Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Review Article

Therapeutic Potential and Clinical Effectiveness of Quercetin: A Dietary Supplement

Author(s): Vishakha Devi, Geeta Deswal, Rameshwar Dass, Bhawna Chopra, Priyanka Kriplani, Ajmer Singh Grewal, Kumar Guarve and Ashwani K. Dhingra*

Volume 15, Issue 1, 2024

Published on: 22 January, 2024

Page: [13 - 32] Pages: 20

DOI: 10.2174/012772574X269376231107095831

Price: $65

Abstract

Fruits and vegetables (like apples, citrus, grapes, onions, parsley, etc.) are the primary dietary sources of quercetin. In addition, isolated quercetin is also available on the market as a dietary supplement with a daily dose of up to 1000 mg/d. The objective of the present study is to explore the therapeutic potential and clinical efficacy of quercetin as a dietary supplement. The present paper highlights the safety parameters and clinical trial studies with several targets reviewed from the data available on PubMed, Science Direct, ClinicalTrails. gov, and from many reputed foundations. The results of the studies prove the unique position of quercetin in the treatment of various disorders and the possibility of using phytochemicals such as quercetin for an efficient cure. As evidenced by the numerous published reports on human interventions, it has been concluded that quercetin intake significantly improves disease conditions with minimal adverse effects.

Graphical Abstract

[1]
Mutlu Gençkal, H.; Erkisa, M.; Alper, P.; Sahin, S.; Ulukaya, E.; Ari, F. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: Synthesis, characterization, anticancer and anti-oxidant activity. J. Biol. Inorg. Chem., 2020, 25(1), 161-177.
[http://dx.doi.org/10.1007/s00775-019-01749-z] [PMID: 31832781]
[2]
Andres, S.; Pevny, S.; Ziegenhagen, R.; Bakhiya, N.; Schäfer, B.; Hirsch-Ernst, K.I.; Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Mol. Nutr. Food Res., 2018, 62(1), 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[3]
Parasuraman, S.; Anand David, A.V.; Arulmoli, R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[4]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[5]
Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev. Med. Chem., 2020, 20(15), 1475-1488.
[http://dx.doi.org/10.2174/1389557519666190617150051] [PMID: 31288717]
[6]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D. Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[7]
Ghoreishi, S.M.; Hedayati, A.; Mousavi, S.O. Quercetin extraction from Rosa damascena Mill via supercritical CO2: Neural network and adaptive neuro fuzzy interface system modeling and response surface optimization. J. Supercrit. Fluids, 2016, 112, 57-66.
[http://dx.doi.org/10.1016/j.supflu.2016.02.006]
[8]
Elumalai, P.; Lakshmi, S. Role of quercetin benefits in neurodegeneration. Adv. Neurobiol., 2016, 12, 229-245.
[http://dx.doi.org/10.1007/978-3-319-28383-8_12] [PMID: 27651256]
[9]
Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules, 2017, 22(8), 1270.
[http://dx.doi.org/10.3390/molecules22081270] [PMID: 28758919]
[10]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[11]
Nishimuro, H.; Ohnishi, H.; Sato, M.; Ohnishi-Kameyama, M.; Matsunaga, I.; Naito, S.; Ippoushi, K.; Oike, H.; Nagata, T.; Akasaka, H.; Saitoh, S.; Shimamoto, K.; Kobori, M. Estimated daily intake and seasonal food sources of quercetin in Japan. Nutrients, 2015, 7(4), 2345-2358.
[http://dx.doi.org/10.3390/nu7042345] [PMID: 25849945]
[12]
Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem., 2015, 179, 305-310.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.006] [PMID: 25722169]
[13]
Dai, Y.; Row, K.H. Application of natural deep eutectic solvents in the extraction of quercetin from vegetables. Molecules, 2019, 24(12), 2300.
[http://dx.doi.org/10.3390/molecules24122300] [PMID: 31234347]
[14]
Ferenczyova, K.; Kalocayova, B.; Bartekova, M. Potential implications of quercetin and its derivatives in cardioprotection. Int. J. Mol. Sci., 2020, 21(5), 1585.
[http://dx.doi.org/10.3390/ijms21051585] [PMID: 32111033]
[15]
Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of Quercetin, a Polyphenol, on Blood Pressure. Molecules, 2017, 22(2), 209.
[http://dx.doi.org/10.3390/molecules22020209] [PMID: 28146071]
[16]
Maleki Dana, P.; Sadoughi, F.; Asemi, Z.; Yousefi, B. Anti-cancer properties of quercetin in osteosarcoma. Cancer Cell Int., 2021, 21(1), 349.
[http://dx.doi.org/10.1186/s12935-021-02067-8] [PMID: 34225730]
[17]
Nwaeburu, C.C.; Abukiwan, A.; Zhao, Z.; Herr, I. RETRACTED ARTICLE: Quercetin-induced miR-200b-3p regulates the mode of self-renewing divisions in pancreatic cancer. Mol. Cancer, 2017, 16(1), 23.
[http://dx.doi.org/10.1186/s12943-017-0589-8] [PMID: 28137273]
[18]
Xu, D.; Hu, M.J.; Wang, Y.Q.; Cui, Y.L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 2019, 24(6), 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[19]
Wang, Z.; Yang, L.; Cui, S.; Liang, Y.; Zhang, X. Synthesis and anti-hypertensive effects of the twin drug of nicotinic acid and quercetin tetramethyl ether. Molecules, 2014, 19(4), 4791-4801.
[http://dx.doi.org/10.3390/molecules19044791] [PMID: 24743936]
[20]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in Alzheimer’s Disease. Biomolecules, 2019, 10(1), 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[21]
Gu, Y.Y.; Zhang, M.; Cen, H.; Wu, Y.F.; Lu, Z.; Lu, F.; Liu, X.S.; Lan, H.Y. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS One, 2021, 16(1), e0245209.
[http://dx.doi.org/10.1371/journal.pone.0245209] [PMID: 33444408]
[22]
Noman, O.M.; Mothana, R.A.; Al-Rehaily, A.J. Al qahtani, A.S.; Nasr, F.A.; Khaled, J.M.; Alajmi, M.F.; Al-Said, M.S. Phytochemical analysis and anti-diabetic, anti-inflammatory and antioxidant activities of Loranthus acaciae Zucc. Grown in Saudi Arabia. Saudi Pharm. J., 2019, 27(5), 724-730.
[http://dx.doi.org/10.1016/j.jsps.2019.04.008] [PMID: 31297028]
[23]
Shen, C.Y.; Jiang, J.G.; Yang, L.; Wang, D.W.; Zhu, W. Antiageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br. J. Pharmacol., 2017, 174(11), 1395-1425.
[http://dx.doi.org/10.1111/bph.13631] [PMID: 27659301]
[24]
Miraj, S.; Rafieian-Kopaei; Kiani, S. Melissa officinalis L: A review study with an antioxidant prospective. J. Evid. Based Complementary Altern. Med., 2017, 22(3), 385-394.
[http://dx.doi.org/10.1177/2156587216663433] [PMID: 27620926]
[25]
Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem., 2015, 26(3), 201-210.
[http://dx.doi.org/10.1016/j.jnutbio.2014.10.008] [PMID: 25468612]
[26]
Lan, H.; Hong, W.; Fan, P.; Qian, D.; Zhu, J.; Bai, B. Quercetin inhibits cell migration and invasion in human osteosarcoma cells. Cell. Physiol. Biochem., 2017, 43(2), 553-567.
[http://dx.doi.org/10.1159/000480528] [PMID: 28965117]
[27]
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and Vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol., 2020, 11, 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[28]
Ko, E.Y.; Nile, S.H.; Sharma, K.; Li, G.H.; Park, S.W. Effect of different exposed lights on quercetin and quercetin glucoside content in onion (Allium cepa L.). Saudi J. Biol. Sci., 2015, 22(4), 398-403.
[http://dx.doi.org/10.1016/j.sjbs.2014.11.012] [PMID: 26150744]
[29]
Sharifi, N.; Mahernia, S.; Amanlou, M. Comparison of different methods in quercetin extraction from leaves of Raphanus sativus L. Ulum-i Daruyi, 2017, 23(1), 59-65.
[http://dx.doi.org/10.15171/PS.2017.09]
[30]
Wei, M.; Zhao, R.; Peng, X.; Feng, C.; Gu, H.; Yang, L. Ultrasound-assisted extraction of taxifolin, diosmin, and quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics. Molecules, 2020, 25(6), 1401.
[http://dx.doi.org/10.3390/molecules25061401] [PMID: 32204461]
[31]
Fan, Z.; Yi, Y.; Ping, S.; Zhenku, G. Microwave-assisted extraction of rutin and quercetin from the stalks of <em>Euonymus alatus</em> (Thunb.). Sieb., 2009, 20(1), 33-37.
[32]
Kumar, B.; Smita, K.; Kumar, B.; Cumbal, L.; Rosero, G. Microwave-assisted extraction and solid-phase separation of quercetin from solid onion (Allium cepa L.). Sep. Sci. Technol., 2014, 49(16), 2502-2509.
[http://dx.doi.org/10.1080/01496395.2014.933982]
[33]
He, L.; Zhou, Z.; Fang, Z.; Jin, H.; Chen, Y. Selective monomethylation of quercetin. Synthesis, 2010, 2010(23), 3980-3986.
[http://dx.doi.org/10.1055/s-0030-1258310]
[34]
Docampo-Palacios, M.L.; Alvarez-Hernández, A.; Adiji, O.; Gamiotea-Turro, D.; Valerino-Diaz, A.B.; Viegas, L.P.; Ndukwe, I.E.; de Fátima, Â.; Heiss, C.; Azadi, P.; Pasinetti, G.M.; Dixon, R.A. Glucuronidation of methylated quercetin derivatives: Chemical and biochemical approaches. J. Agric. Food Chem., 2020, 68(50), 14790-14807.
[http://dx.doi.org/10.1021/acs.jafc.0c04500] [PMID: 33289379]
[35]
Ren, X.; Shen, L.; Muraoka, O.; Cheng, M. Synthesis of Quercetin 3- O -[6 ″-O -(trans-p -Coumaroyl)]- β -D-Glucopyranoside. J. Carbohydr. Chem., 2011, 30(3), 119-131.
[http://dx.doi.org/10.1080/07328303.2011.616979]
[36]
Zaplatic, E.; Bule, M.; Shah, S.Z.A.; Uddin, M.S.; Niaz, K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci., 2019, 224, 109-119.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[37]
Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M. Quercetin in food: Possible mechanisms of its effect on memory. J. Food Sci., 2018, 83(9), 2280-2287.
[http://dx.doi.org/10.1111/1750-3841.14317] [PMID: 30103275]
[38]
Sacks, D.; Baxter, B.; Campbell, B.C.V.; Carpenter, J.S.; Cognard, C.; Dippel, D.; Eesa, M.; Fischer, U.; Hausegger, K.; Hirsch, J.A.; Shazam Hussain, M.; Jansen, O.; Jayaraman, M.V.; Khalessi, A.A.; Kluck, B.W.; Lavine, S.; Meyers, P.M.; Ramee, S.; Rüfenacht, D.A.; Schirmer, C.M.; Vorwerk, D. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke, 2018, 13(6), 612-632.
[PMID: 29786478]
[39]
Xu, M.; Pirtskhalava, T.; Farr, J.N.; Weigand, B.M.; Palmer, A.K.; Weivoda, M.M.; Inman, C.L.; Ogrodnik, M.B.; Hachfeld, C.M.; Fraser, D.G.; Onken, J.L.; Johnson, K.O.; Verzosa, G.C.; Langhi, L.G.P.; Weigl, M.; Giorgadze, N.; LeBrasseur, N.K.; Miller, J.D.; Jurk, D.; Singh, R.J.; Allison, D.B.; Ejima, K.; Hubbard, G.B.; Ikeno, Y.; Cubro, H.; Garovic, V.D.; Hou, X.; Weroha, S.J.; Robbins, P.D.; Niedernhofer, L.J.; Khosla, S.; Tchkonia, T.; Kirkland, J.L. Senolytics improve physical function and increase lifespan in old age. Nat. Med., 2018, 24(8), 1246-1256.
[http://dx.doi.org/10.1038/s41591-018-0092-9] [PMID: 29988130]
[40]
Farr, J.N.; Xu, M.; Weivoda, M.M.; Monroe, D.G.; Fraser, D.G.; Onken, J.L.; Negley, B.A.; Sfeir, J.G.; Ogrodnik, M.B.; Hachfeld, C.M.; LeBrasseur, N.K.; Drake, M.T.; Pignolo, R.J.; Pirtskhalava, T.; Tchkonia, T.; Oursler, M.J.; Kirkland, J.L.; Khosla, S. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med., 2017, 23(9), 1072-1079.
[http://dx.doi.org/10.1038/nm.4385] [PMID: 28825716]
[41]
Baker, D.J.; Wijshake, T.; Tchkonia, T.; LeBrasseur, N.K.; Childs, B.G.; van de Sluis, B.; Kirkland, J.L.; van Deursen, J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 2011, 479(7372), 232-236.
[http://dx.doi.org/10.1038/nature10600] [PMID: 22048312]
[42]
Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: From nutrition to nanomedicine. Rev. Neurosci., 2019, 30(5), 555-572.
[http://dx.doi.org/10.1515/revneuro-2018-0080] [PMID: 30753166]
[43]
Debnath, K.; Jana, N.R.; Jana, N.R. Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Appl. Bio Mater., 2019, 2(12), 5298-5305.
[http://dx.doi.org/10.1021/acsabm.9b00518] [PMID: 35021530]
[44]
Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(3), 421-430.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018] [PMID: 23220257]
[45]
Chakraborty, J.; Singh, R.; Dutta, D.; Naskar, A.; Rajamma, U.; Mohanakumar, K.P. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s Disease. CNS Neurosci. Ther., 2014, 20(1), 10-19.
[http://dx.doi.org/10.1111/cns.12189] [PMID: 24188794]
[46]
Ghaffari, F.; Hajizadeh Moghaddam, A.; Zare, M. Research Paper: Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: Biochemical and behavioral evidence. Basic Clin. Neurosci., 2018, 9(5), 317-324.
[http://dx.doi.org/10.32598/bcn.9.5.317] [PMID: 30719246]
[47]
Tamtaji, O.R.; Hadinezhad, T.; Fallah, M.; Shahmirzadi, A.R.; Taghizadeh, M.; Behnam, M.; Asemi, Z. The therapeutic potential of quercetin in parkinson’s disease: Insights into its molecular and cellular regulation. Curr. Drug Targets, 2020, 21(5), 509-518.
[http://dx.doi.org/10.2174/1389450120666191112155654] [PMID: 31721700]
[48]
Acıkara, O.B.; Karatoprak, G.Ş.; Yücel, Ç.; Akkol, E.K.; Sobarzo-Sánchez, E.; Khayatkashani, M.; Kamal, M.A.; Kashani, H.R.K. A critical analysis of quercetin as the attractive target for the treatment of parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2022, 21(9), 795-817.
[http://dx.doi.org/10.2174/1871527320666211206122407] [PMID: 34872486]
[49]
Islam, M.S.; Quispe, C.; Hossain, R.; Islam, M.T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N.; Abdullayeva, B.; Docea, A.O.; Calina, D.; Sharifi-Rad, J. Neuropharmacological effects of quercetin: A literaturebased review. Front. Pharmacol., 2021, 12, 665031.
[http://dx.doi.org/10.3389/fphar.2021.665031] [PMID: 34220504]
[50]
Magalingam, K.B.; Radhakrishnan, A.; Haleagrahara, N. Protective effects of flavonol isoquercitrin, against 6-hydroxy dopamine (6-OHDA) - induced toxicity in PC12 cells. BMC Res. Notes, 2014, 7(1), 49.
[http://dx.doi.org/10.1186/1756-0500-7-49] [PMID: 24443837]
[51]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[52]
Chan, J.F.W.; To, K.K.W.; Tse, H.; Jin, D.Y.; Yuen, K.Y. Interspecies transmission and emergence of novel viruses: Lessons from bats and birds. Trends Microbiol., 2013, 21(10), 544-555.
[http://dx.doi.org/10.1016/j.tim.2013.05.005] [PMID: 23770275]
[53]
Di Pierro, F.; Khan, A.; Bertuccioli, A.; Maffioli, P.; Derosa, G.; Khan, S.; Khan, B.A.; Nigar, R.; Ujjan, I.; Devrajani, B.R. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol., 2021, 67(2), 190-195.
[http://dx.doi.org/10.23736/S2724-5985.20.02771-3] [PMID: 33016666]
[54]
Derosa, G.; Maffioli, P.; D’Angelo, A.; Di Pierro, F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother. Res., 2021, 35(3), 1230-1236.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[55]
Shohan, M.; Nashibi, R.; Mahmoudian-Sani, M.R.; Abolnezhadian, F.; Ghafourian, M.; Alavi, S.M.; Sharhani, A.; Khodadadi, A. The therapeutic efficacy of quercetin in combination with antiviral drugs in hospitalized COVID-19 patients: A randomized controlled trial. Eur. J. Pharmacol., 2022, 914, 174615.
[http://dx.doi.org/10.1016/j.ejphar.2021.174615] [PMID: 34863994]
[56]
Yin, M.; Liu, Y.; Chen, Y. Iron metabolism: an emerging therapeutic target underlying the anti-cancer effect of quercetin. Free Radic. Res., 2021, 55(3), 296-303.
[http://dx.doi.org/10.1080/10715762.2021.1898604] [PMID: 33818251]
[57]
Rauf, A.; Imran, M.; Khan, I.A. ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[58]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), 3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[59]
Vinayak, M.; Maurya, A.K. Quercetin loaded nanoparticles in targeting cancer: Recent development. Anticancer. Agents Med. Chem., 2019, 19(13), 1560-1576.
[http://dx.doi.org/10.2174/1871520619666190705150214] [PMID: 31284873]
[60]
Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604.
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[61]
Ezzati, M.; Yousefi, B.; Velaei, K.; Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci., 2020, 248, 117463.
[http://dx.doi.org/10.1016/j.lfs.2020.117463] [PMID: 32097663]
[62]
Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep., 2016, 43(2), 99-105.
[http://dx.doi.org/10.1007/s11033-016-3942-x] [PMID: 26748999]
[63]
Chien, S.Y.; Wu, Y.C.; Chung, J.G.; Yang, J.S.; Lu, H.F.; Tsou, M.F.; Wood, W.G.; Kuo, S.J.; Chen, D.R. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Hum. Exp. Toxicol., 2009, 28(8), 493-503.
[http://dx.doi.org/10.1177/0960327109107002] [PMID: 19755441]
[64]
Berndt, K.; Campanile, C.; Muff, R.; Strehler, E.; Born, W.; Fuchs, B. Evaluation of quercetin as a potential drug in osteosarcoma treatment. Anticancer Res., 2013, 33(4), 1297-1306.
[PMID: 23564766]
[65]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[66]
Li, X.; Zhou, N.; Wang, J.; Liu, Z.; Wang, X.; Zhang, Q.; Liu, Q.; Gao, L.; Wang, R. Quercetin suppresses breast cancer stem cells (CD44 +/ CD24 − ) by inhibiting the PI3K/Akt/mTOR-signaling pathway. Life Sci., 2018, 196, 56-62.
[http://dx.doi.org/10.1016/j.lfs.2018.01.014] [PMID: 29355544]
[67]
Feng, Y.L.; Lu, L.P.; Zhai, G.Y. [Research progress on antitumor activity of quercetin derivatives]. Zhongguo Zhongyao Zazhi, 2020, 45(15), 3565-3574.
[PMID: 32893545]
[68]
Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell. Longev., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/8825387] [PMID: 33488935]
[69]
Moon, J.H.; Eo, S.K.; Lee, J.H.; Park, S.Y. Quercetin-induced autophagy flux enhances TRAIL-mediated tumor cell death. Oncol. Rep., 2015, 34(1), 375-381.
[http://dx.doi.org/10.3892/or.2015.3991] [PMID: 25997470]
[70]
Catanzaro, D.; Ragazzi, E.; Vianello, C.; Caparrotta, L.; Montopoli, M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun., 2015, 10(8), 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000813] [PMID: 26434118]
[71]
Ryu, S.; Park, S.; Lim, W.; Song, G. Quercetin augments apoptosis of canine osteosarcoma cells by disrupting mitochondria membrane potential and regulating PKB and MAPK signal transduction. J. Cell. Biochem., 2019, 120(10), 17449-17458.
[http://dx.doi.org/10.1002/jcb.29009] [PMID: 31131468]
[72]
Zhang, X.; Guo, Q.; Chen, J.; Chen, Z. Quercetin enhances cisplatin sensitivity of human osteosarcoma cells by modulating microRNA-217-KRAS Axis. Mol. Cells, 2015, 38(7), 638-642.
[http://dx.doi.org/10.14348/molcells.2015.0037] [PMID: 26062553]
[73]
Ebrahimpour, S.; Zakeri, M.; Esmaeili, A. Crosstalk between obesity, diabetes, and alzheimer’s disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res. Rev., 2020, 62, 101095.
[http://dx.doi.org/10.1016/j.arr.2020.101095] [PMID: 32535272]
[74]
Haddad, P.; Eid, H. The antidiabetic potential of quercetin: Underlying mechanisms. Curr. Med. Chem., 2017, 24(4), 355-364.
[http://dx.doi.org/10.2174/0929867323666160909153707] [PMID: 27633685]
[75]
Davatgaran Taghipour, Y.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[76]
Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res., 2021, 35(10), 5352-5364.
[http://dx.doi.org/10.1002/ptr.7144] [PMID: 34101925]
[77]
Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem., 2017, 9(1), 79-93.
[http://dx.doi.org/10.4155/fmc-2016-0186] [PMID: 27995808]
[78]
Sato, S.; Mukai, Y. Modulation of chronic inflammation by quercetin: The beneficial effects on obesity. J. Inflamm. Res., 2020, 13, 421-431.
[http://dx.doi.org/10.2147/JIR.S228361] [PMID: 32848440]
[79]
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and its anti-allergic immune response. Molecules, 2016, 21(5), 623.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[80]
Yang, D.; Liu, X.; Liu, M.; Chi, H.; Liu, J.; Han, H. Protective effects of quercetin and taraxasterol against H2O2-induced human umbilical vein endothelial cell injury in vitro. Exp. Ther. Med., 2015, 10(4), 1253-1260.
[http://dx.doi.org/10.3892/etm.2015.2713] [PMID: 26622474]
[81]
Chen, S.; Jiang, H.; Wu, X.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Mediators Inflamm., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/9340637] [PMID: 28003714]
[82]
Geraets, L.; Moonen, H.J.J.; Brauers, K.; Wouters, E.F.M.; Bast, A.; Hageman, G.J. Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J. Nutr., 2007, 137(10), 2190-2195.
[http://dx.doi.org/10.1093/jn/137.10.2190] [PMID: 17884996]
[83]
Oh, W.Y.; Ambigaipalan, P.; Shahidi, F. Preparation of quercetin esters and their antioxidant activity. J. Agric. Food Chem., 2019, 67(38), 10653-10659.
[http://dx.doi.org/10.1021/acs.jafc.9b04154] [PMID: 31464427]
[84]
Boots, A.W.; Haenen, G.R.M.M.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337.
[http://dx.doi.org/10.1016/j.ejphar.2008.03.008] [PMID: 18417116]
[85]
Ullah, F.; Iqbal, N.; Ayaz, M.; Sadiq, A.; Ullah, I.; Ahmad, S.; Imran, M. DPPH, ABTS free radical scavenging, antibacterial and phytochemical evaluation of crude methanolic extract and subsequent fractions of Chenopodium botrys aerial parts. Pak. J. Pharm. Sci., 2017, 30(3), 761-766.
[PMID: 28653919]
[86]
Ghosh, N.; Chakraborty, T.; Mallick, S.; Mana, S.; Singha, D.; Ghosh, B.; Roy, S. Synthesis, characterization and study of antioxidant activity of quercetin–magnesium complex. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 807-813.
[http://dx.doi.org/10.1016/j.saa.2015.07.050] [PMID: 26172468]
[87]
Plemel, J.R.; Juzwik, C.A.; Benson, C.A.; Monks, M.; Harris, C.; Ploughman, M. Over-the-counter anti-oxidant therapies for use in multiple sclerosis: A systematic review. Mult. Scler., 2015, 21(12), 1485-1495.
[http://dx.doi.org/10.1177/1352458515601513] [PMID: 26286700]
[88]
Javadi, F.; Eghtesadi, S.; Ahmadzadeh, A.; Aryaeian, N.; Zabihiyeganeh, M.; Foroushani, A.R.; Jazayeri, S. The effect of quercetin on plasma oxidative status, C-reactive protein and blood pressure in women with rheumatoid arthritis. Int. J. Prev. Med., 2014, 5(3), 293-301.
[PMID: 24829713]
[89]
Nakajima, K.; Marunaka, Y. Intracellular chloride ion concentration in differentiating neuronal cell and its role in growing neurite. Biochem. Biophys. Res. Commun., 2016, 479(2), 338-342.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.075] [PMID: 27641671]
[90]
Sun, H.; Niisato, N.; Nishio, K.; Hamilton, K.L.; Marunaka, Y. Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl- secretion: useful tools as regulators of Cl- secretion. BioMed Res. Int., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/902735] [PMID: 24818160]
[91]
Sun, H.; Niisato, N.; Marunaka, Y. Quercetin diminishes the cAMP-stimulated Cl- secretion by blocking Na+,K+ -ATPase in epithelial cells. J. Physiol. Sci., 2014, 64, S116.
[92]
Marunaka, Y. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport. J. Pharmacol. Sci., 2014, 126(1), 21-36.
[http://dx.doi.org/10.1254/jphs.14R01SR] [PMID: 25242083]
[93]
Choi, S.; Ryu, K.H.; Park, S.H.; Jun, J.Y.; Shin, B.C.; Chung, J.H.; Yeum, C.H. Direct vascular actions of quercetin in aorta from renal hypertensive rats. Kidney Res. Clin. Pract., 2016, 35(1), 15-21.
[http://dx.doi.org/10.1016/j.krcp.2015.12.003] [PMID: 27069853]
[94]
Xu, M.; Palmer, A.K.; Ding, H.; Weivoda, M.M.; Pirtskhalava, T.; White, T.A.; Sepe, A.; Johnson, K.O.; Stout, M.B.; Giorgadze, N.; Jensen, M.D.; LeBrasseur, N.K.; Tchkonia, T.; Kirkland, J.L. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife, 2015, 4, e12997.
[http://dx.doi.org/10.7554/eLife.12997] [PMID: 26687007]
[95]
Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M.; O’Hara, S.P.; LaRusso, N.F.; Miller, J.D.; Roos, C.M.; Verzosa, G.C.; LeBrasseur, N.K.; Wren, J.D.; Farr, J.N.; Khosla, S.; Stout, M.B.; McGowan, S.J.; Fuhrmann-Stroissnigg, H.; Gurkar, A.U.; Zhao, J.; Colangelo, D.; Dorronsoro, A.; Ling, Y.Y.; Barghouthy, A.S.; Navarro, D.C.; Sano, T.; Robbins, P.D.; Niedernhofer, L.J.; Kirkland, J.L. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 2015, 14(4), 644-658.
[http://dx.doi.org/10.1111/acel.12344] [PMID: 25754370]
[96]
Palmer, A.K.; Gustafson, B.; Kirkland, J.L.; Smith, U. Cellular senescence: At the nexus between ageing and diabetes. Diabetologia, 2019, 62(10), 1835-1841.
[http://dx.doi.org/10.1007/s00125-019-4934-x] [PMID: 31451866]
[97]
Ogrodnik, M.; Evans, S.A.; Fielder, E.; Victorelli, S.; Kruger, P.; Salmonowicz, H.; Weigand, B.M.; Patel, A.D.; Pirtskhalava, T.; Inman, C.L.; Johnson, K.O.; Dickinson, S.L.; Rocha, A.; Schafer, M.J.; Zhu, Y.; Allison, D.B.; von Zglinicki, T.; LeBrasseur, N.K.; Tchkonia, T.; Neretti, N.; Passos, J.F.; Kirkland, J.L.; Jurk, D. Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell, 2021, 20(2), e13296.
[http://dx.doi.org/10.1111/acel.13296] [PMID: 33470505]
[98]
Waaijer, M.E.C.; Parish, W.E.; Strongitharm, B.H.; van Heemst, D.; Slagboom, P.E.; de Craen, A.J.M.; Sedivy, J.M.; Westendorp, R.G.J.; Gunn, D.A.; Maier, A.B. The number of p16INK4a positive cells in human skin reflects biological age. Aging Cell, 2012, 11(4), 722-725.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00837.x] [PMID: 22612594]
[99]
Wyld, L.; Bellantuono, I.; Tchkonia, T.; Morgan, J.; Turner, O.; Foss, F.; George, J.; Danson, S.; Kirkland, J.L. Senescence and cancer: A review of clinical implications of senescence and senotherapies. Cancers, 2020, 12(8), 2134.
[http://dx.doi.org/10.3390/cancers12082134] [PMID: 32752135]
[100]
Sharma, A.; Kashyap, D.; Sak, K.; Tuli, H.S.; Sharma, A.K. Therapeutic charm of quercetin and its derivatives: A review of research and patents. Pharm. Pat. Anal., 2018, 7(1), 15-32.
[http://dx.doi.org/10.4155/ppa-2017-0030] [PMID: 29227203]
[101]
Liaquat University of Medical & Health Sciences. Trial to Study the Adjuvant Benefits of Quercetin Phytosome in Patients With COVID-19., Available from: https://clinicaltrials.gov/ct2/show/record/NCT04578158?cond=quercetin&draw=2&rank=1 (Accessed March 24 2022).
[102]
Kanuni Sultan Suleyman Training and Research Hospital. Effect of Quercetin on Prophylaxis and Treatment of COVID-19., Available from: https://clinicaltrials.gov/ct2/show/NCT04377789?cond=quercetin&draw=2&rank=17 (Accessed March 26, 2022).
[103]
University of California. Available from: https://clinicaltrials.gov/ct2/show/NCT01438320?cond=quercetin&draw=3&rank=34 (Accessed March 27, 2022).
[104]
Hôpital Universitaire Sahloul. Available from: https://clinicaltrials.gov/ct2/show/NCT04853199?cond=quercetin&draw=2&rank=7 (Accessed March 24, 2022).
[105]
Children’s Hospital Medical Center. Available from: https://clinicaltrials.gov/ct2/show/NCT01720147?cond=quercetin&draw=2&rank=2 (Accessed March 24, 2022).
[106]
Children’s Hospital Medical Center. Available from: https://clinicaltrials.gov/ct2/show/NCT03476330?cond=quercetin&draw=2&rank=14 (Accessed March 25, 2022).
[107]
Beth Israel Deaconess Medical Center. Available from: https://clinicaltrials.gov/ct2/show/NCT01722669?cond=quercetin&draw=2&rank=5 (Accessed March 24, 2022).
[108]
University of Pavia. Nutraceutical on Hyperuricemia., Available from: https://clinicaltrials.gov/ct2/show/NCT04161872?cond=quercetin&draw=3&rank=35 (Accessed March 27, 2022).
[109]
[110]
Paul, A. Available from: https://clinicaltrials.gov/ct2/show/NCT05062486?cond=quercetin&draw=3&rank=44 (Accessed March 28, 2022).
[111]
Mashhad University of Medical Sciences. Effect of Quercetin in Prevention and Treatment of Chemotherapy Induced Oral Mucositis in Blood Dyscrasias., Available from: https://clinicaltrials.gov/ct2/show/NCT01732393?cond=quercetin&draw=2&rank=4 (Accessed March 24, 2022).
[112]
Maastricht University Medical Center. The Effect of Quercetin in Sarcoidosis., Available from: https://clinicaltrials.gov/ct2/show/NCT00402623?cond=quercetin&draw=2&rank=9 (Accessed March 25, 2022).
[113]
University of North Carolina. Chapel Hill., Available from: https://clinicaltrials.gov/ct2/show/NCT02226484?cond=quercetin&draw=2&rank=6 (Accessed March 24, 2022).
[114]
University of Michigan. Beneficial Effects of Quercetin in Chronic Obstructive Pulmonary Disease., Available from: https://clinicaltrials.gov/ct2/show/NCT01708278?cond=quercetin&draw=2&rank=8 (Accessed March 24, 2022).
[115]
Temple University. Biological Effects of Quercetin in COPD., Available from: https://clinicaltrials.gov/ct2/show/NCT02989129?cond=quercetin&draw=2&rank=12 (Accessed March 25, 2022).
[116]
Bastyr University. Available from: https://clinicaltrials.gov/ct2/show/NCT01839344?cond=quercetin&draw=2&rank=11 (Accessed March 25, 2022).
[117]
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Available from: https://clinicaltrials.gov/ct2/show/NCT00065676?cond=quercetin&draw=3&rank=29 (Accessed March 26, 2022).
[118]
University of Hohenheim. Available from: https://clinicaltrials.gov/ct2/show/NCT01538316?cond=quercetin&draw=2&rank=16 (Accessed March 25, 2022).
[119]
Jonsson Comprehensive Cancer Center. Effect of Quercetin on Green Tea Polyphenol Uptake in Prostate Tissue From Patients With Prostate Cancer Undergoing Surgery., Available from: https://clinicaltrials.gov/ct2/show/NCT01912820?cond=quercetin&draw=3&rank=28 (Accessed March 26, 2022).
[120]
Study Group for Urogenital Diseases. Available from: https://clinicaltrials.gov/ct2/show/NCT03493997?cond=quercetin&draw=3&rank=37 (Accessed March 27, 2022).
[121]
Wageningen University. Available from: https://clinicaltrials.gov/ct2/show/NCT01691404?cond=quercetin&draw=2&rank=19 (Accessed March 26, 2022).
[122]
University of Utah. Efficacy of Provex CV Supplement to Reduce Inflammation Cytokines and Blood Pressure., Available from: https://clinicaltrials.gov/ct2/show/NCT01106170?cond=quercetin&draw=3&rank=39 (Accessed March 28, 2022).
[123]
InCor Heart Institute. Available from: https://clinicaltrials.gov/ct2/show/NCT03943459?cond=quercetin&draw=3&rank=33 (Accessed March 27, 2022).
[124]
Montreal Heart Institute. Available from: https://clinicaltrials.gov/ct2/show/NCT04907253?cond=quercetin&draw=3&rank=32 (Accessed March 27, 2022).
[125]
University of Leeds. Effect of Quercetin Supplements on Healthy Males: a Four-Week Randomized Cross-Over Trial., Available from: https://clinicaltrials.gov/ct2/show/NCT01881919?cond=quercetin&draw=7&rank=26 (Accessed March 26, 2022).
[126]
Brigham and Women’s Hospital. Available from: https://clinicaltrials.gov/ct2/show/NCT01376011?cond=quercetin&draw=3&rank=31 (Accessed March 26, 2022).
[127]
Universita di Verona. Available from: https://clinicaltrials.gov/ct2/show/NCT04723849?cond=quercetin&draw=3&rank=38 (Accessed March 28, 2022).
[128]
Kyunghee University Medical Center. Effects of Onion Peel Extract on Endothelial Function., Available from: https://clinicaltrials.gov/ct2/show/NCT02180022?cond=quercetin&draw=3&rank=42 (Accessed March 28, 2022).
[129]
University of New Mexico. Available from: https://clinicaltrials.gov/ct2/show/NCT01168739?cond=quercetin&draw=2&rank=15 (Accessed March 25, 2022).
[130]
Lines, T.C. Method for treating zika virus infection with quercetin-containing compositions. US20190192481, 2019.
[131]
Chodoeva, A. Quercetin-based composition for treating rhinosinusitis. CA3083179A1, 2019.
[132]
HU K.. Quercetin nanoparticles WO201872942A1, 2018.
[133]
Fesenko, S.; Shneider, A.; Gabai, V. Methods of monitoring safety of quercetin compositions. US11156623B2, 2021.
[134]
Fesenko, S.; Shneider, A.; Gabai, V. compositions and containers for reducing solid form quercetin degradation and 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoic acid toxic byproducts thereof US20200197355A1, 2020.
[135]
Das, S.K. Tag H. A process for isolation and yield increase of flavonoid compound/quercetin from plant houttuynia cordata thunb by uv-b exposure. AU2021103279A4, 2021.
[136]
Ronchi, M. Powder solid dispersions comprising quercetin, process for their preparation and formulations thereof. US20200206186A1, 2022.
[137]
SAAD W.A.. Park D.H. Zinc- and quercetin-based pharmaceutical formulation for the production of antiviral medication effective for dengue and zika. WO2018039755A1, 2018.
[138]
HONG Y.D.. Quercetin-based compound. US10550142B2, 2020.
[139]
Danoux, L.; Henry, F.; Pain, S. New cosmetic use of a combination of oenothein-B and quercetin-3-O-glucuronide. FR3099701A1, 2022.
[140]
MAKITRUK V.. Water-soluble solid dispersion of quercetin, forms thereof, a method of obtaining thereof, use of alkaline agent, and a kit. WO2021167580A1, 2021.
[141]
Farber, B.; Farber, S.; Martynov, A.V. Cosmetological and pharmaceutical composition based on combinatorial quercetin derivative. US11229622B2, 2022.
[142]
Li, W.; Guo, Y.; Zhang, Z.; Zhang, Z.; Wen, L.; Gao, X. Use of quercetin in plant aging promoter. US11251961B2, 2022.
[143]
Du, R.; Gao, Y.; Li, Y.; Tan, J.; Wu, R.; Wu, S.; Yang, L.; Zhang, Y.; Zhao, Y. Quercetin compound nanoemulsion based on mongolian medicine sendeng-4 and preparation method therefor. AU2020101834A4, 2020.
[144]
Fesenko, S.; Shneider, A.; Gabai, V. Methods, compositions and containers for reducing solid form quercetin degradation and 2,4,6-trihydroxybenzoic acid toxic byproduct thereof. US20200197354A1, 2020.
[145]
KALAMOUNI C.E.. Despres P. Use of quercetin-3-o-glucoside for the treatment of flavivirus infections. WO2019185579A1, 2019.
[146]
Alexandre, A.L.; Fabrini, L.A.A.; Glauciemar, D.V.V.; Guilherme, D.T.; Gustavo, S.G.D.C.; Leonarde, D.N.R.; Maria, S.A.; Orlando, V.D.S.; Renata, D.; Virgílio, D.C.D.A. solid dispersions of quercetin and hydroxypropyl methylcellulose developed for therapeutic products. BR102017004399A2, 2018.
[147]
Rocha, C.D.; Vale, D.L.D.; Baracat, M.M.; Sfeir, N.; Martinez, R.M.; Casagrande, R.; Georgetti, S.R.; Junior, W.A.V. Georgetti S.R., Junior W.A.V. microencapsulated quercetin with biopolymers, in topical formulation, for the treatment of photoaging and photo carcogenesis BR102019016665A2, 2021.
[148]
Hongjin, B.; Zhongbo, Z.; Ruirui, L.; Jinlong, Z.; Aizhi, H.; Yuyao, Y. Method for extracting, separating and purifying blood fat reducing active compound quercetin-3-O-beta-D-glucoside from Jun jujubes in southern Xinjiang. CN105968152A, 2016.
[149]
Gabrielle, A.R.D.S.; Simone, S.D.S.O.; Sorele, B.F. process for producing quercetin BR102018074553, 2020.
[150]
SMITH M.. Quercetin enhancement formulation. WO2021189109A1, 2021.
[151]
Oumar-Mahamat, H.; Webster, M.N.; Ng, M.K.; Cheng, H.; Buzdygon, K.J.; Deighton, S. Lubricating oil compositions having functionalized quercetin antioxidants. US20200190425A1, 2020.
[152]
Schack, D.M.; Campbell, A.W. Anthocyanin and quercetin based formulations for improved respiratory health. US20210393579A1, 2021.
[153]
Jie, Z. Injection pharmaceutical composition capable of improving stability of quercetin medication injection preparation. CN105902487, 2016.
[154]
Seung-heon, H.; Ye, J.; Chang-ryul, L. Chang-ryul L. A pharmaceutical comprising quercetin for treating of preventing colorectal cancer. KR20170089989A, 2017.
[155]
Kang, H.J.; Jo, H.S.; Heo, S. Pharmaceutical composition for the treatment of Epstein-Barr virus-positive gastric cancer, comprising an extract of Ganoderma lucidum and quercetin as an active ingredient. KR102187951B1, 2020.
[156]
Nianzeng, X.; Dong, C.; Feiya, Y. Application of quercetin in preparation of prostate cancer radiotherapy sensitizing drugs. CN112656785A, 2021.
[157]
Meigui, H.; Yu, W.; Jin, W.; Qianqian, C.; Ruifeng, Y.; Yaosong, W. High internal phase emulsion with quercetin stabilized by soy protein isolate-pectin compound and preparation method thereof. CN110498935B, 2021.
[158]
Tao, L.; Haiyun, T. Quercetin nanoparticles and preparation method thereof CN111686078A, 2020.
[159]
Junliang, Z. Method for extracting quercetin from sophora flower bud by using cyclodextrin. CN105399716A, 2016.
[160]
Baotang, Z.; Bin, F.; Jian, Z.; Jiazhong, T.; Na, L.; Guifang, L. Method for recovering quercetin from stevioside extraction residues and application of quercetin. CN114014828A, 2022.
[161]
Dapeng, L.; Hui, L. Application of miR-16-5p as target in regulating quercetin and EGCG to synergistically protect islet cell injury. CN111494632B, 2021.
[162]
Qiangqiang, M. Method for extracting and purifying quercetin from young apple fruits. CN112409312A, 2021.
[163]
Hongli, Z. A kind of compound recipe Quercetin nanoemulsion antisenescence health product. CN106137959A, 2016.
[164]
Zhongxi, S.; Meichi, W.; Xiaohui, S. Sterilizing equipment is used in production of quercetin extract product. CN213526499U, 2021.
[165]
Mori, T.; Mori, T.; Kamikita, K.; Kamikita, K.; Kamikita, K. Agent for increasing content of quercetin in onion and onion cultivation method. JP2019170321A, 2022.
[166]
Danshi, Z.; Hongyun, Z.; Jun, L.; He, L.; Hongsheng, L.; Lina, Y.; Chunguang, H.; Hongwei, Z.; Xiaojuan, L. The fluffy middle Quercetin of alkali is isolated and purified using supercritical analogue moving bed chromatographic system. CN107935977A, 2018.
[167]
Sang-soo, L.; Ashshi, R.S.; Sharma, G.; Lee, Y. Method for preparing quercetin-selenium nanoparticles and quercetin-selenium nanoparticles prepared by the method. KR102357112B1, 2022.
[168]
Nianzeng, X.; Feiya, Y.; Dong, C.; Lingquan, M. Quercetin and curcumin drug combination are preparing the application in treating prostate cancer product. CN107595834A, 2018.
[169]
Hong, Y.D.; Hong, Y.D.; Choi, M.S.; Choi, M.S.; Cho, S.Y.; Cho, S.Y.; Kim, J.G.; Kim, J.G. Composition for improving cognitive function comprising a novel quercetin compound. JP2019535652A, 2019.
[170]
Liang, Z.; Wei, L.; Liang, C. Preparation method and application of quercetin and MicroRNA-150 co-loaded cationic solid lipid nanoparticles. CN112089846A, 2020.
[171]
Jun, L.; Wenfei, L. Method for extracting quercetin from pomegranate peel. CN113717139A, 2021.
[172]
Shenquan, L.; Mingfei, S.; Nanshan, Q.; Minna, L.; Caiyan, W.; Juan, L.; Xuhui, L.; Junjing, H.; Haiming, C.; Wenwan, X.; Zeng, L.; Jianyu, Z.; Mingquan, X. Application of quercetin and derivatives thereof. CN111494362A, 2020.
[173]
Dong-wook, K.; Jong-yoon, J. Quercetin derivative, pharmaceutical composition for preventing or treating cancer comprising the same, and method for synthesizing the same. KR102283835B1, 2021.
[174]
Brown, D. Treatment of fragile x syndrome with ibudilast in combination with metformin, cannbidiol, sertraline or quercetin. WO2021044158A1, 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy