9), 5317-5322.
[http://dx.doi.org/10.1073/pnas.95.9.5317] [PMID: 9560273]
[149]
Kanojia, R.M.; Murray, W.; Bernstein, J.; Fernandez, J.; Foleno, B.D.; Krause, H.; Lawrence, L.; Webb, G.; Barrett, J.F. 6-Oxa isosteres of anacardic acids as potent inhibitors of bacterial histidine protein kinase (HPK)-mediated two-component regulatory systems. Bioorg. Med. Chem. Lett., 1999, 9(20), 2947-2952.
[http://dx.doi.org/10.1016/S0960-894X(99)00508-9] [PMID: 10571153]
[150]
Roychoudhury, S.; Blondelle, S.E.; Collins, S.M.; Davis, M.C.; McKeever, H.D.; Houghten, R.A.; Parker, C.N. Use of combinatorial library screening to identify inhibitors of a bacterial two-component signal transduction kinase. Mol. Divers., 1998, 4(3), 173-182.
[http://dx.doi.org/10.1023/A:1009695718427] [PMID: 10729902]
[151]
Foster, J.E.; Sheng, Q.; McClain, J.R.; Bures, M.; Nicas, T.I.; Henry, K.; Winkler, M.E.; Gilmour, R. Kinetic and mechanistic analyses of new classes of inhibitors of two-component signal transduction systems using a coupled assay containing HpkA–DrrA from Thermotoga maritima. Microbiology, 2004, 150(4), 885-896.
[http://dx.doi.org/10.1099/mic.0.26824-0] [PMID: 15073298]
[152]
Sui, Z.; Guan, J.; Hlasta, D.J.; Macielag, M.J.; Foleno, B.D.; Goldschmidt, R.M.; Loeloff, M.J.; Webb, G.C.; Barrett, J.F. SAR studies of diaryltriazoles against bacterial two-component regulatory systems and their antibacterial activities. Bioorg. Med. Chem. Lett., 1998, 8(14), 1929-1934.
[http://dx.doi.org/10.1016/S0960-894X(98)00325-4] [PMID: 9873461]
[153]
Hilliard, J.J. Multiple mechanisms of action for inhibitors of histidine protein kinase from bacterial two-component systems, abstr. F-161In Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology; , 1998, p. 273.
[154]
Mueller-Premru, M.; Zidar, N.; Cvitković Špik, V.; Krope, A.; Kikelj, D. Benzoxazine series of histidine kinase inhibitors as potential antimicrobial agents with activity against enterococci. Chemotherapy, 2009, 55(6), 414-417.
[http://dx.doi.org/10.1159/000263228] [PMID: 19955747]
[155]
Kawatkar, S.P.; Keating, T.A.; Olivier, N.B.; Breen, J.N.; Green, O.M.; Guler, S.Y.; Hentemann, M.F.; Loch, J.T.; McKenzie, A.R.; Newman, J.V.; Otterson, L.G.; Martínez-Botella, G. Antibacterial inhibitors of Gram-positive thymidylate kinase: structure-activity relationships and chiral preference of a new hydrophobic binding region. J. Med. Chem., 2014, 57(11), 4584-4597.
[http://dx.doi.org/10.1021/jm500463c] [PMID: 24828090]
[156]
Bonde, M.; Højland, D.H.; Kolmos, H.J.; Kallipolitis, B.H.; Klitgaard, J.K. Thioridazine affects transcription of genes involved in cell wall biosynthesis in methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett., 2011, 318(2), 168-176.
[http://dx.doi.org/10.1111/j.1574-6968.2011.02255.x] [PMID: 21375577]
[157]
Okada, A.; Igarashi, M.; Okajima, T.; Kinoshita, N.; Umekita, M.; Sawa, R.; Inoue, K.; Watanabe, T.; Doi, A.; Martin, A.; Quinn, J.; Nishimura, Y.; Utsumi, R. Walkmycin B targets WalK (YycG), a histidine kinase essential for bacterial cell growth. J. Antibiot., 2010, 63(2), 89-94.
[http://dx.doi.org/10.1038/ja.2009.128] [PMID: 20057515]
[158]
Igarashi, M.; Watanabe, T.; Hashida, T.; Umekita, M.; Hatano, M.; Yanagida, Y.; Kino, H.; Kimura, T.; Kinoshita, N.; Inoue, K.; Sawa, R.; Nishimura, Y.; Utsumi, R.; Nomoto, A. Waldiomycin, a novel WalK-histidine kinase inhibitor from Streptomyces sp. MK844-mF10. J. Antibiot., 2013, 66(8), 459-464.
[http://dx.doi.org/10.1038/ja.2013.33] [PMID: 23632918]
[159]
Velikova, N.; Fulle, S.; Manso, A.S.; Mechkarska, M.; Finn, P.; Conlon, J.M.; Oggioni, M.R.; Wells, J.M.; Marina, A. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Sci. Rep., 2016, 6(1), 26085.
[http://dx.doi.org/10.1038/srep26085] [PMID: 27173778]
[160]
Yamamoto, K.; Kitayama, T.; Ishida, N.; Watanabe, T.; Tanabe, H.; Takatani, M.; Okamoto, T.; Utsumi, R. Identification and characterization of a potent antibacterial agent, NH125 against drug-resistant bacteria. Biosci. Biotechnol. Biochem., 2000, 64(4), 919-923.
[http://dx.doi.org/10.1271/bbb.64.919] [PMID: 10830522]
[161]
Al Akeel, R.; Mateen, A.; Syed, R.; Alqahtani, M.S.; Alqahtani, A.S. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein. Microb. Pathog., 2018, 121, 115-122.
[http://dx.doi.org/10.1016/j.micpath.2018.05.010] [PMID: 29758266]
[162]
Vornhagen, J.; Burnside, K.; Whidbey, C.; Berry, J.; Qin, X.; Rajagopal, L. Kinase inhibitors that increase the sensitivity of methicillin resistant staphylococcus aureus to β-Lactam antibiotics. Pathogens, 2015, 4(4), 708-721.
[http://dx.doi.org/10.3390/pathogens4040708] [PMID: 26506394]
[163]
Kant, S.; Asthana, S.; Missiakas, D.; Pancholi, V. A novel STK1-targeted small-molecule as an “antibiotic resistance breaker” against multidrug-resistant Staphylococcus aureus. Sci. Rep., 2017, 7(1), 5067.
[http://dx.doi.org/10.1038/s41598-017-05314-z] [PMID: 28698584]
[164]
Bruchhagen, C.; Jarick, M.; Mewis, C.; Hertlein, T.; Niemann, S.; Ohlsen, K.; Peters, G.; Planz, O.; Ludwig, S.; Ehrhardt, C. Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound. Sci. Rep., 2018, 8(1), 9114.
[http://dx.doi.org/10.1038/s41598-018-27445-7] [PMID: 29904167]
[165]
Cutrona, N.; Gillard, K.; Ulrich, R.; Seemann, M.; Miller, H.B.; Blackledge, M.S. From antihistamine to anti-infective: loratadine inhibition of regulatory PASTA kinases in staphylococci reduces biofilm formation and potentiates β-Lactam antibiotics and vancomycin in resistant strains of Staphylococcus aureus. ACS Infect. Dis., 2019, 5(8), 1397-1410.
[http://dx.doi.org/10.1021/acsinfecdis.9b00096] [PMID: 31132246]
[166]
Schaenzer, A.J.; Wlodarchak, N.; Drewry, D.H.; Zuercher, W.J.; Rose, W.E.; Ferrer, C.A.; Sauer, J.D.; Striker, R. GW779439X and its pyrazolopyridazine derivatives inhibit the serine/threonine kinase Stk1 and act as antibiotic adjuvants against β-lactam-resistant Staphylococcus aureus. ACS Infect. Dis., 2018, 4(10), 1508-1518.
[http://dx.doi.org/10.1021/acsinfecdis.8b00136] [PMID: 30059625]
[167]
Ramos, P.I.P.; Fernández Do Porto, D.; Lanzarotti, E.; Sosa, E.J.; Burguener, G.; Pardo, A.M.; Klein, C.C.; Sagot, M.F.; de Vasconcelos, A.T.R.; Gales, A.C.; Marti, M.; Turjanski, A.G.; Nicolás, M.F. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci. Rep., 2018, 8(1), 10755.
[http://dx.doi.org/10.1038/s41598-018-28916-7] [PMID: 30018343]
[168]
Thompson, R.J.; Bobay, B.G.; Stowe, S.D.; Olson, A.L.; Peng, L.; Su, Z.; Actis, L.A.; Melander, C.; Cavanagh, J. Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-Aminoimidazole-based antibiofilm agent. Biochemistry, 2012, 51(49), 9776-9778.
[http://dx.doi.org/10.1021/bi3015289] [PMID: 23186243]
[169]
Sivaranjani, M.; Srinivasan, R.; Aravindraja, C.; Karutha Pandian, S.; Veera Ravi, A. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms-an in vitro study. Biofouling, 2018, 34(5), 579-593.
[http://dx.doi.org/10.1080/08927014.2018.1473387] [PMID: 29869541]
[170]
Roychoudhury, S.; Zielinski, N.A.; Ninfa, A.J.; Allen, N.E.; Jungheim, L.N.; Nicas, T.I.; Chakrabarty, A.M. Inhibitors of two-component signal transduction systems: Inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 1993, 90(3), 965-969.
[http://dx.doi.org/10.1073/pnas.90.3.965] [PMID: 8381538]
[171]
Goswami, M.; Espinasse, A.; Carlson, E.E. Disarming the virulence arsenal of Pseudomonas aeruginosa by blocking two-component system signaling. Chem. Sci., 2018, 9(37), 7332-7337.
[http://dx.doi.org/10.1039/C8SC02496K] [PMID: 30542536]
[172]
Choi, J.Y.; Plummer, M.S.; Starr, J.; Desbonnet, C.R.; Soutter, H.; Chang, J.; Miller, J.R.; Dillman, K.; Miller, A.A.; Roush, W.R. Structure guided development of novel thymidine mimetics targeting Pseudomonas aeruginosa thymidylate kinase: from hit to lead generation. J. Med. Chem., 2012, 55(2), 852-870.
[http://dx.doi.org/10.1021/jm201349f] [PMID: 22243413]
[173]
Cathcart, G.R.A.; Quinn, D.; Greer, B.; Harriott, P.; Lynas, J.F.; Gilmore, B.F.; Walker, B. Novel inhibitors of the Pseudomonas aeruginosa virulence factor LasB: A potential therapeutic approach for the attenuation of virulence mechanisms in pseudomonal infection. Antimicrob. Agents Chemother., 2011, 55(6), 2670-2678.
[http://dx.doi.org/10.1128/AAC.00776-10] [PMID: 21444693]
[174]
Rasko, D.A.; Moreira, C.G.; Li, D.R.; Reading, N.C.; Ritchie, J.M.; Waldor, M.K.; Williams, N.; Taussig, R.; Wei, S.; Roth, M.; Hughes, D.T.; Huntley, J.F.; Fina, M.W.; Falck, J.R.; Sperandio, V. Targeting QseC signaling and virulence for antibiotic development. Science, 2008, 321(5892), 1078-1080.
[http://dx.doi.org/10.1126/science.1160354] [PMID: 18719281]
[175]
Theodorou, E.C.; Theodorou, M.C.; Kyriakidis, D.A. Inhibition of the signal transduction through the AtoSC system by histidine kinase inhibitors in Escherichia coli. Cell. Signal., 2011, 23(8), 1327-1337.
[http://dx.doi.org/10.1016/j.cellsig.2011.03.015] [PMID: 21443947]
[176]
Müller, C.W.; Schulz, G.E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution. J. Mol. Biol., 1992, 224(1), 159-177.
[http://dx.doi.org/10.1016/0022-2836(92)90582-5] [PMID: 1548697]
[177]
Sevransky, J.E.; Shaked, G.; Novogrodsky, A.; Levitzki, A.; Gazit, A.; Hoffman, A.; Elin, R.J.; Quezado, Z.M.; Freeman, B.D.; Eichacker, P.Q.; Danner, R.L.; Banks, S.M.; Bacher, J.; Thomas, M.L., III; Natanson, C. Tyrphostin AG 556 improves survival and reduces multiorgan failure in canine Escherichia coli peritonitis. J. Clin. Invest., 1997, 99(8), 1966-1973.
[http://dx.doi.org/10.1172/JCI119364] [PMID: 9109441]
[178]
Hrast, M.; Rožman, K.; Ogris, I.; Škedelj, V.; Patin, D.; Sova, M.; Barreteau, H.; Gobec, S.; Grdadolnik, S.G.; Zega, A. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1010-1017.
[http://dx.doi.org/10.1080/14756366.2019.1608981] [PMID: 31072165]
[179]
Ghatge, M.S.; Contestabile, R.; di Salvo, M.L.; Desai, J.V.; Gandhi, A.K.; Camara, C.M.; Florio, R.; González, I.N.; Parroni, A.; Schirch, V.; Safo, M.K. Pyridoxal 5′-phosphate is a slow tight binding inhibitor of E. coli pyridoxal kinase. PLoS One, 2012, 7(7), e41680.
[http://dx.doi.org/10.1371/journal.pone.0041680] [PMID: 22848564]
[180]
Gharehbeglou, M.; Arjmand, G.; Haeri, M.R.; Khazeni, M. Nonselective mevalonate kinase inhibitor as a novel class of antibacterial agents. Cholesterol, 2015, 2015, 1-3.
[http://dx.doi.org/10.1155/2015/147601] [PMID: 25692035]
[181]
Wang, J.H.; Zhou, Y.J.; He, P.; Chen, B.Y. Roles of mitogen-activated protein kinase pathways during Escherichia coli-induced apoptosis in U937 cells. Apoptosis, 2007, 12(2), 375-385.
[http://dx.doi.org/10.1007/s10495-006-0623-6] [PMID: 17191113]
[182]
Bravo-Santano, N.; Stölting, H.; Cooper, F.; Bileckaja, N.; Majstorovic, A.; Ihle, N.; Mateos, L.M.; Calle, Y.; Behrends, V.; Letek, M. Host-directed kinase inhibitors act as novel therapies against intracellular Staphylococcus aureus. Sci. Rep., 2019, 9(1), 4876.
[http://dx.doi.org/10.1038/s41598-019-41260-8] [PMID: 30890742]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy