Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

The Impact of miR-122 on Cancer

Author(s): Shijie Wu, Yiwen Wu, Sijun Deng, Xiaoyong Lei and Xiaoyan Yang*

Volume 25, Issue 12, 2024

Published on: 22 January, 2024

Page: [1489 - 1499] Pages: 11

DOI: 10.2174/0113892010272106231109065912

Price: $65

Abstract

MiRNAs are confirmed to be a kind of short and eminently conserved noncoding RNAs, which regulate gene expression at the post-transcriptional level via binding to the 3'- untranslated region (3’-UTR) of targeting multiple target messenger RNAs. Recently, growing evidence stresses the point that they play a crucial role in a variety of pathological processes, including human cancers. Dysregulated miRNAs act as oncogenes or tumor suppressor genes in many cancer types. Among them, we noticed that miR-122 has been widely reported to significantly influence carcinogenicity in a variety of tumors by regulating target genes and signaling pathways. Here, we focused on the expression of miR-122 in regulatory mechanisms and tumor biological processes. We also discussed the effects of miR-122 dysregulation in various types of human malignancies and the potential to develop new molecular miR-122-targeted therapies. The present review suggests that miR-122 may be a potentially useful cancer diagnosis and treatment biomarker. More clinical diagnoses need to be further launched in the future. A promising direction to improve the outcomes for cancer patients will likely combine miR-122 with other traditional tumor biomarkers.

Next »
Graphical Abstract

[1]
Yu, W.; Liang, X.; Li, X.; Zhang, Y.; Sun, Z.; Liu, Y.; Wang, J. MicroRNA-195: A review of its role in cancers. OncoTargets Ther., 2018, 11, 7109-7123.
[http://dx.doi.org/10.2147/OTT.S183600] [PMID: 30410367]
[2]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[3]
Zhang, X.; Zeng, J.; Zhou, M.; Li, B.; Zhang, Y.; Huang, T.; Wang, L.; Jia, J.; Chen, C. The tumor suppressive role of miRNA-370 by targeting FoxM1 in acute myeloid leukemia. Mol. Cancer, 2012, 11(1), 56.
[http://dx.doi.org/10.1186/1476-4598-11-56] [PMID: 22900969]
[4]
Zhu, M.; Zhang, N.; He, S.; Lui, Y.; Lu, G.; Zhao, L. MicroRNA-106a targets TIMP2 to regulate invasion and metastasis of gastric cancer. FEBS Lett., 2014, 588(4), 600-607.
[http://dx.doi.org/10.1016/j.febslet.2013.12.028] [PMID: 24440352]
[5]
Miko, E.; Margitai, Z.; Czimmerer, Z.; Várkonyi, I. Dezső; B.; Lányi, Á.; Bacsó, Z.; Scholtz, B. miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Lett., 2011, 585(8), 1191-1196.
[http://dx.doi.org/10.1016/j.febslet.2011.03.039] [PMID: 21439283]
[6]
Lagos-Quintana, M.; Rauhut, R.; Yalcin, A.; Meyer, J.; Lendeckel, W.; Tuschl, T. Identification of tissue-specific microRNAs from mouse. Curr. Biol., 2002, 12(9), 735-739.
[http://dx.doi.org/10.1016/S0960-9822(02)00809-6] [PMID: 12007417]
[7]
Chang, J.; Nicolas, E.; Marks, D.; Sander, C.; Lerro, A.; Buendia, M.A.; Xu, C.; Mason, W.S.; Moloshok, T.; Bort, R.; Zaret, K.S.; Taylor, J.M. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol., 2004, 1(2), 106-113.
[http://dx.doi.org/10.4161/rna.1.2.1066] [PMID: 17179747]
[8]
Hsu, S.; Wang, B.; Kota, J.; Yu, J.; Costinean, S.; Kutay, H.; Yu, L.; Bai, S.; La Perle, K.; Chivukula, R.R.; Mao, H.; Wei, M.; Clark, K.R.; Mendell, J.R.; Caligiuri, M.A.; Jacob, S.T.; Mendell, J.T.; Ghoshal, K. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest., 2012, 122(8), 2871-2883.
[http://dx.doi.org/10.1172/JCI63539] [PMID: 22820288]
[9]
Tsai, W.C.; Hsu, S.D.; Hsu, C.S.; Lai, T.C.; Chen, S.J.; Shen, R.; Huang, Y.; Chen, H.C.; Lee, C.H.; Tsai, T.F.; Hsu, M.T.; Wu, J.C.; Huang, H.D.; Shiao, M.S.; Hsiao, M.; Tsou, A.P. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest., 2012, 122(8), 2884-2897.
[http://dx.doi.org/10.1172/JCI63455] [PMID: 22820290]
[10]
Wienholds, E.; Kloosterman, W.P.; Miska, E.; Alvarez-Saavedra, E.; Berezikov, E.; de Bruijn, E.; Horvitz, H.R.; Kauppinen, S.; Plasterk, R.H.A. MicroRNA expression in zebrafish embryonic development. Science, 2005, 309(5732), 310-311.
[http://dx.doi.org/10.1126/science.1114519] [PMID: 15919954]
[11]
Gatfield, D.; Le Martelot, G.; Vejnar, C.E.; Gerlach, D.; Schaad, O.; Fleury-Olela, F.; Ruskeepää, A.L.; Oresic, M.; Esau, C.C.; Zdobnov, E.M.; Schibler, U. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev., 2009, 23(11), 1313-1326.
[http://dx.doi.org/10.1101/gad.1781009] [PMID: 19487572]
[12]
Xu, H.; He, J.H.; Xiao, Z.D.; Zhang, Q.Q.; Chen, Y.Q.; Zhou, H.; Qu, L.H. Liver-enriched transcription factors regulate MicroRNA-122 that targets CUTL1 during liver development. Hepatology, 2010, 52(4), 1431-1442.
[http://dx.doi.org/10.1002/hep.23818] [PMID: 20842632]
[13]
Dhir, A.; Dhir, S.; Proudfoot, N.J.; Jopling, C.L. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol., 2015, 22(4), 319-327.
[http://dx.doi.org/10.1038/nsmb.2982] [PMID: 25730776]
[14]
Rao, M.; Zhu, Y.; Zhou, Y.; Cong, X.; Feng, L. MicroRNA-122 inhibits proliferation and invasion in gastric cancer by targeting CREB1. Am. J. Cancer Res., 2017, 7(2), 323-333.
[PMID: 28337380]
[15]
Maierthaler, M.; Benner, A.; Hoffmeister, M.; Surowy, H.; Jansen, L.; Knebel, P.; Chang-Claude, J.; Brenner, H.; Burwinkel, B. Plasma miR-122 and miR-200 family are prognostic markers in colorectal cancer. Int. J. Cancer, 2017, 140(1), 176-187.
[http://dx.doi.org/10.1002/ijc.30433] [PMID: 27632639]
[16]
Cui, K.; Jin, S.; Du, Y.; Yu, J.; Feng, H.; Fan, Q.; Ma, W. Long noncoding RNA DIO3OS interacts with miR-122 to promote proliferation and invasion of pancreatic cancer cells through upregulating ALDOA. Cancer Cell Int., 2019, 19(1), 202.
[http://dx.doi.org/10.1186/s12935-019-0922-y] [PMID: 31384177]
[17]
Wang, B.; Wang, H.; Yang, Z. MiR-122 inhibits cell proliferation and tumorigenesis of breast cancer by targeting IGF1R. PLoS One, 2012, 7(10), e47053.
[http://dx.doi.org/10.1371/journal.pone.0047053] [PMID: 23056576]
[18]
Qin, H.; Sha, J.; Jiang, C.; Gao, X.; Qu, L.; Yan, H.; Xu, T.; Jiang, Q.; Gao, H. miR-122 inhibits metastasis and epithelial-mesenchymal transition of non-small-cell lung cancer cells. OncoTargets Ther., 2015, 8, 3175-3184.
[PMID: 26604787]
[19]
Wang, Y.; Xing, Q.F.; Liu, X.Q.; Guo, Z.J.; Li, C.Y.; Sun, G. MiR-122 targets VEGFC in bladder cancer to inhibit tumor growth and angiogenesis. Am. J. Transl. Res., 2016, 8(7), 3056-3066.
[PMID: 27508026]
[20]
Gilbertson, R.J. Mapping cancer origins. Cell, 2011, 145(1), 25-29.
[http://dx.doi.org/10.1016/j.cell.2011.03.019] [PMID: 21458665]
[21]
Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology, 2018, 67(1), 358-380.
[http://dx.doi.org/10.1002/hep.29086] [PMID: 28130846]
[22]
Coulouarn, C.; Factor, V.M.; Andersen, J.B.; Durkin, M.E.; Thorgeirsson, S.S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 2009, 28(40), 3526-3536.
[http://dx.doi.org/10.1038/onc.2009.211] [PMID: 19617899]
[23]
Xu, Y.; Xia, F.; Ma, L.; Shan, J.; Shen, J.; Yang, Z.; Liu, J.; Cui, Y.; Bian, X.; Bie, P.; Qian, C. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett., 2011, 310(2), 160-169.
[http://dx.doi.org/10.1016/j.canlet.2011.06.027] [PMID: 21802841]
[24]
Bai, S.; Nasser, M.W.; Wang, B.; Hsu, S.H.; Datta, J.; Kutay, H.; Yadav, A.; Nuovo, G.; Kumar, P.; Ghoshal, K. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J. Biol. Chem., 2009, 284(46), 32015-32027.
[http://dx.doi.org/10.1074/jbc.M109.016774] [PMID: 19726678]
[25]
Fornari, F.; Gramantieri, L.; Giovannini, C.; Veronese, A.; Ferracin, M.; Sabbioni, S.; Calin, G.A.; Grazi, G.L.; Croce, C.M.; Tavolari, S.; Chieco, P.; Negrini, M.; Bolondi, L. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res., 2009, 69(14), 5761-5767.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4797] [PMID: 19584283]
[26]
Jung, C.J.; Iyengar, S.; Blahnik, K.R.; Ajuha, T.P.; Jiang, J.X.; Farnham, P.J.; Zern, M. Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS One, 2011, 6(11), e27740.
[http://dx.doi.org/10.1371/journal.pone.0027740] [PMID: 22140464]
[27]
Nakao, K.; Miyaaki, H.; Ichikawa, T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J. Gastroenterol., 2014, 49(4), 589-593.
[http://dx.doi.org/10.1007/s00535-014-0932-4] [PMID: 24531873]
[28]
Cheng, D.; Deng, J.; Zhang, B.; He, X.; Meng, Z.; Li, G.; Ye, H.; Zheng, S.; Wei, L.; Deng, X.; Chen, R.; Zhou, J. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine, 2018, 36, 159-170.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.055] [PMID: 30195653]
[29]
Turato, C.; Fornari, F.; Pollutri, D.; Fassan, M.; Quarta, S.; Villano, G.; Ruvoletto, M.; Bolondi, L.; Gramantieri, L.; Pontisso, P. MiR-122 Targets SerpinB3 and Is Involved in Sorafenib Resistance in Hepatocellular Carcinoma. J. Clin. Med., 2019, 8(2), 171.
[http://dx.doi.org/10.3390/jcm8020171] [PMID: 30717317]
[30]
Cao, F.; Yin, L.X. miR-122 enhances sensitivity of hepatocellular carcinoma to oxaliplatin via inhibiting MDR1 by targeting Wnt/β-catenin pathway. Exp. Mol. Pathol., 2019, 106, 34-43.
[http://dx.doi.org/10.1016/j.yexmp.2018.10.009] [PMID: 30539797]
[31]
Ha, S.Y.; Yu, J.I.; Choi, C.; Kang, S.Y.; Joh, J.W.; Paik, S.W.; Kim, S.; Kim, M.; Park, H.C.; Park, C.K. Prognostic significance of miR-122 expression after curative resection in patients with hepatocellular carcinoma. Sci. Rep., 2019, 9(1), 14738.
[http://dx.doi.org/10.1038/s41598-019-50594-2] [PMID: 31611609]
[32]
Jin, Y.; Wang, J.; Han, J.; Luo, D.; Sun, Z. MiR-122 inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Snail1 and Snail2 and suppressing WNT/β-cadherin signaling pathway. Exp. Cell Res., 2017, 360(2), 210-217.
[http://dx.doi.org/10.1016/j.yexcr.2017.09.010] [PMID: 28890291]
[33]
Pan, C.; Wang, X.; Shi, K.; Zheng, Y.; Li, J.; Chen, Y.; Jin, L.; Pan, Z. MiR-122 Reverses the Doxorubicin-Resistance in Hepatocellular Carcinoma Cells through Regulating the Tumor Metabolism. PLoS One, 2016, 11(5), e0152090.
[http://dx.doi.org/10.1371/journal.pone.0152090] [PMID: 27138141]
[34]
Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin., 2013, 63(1), 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[35]
Kamangar, F.; Dores, G.M.; Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: Defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol., 2006, 24(14), 2137-2150.
[http://dx.doi.org/10.1200/JCO.2005.05.2308] [PMID: 16682732]
[36]
Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; Lieto, E.; Ciardiello, F.; De Vita, F. Treatment of gastric cancer. World J. Gastroenterol., 2014, 20(7), 1635-1649.
[http://dx.doi.org/10.3748/wjg.v20.i7.1635] [PMID: 24587643]
[37]
Chen, Q.; Ge, X.; Zhang, Y.; Xia, H.; Yuan, D.; Tang, Q.; Chen, L.; Pang, X.; Leng, W.; Bi, F. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol. Rep., 2014, 31(4), 1863-1870.
[http://dx.doi.org/10.3892/or.2014.3004] [PMID: 24481716]
[38]
Qin, Q.H.; Yin, Z.Q.; Li, Y.; Wang, B.G.; Zhang, M.F. Long intergenic noncoding RNA 01296 aggravates gastric cancer cells progress through miR-122/MMP-9. Biomed. Pharmacother., 2018, 97, 450-457.
[http://dx.doi.org/10.1016/j.biopha.2017.10.066] [PMID: 29091895]
[39]
Meng, L.; Chen, Z.; Jiang, Z.; Huang, T.; Hu, J.; Luo, P.; Zhang, H.; Huang, M.; Huang, L.; Chen, Y.; Lu, M.; Xu, A.; Ying, S. MiR-122-5p suppresses the proliferation, migration, and invasion of gastric cancer cells by targeting LYN. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 52(1), 49-57.
[http://dx.doi.org/10.1093/abbs/gmz141] [PMID: 31828293]
[40]
Jiao, Y.; Zhang, L.; Li, J.; He, Y.; Zhang, X.; Li, J. Exosomal miR-122-5p inhibits tumorigenicity of gastric cancer by downregulating GIT1. Int. J. Biol. Markers, 2021, 36(1), 36-46.
[http://dx.doi.org/10.1177/1724600821990677] [PMID: 33752480]
[41]
Song, A.L.; Zhao, L.; Wang, Y.W.; He, D.Q.; Li, Y.M. Retracted: Chemoresistance in gastric cancer is attributed to the overexpression of excision repair cross-complementing 1 (ERCC1) caused by microRNA-122 dysregulation. J. Cell. Physiol., 2019, 234(12), 22485-22492.
[http://dx.doi.org/10.1002/jcp.28812] [PMID: 31152437]
[42]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[43]
Wang, N.; Lu, Y.; Khankari, N.K.; Long, J.; Li, H.L.; Gao, J.; Gao, Y.T.; Xiang, Y.B.; Shu, X.O.; Zheng, W. Evaluation of genetic variants in association with colorectal cancer risk and survival in Asians. Int. J. Cancer, 2017, 141(6), 1130-1139.
[http://dx.doi.org/10.1002/ijc.30812] [PMID: 28567967]
[44]
Li, H.; Zhang, X.; Jin, Z.; Yin, T.; Duan, C.; Sun, J.; Xiong, R.; Li, Z. RETRACTED: MiR-122 Promotes the Development of Colon Cancer by Targeting ALDOA In Vitro. Technol. Cancer Res. Treat., 2019, 18.
[http://dx.doi.org/10.1177/1533033819871300] [PMID: 31564215]
[45]
Sun, L.; Liu, X.; Pan, B.; Hu, X.; Zhu, Y.; Su, Y.; Guo, Z.; Zhang, G.; Xu, M.; Xu, X.; Sun, H.; Wang, S. Serum exosomal miR-122 as a potential diagnostic and prognostic biomarker of colorectal cancer with liver metastasis. J. Cancer, 2020, 11(3), 630-637.
[http://dx.doi.org/10.7150/jca.33022] [PMID: 31942186]
[46]
Hua, Y.; Zhu, Y.; Zhang, J.; Zhu, Z.; Ning, Z.; Chen, H.; Liu, L.; Chen, Z.; Meng, Z. miR-122 Targets X-Linked Inhibitor of Apoptosis Protein to Sensitize Oxaliplatin-Resistant Colorectal Cancer Cells to Oxaliplatin-Mediated Cytotoxicity. Cell. Physiol. Biochem., 2018, 51(5), 2148-2159.
[http://dx.doi.org/10.1159/000495832] [PMID: 30522111]
[47]
Calatayud, D.; Dehlendorff, C.; Boisen, M.K.; Hasselby, J.P.; Schultz, N.A.; Werner, J.; Immervoll, H.; Molven, A.; Hansen, C.P.; Johansen, J.S. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark. Res., 2017, 5(1), 8.
[http://dx.doi.org/10.1186/s40364-017-0087-6] [PMID: 28239461]
[48]
Hu, X.; Zhang, L.; Tian, J.; Ma, J. Long non-coding RNA PART1 predicts a poor prognosis and promotes the malignant progression of pancreatic cancer by sponging miR-122. World J. Surg. Oncol., 2021, 19(1), 122.
[http://dx.doi.org/10.1186/s12957-021-02232-3] [PMID: 33865422]
[49]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[50]
Gong, Y.; Liu, Y.R.; Ji, P.; Hu, X.; Shao, Z.M. Impact of molecular subtypes on metastatic breast cancer patients: A SEER population-based study. Sci. Rep., 2017, 7(1), 45411.
[http://dx.doi.org/10.1038/srep45411] [PMID: 28345619]
[51]
Yan, Y.; Zhang, F.; Fan, Q.; Li, X.; Zhou, K. Breast cancer-specific TRAIL expression mediated by miRNA response elements of let-7 and miR-122. Neoplasma, 2014, 61(6), 672-679.
[http://dx.doi.org/10.4149/neo_2014_082] [PMID: 25150312]
[52]
Saleh, A.A.; Soliman, S.E.; Habib, M.S.E.; Gohar, S.F.; Abo-Zeid, G.S. Potential value of circulatory microRNA122 gene expression as a prognostic and metastatic prediction marker for breast cancer. Mol. Biol. Rep., 2019, 46(3), 2809-2818.
[http://dx.doi.org/10.1007/s11033-019-04727-5] [PMID: 30835039]
[53]
Zhang, W.; Jiang, H.; Chen, Y.; Ren, F. Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. J. Cell. Biochem., 2019, 120(9), 16283-16292.
[http://dx.doi.org/10.1002/jcb.28910] [PMID: 31155753]
[54]
Perez-Añorve, I.X.; Gonzalez-De la Rosa, C.H.; Soto-Reyes, E.; Beltran-Anaya, F.O.; Del Moral-Hernandez, O.; Salgado-Albarran, M.; Angeles-Zaragoza, O.; Gonzalez-Barrios, J.A.; Landero-Huerta, D.A.; Chavez-Saldaña, M.; Garcia-Carranca, A.; Villegas-Sepulveda, N.; Arechaga-Ocampo, E. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol. Oncol., 2019, 13(5), 1249-1267.
[http://dx.doi.org/10.1002/1878-0261.12483] [PMID: 30938061]
[55]
Fong, M.Y.; Zhou, W.; Liu, L.; Alontaga, A.Y.; Chandra, M.; Ashby, J.; Chow, A.; O’Connor, S.T.F.; Li, S.; Chin, A.R.; Somlo, G.; Palomares, M.; Li, Z.; Tremblay, J.R.; Tsuyada, A.; Sun, G.; Reid, M.A.; Wu, X.; Swiderski, P.; Ren, X.; Shi, Y.; Kong, M.; Zhong, W.; Chen, Y.; Wang, S.E. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat. Cell Biol., 2015, 17(2), 183-194.
[http://dx.doi.org/10.1038/ncb3094] [PMID: 25621950]
[56]
Siegel, R.; Ward, E.; Brawley, O.; Jemal, A. Cancer statistics, 2011. CA Cancer J. Clin., 2011, 61(4), 212-236.
[http://dx.doi.org/10.3322/caac.20121] [PMID: 21685461]
[57]
Ma, D.; Jia, H.; Qin, M.; Dai, W.; Wang, T.; Liang, E.; Dong, G.; Wang, Z.; Zhang, Z.; Feng, F. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line. Int. J. Mol. Sci., 2015, 16(9), 22137-22150.
[http://dx.doi.org/10.3390/ijms160922137] [PMID: 26389880]
[58]
Chandimali, N.; Huynh, D.L.; Zhang, J.J.; Lee, J.C.; Yu, D.Y.; Jeong, D.K.; Kwon, T. MicroRNA-122 negatively associates with peroxiredoxin-II expression in human gefitinib-resistant lung cancer stem cells. Cancer Gene Ther., 2019, 26(9-10), 292-304.
[http://dx.doi.org/10.1038/s41417-018-0050-1] [PMID: 30341415]
[59]
Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coggeshall, M.; Cornaby, L.; Dandona, L.; Dicker, D.J.; Dilegge, T.; Erskine, H.E.; Ferrari, A.J.; Fitzmaurice, C.; Fleming, T.; Forouzanfar, M.H.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Graetz, N.; Haagsma, J.A.; Hay, S.I.; Johnson, C.O.; Kassebaum, N.J.; Kawashima, T.; Kemmer, L.; Khalil, I.A.; Kinfu, Y.; Kyu, H.H.; Leung, J.; Liang, X.; Lim, S.S.; Lopez, A.D.; Lozano, R.; Marczak, L.; Mensah, G.A.; Mokdad, A.H.; Naghavi, M.; Nguyen, G.; Nsoesie, E.; Olsen, H.; Pigott, D.M.; Pinho, C.; Rankin, Z.; Reinig, N.; Salomon, J.A.; Sandar, L.; Smith, A.; Stanaway, J.; Steiner, C.; Teeple, S.; Thomas, B.A.; Troeger, C.; Wagner, J.A.; Wang, H.; Wanga, V.; Whiteford, H.A.; Zoeckler, L.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abraham, B.; Abubakar, I.; Abu-Raddad, L.J.; Abu-Rmeileh, N.M.E.; Ackerman, I.N.; Adebiyi, A.O.; Ademi, Z.; Adou, A.K.; Afanvi, K.A.; Agardh, E.E.; Agarwal, A.; Kiadaliri, A.A.; Ahmadieh, H.; Ajala, O.N.; Akinyemi, R.O.; Akseer, N.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Aldhahri, S.F.; Alegretti, M.A.; Alemu, Z.A.; Alexander, L.T.; Alhabib, S.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K.A.; Alvis-Guzman, N.; Amare, A.T.; Amberbir, A.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, G.M.; Anderson, B.O.; Antonio, C.A.T.; Aregay, A.F.; Ärnlöv, J.; Artaman, A.; Asayesh, H.; Assadi, R.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Quintanilla, B.P.A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Balakrishnan, K.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Barrero, L.H.; Basu, A.; Bazargan-Hejazi, S.; Beghi, E.; Bell, B.; Bell, M.L.; Bennett, D.A.; Bensenor, I.M.; Benzian, H.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhatt, S.; Biadgilign, S.; Bienhoff, K.; Bikbov, B.; Biryukov, S.; Bisanzio, D.; Bjertness, E.; Blore, J.; Borschmann, R.; Boufous, S.; Brainin, M.; Brazinova, A.; Breitborde, N.J.K.; Brown, J.; Buchbinder, R.; Buckle, G.C.; Butt, Z.A.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carabin, H.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Chang, J-C.; Chiang, P.P-C.; Chibueze, C.E.; Chisumpa, V.H.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Coates, M.M.; Colquhoun, S.M.; Cooper, C.; Cortinovis, M.; Crump, J.A.; Damtew, S.A.; Dandona, R.; Daoud, F.; Dargan, P.I. das Neves, J.; Davey, G.; Davis, A.C.; Leo, D.D.; Degenhardt, L.; Gobbo, L.C.D.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Derrett, S.; Jarlais, D.C.D.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Ding, E.L.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Ebrahimi, H.; Ellenbogen, R.G.; Elyazar, I.; Endres, M.; Endries, A.Y.; Ermakov, S.P.; Eshrati, B.; Estep, K.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Felson, D.T.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fernandes, J.C.; Fischer, F.; Fitchett, J.R.A.; Foreman, K.; Fowkes, F.G.R.; Fox, J.; Franklin, R.C.; Friedman, J.; Frostad, J.; Fürst, T.; Futran, N.D.; Gabbe, B.; Ganguly, P.; Gankpé, F.G.; Gebre, T.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Geleijnse, J.M.; Gessner, B.D.; Gibney, K.B.; Ginawi, I.A.M.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Glaser, E.; Godwin, W.W.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Grainger, R.; Greaves, F.; Guillemin, F.; Guo, Y.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Haile, D.; Hailu, A.D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Hammami, M.; Hancock, J.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Havmoeller, R.; Hay, R.J.; Heredia-Pi, I.B.; Heydarpour, P.; Hoek, H.W.; Horino, M.; Horita, N.; Hosgood, H.D.; Hoy, D.G.; Htet, A.S.; Huang, H.; Huang, J.J.; Huynh, C.; Iannarone, M.; Iburg, K.M.; Innos, K.; Inoue, M.; Iyer, V.J.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jee, S.H.; Jeemon, P.; Jensen, P.N.; Jiang, Y.; Jibat, T.; Jimenez-Corona, A.; Jin, Y.; Jonas, J.B.; Kabir, Z.; Kalkonde, Y.; Kamal, R.; Kan, H.; Karch, A.; Karema, C.K.; Karimkhani, C.; Kasaeian, A.; Kaul, A.; Kawakami, N.; Keiyoro, P.N.; Kemp, A.H.; Keren, A.; Kesavachandran, C.N.; Khader, Y.S.; Khan, A.R.; Khan, E.A.; Khang, Y-H.; Khera, S.; Khoja, T.A.M.; Khubchandani, J.; Kieling, C.; Kim, P.; Kim, C.; Kim, D.; Kim, Y.J.; Kissoon, N.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Kotsakis, G.A.; Koul, P.A.; Koyanagi, A.; Kravchenko, M.; Defo, B.K.; Bicer, B.K.; Kudom, A.A.; Kuipers, E.J.; Kumar, G.A.; Kutz, M.; Kwan, G.F.; Lal, A.; Lalloo, R.; Lallukka, T.; Lam, H.; Lam, J.O.; Langan, S.M.; Larsson, A.; Lavados, P.M.; Leasher, J.L.; Leigh, J.; Leung, R.; Levi, M.; Li, Y.; Li, Y.; Liang, J.; Liu, S.; Liu, Y.; Lloyd, B.K.; Lo, W.D.; Logroscino, G.; Looker, K.J.; Lotufo, P.A.; Lunevicius, R.; Lyons, R.A.; Mackay, M.T.; Magdy, M.; Razek, A.E.; Mahdavi, M.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Marcenes, W.; Margolis, D.J.; Martinez-Raga, J.; Masiye, F.; Massano, J.; McGarvey, S.T.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Meaney, P.A.; Mehari, A.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Meretoja, A.; Meretoja, T.J.; Mhimbira, F.A.; Millear, A.; Miller, T.R.; Mills, E.J.; Mirarefin, M.; Mitchell, P.B.; Mock, C.N.; Mohammadi, A.; Mohammed, S.; Monasta, L.; Hernandez, J.C.M.; Montico, M.; Mooney, M.D.; Moradi-Lakeh, M.; Morawska, L.; Mueller, U.O.; Mullany, E.; Mumford, J.E.; Murdoch, M.E.; Nachega, J.B.; Nagel, G.; Naheed, A.; Naldi, L.; Nangia, V.; Newton, J.N.; Ng, M.; Ngalesoni, F.N.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Nolla, J.M.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nunes, B.P.; Ogbo, F.A.; Oh, I-H.; Ohkubo, T.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Ortiz, A.; Osman, M.; Ota, E.; Pa, M.; Park, E-K.; Parsaeian, M.; de Azeredo Passos, V.M.; Caicedo, A.J.P.; Patten, S.B.; Patton, G.C.; Pereira, D.M.; Perez-Padilla, R.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Pishgar, F.; Plass, D.; Platts-Mills, J.A.; Polinder, S.; Pond, C.D.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Prasad, N.M.; Qorbani, M.; Rabiee, R.H.S.; Radfar, A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajsic, S.; Ram, U.; Rao, P.; Refaat, A.H.; Reitsma, M.B.; Remuzzi, G.; Resnikoff, S.; Reynolds, A.; Ribeiro, A.L.; Blancas, M.J.R.; Roba, H.S.; Rojas-Rueda, D.; Ronfani, L.; Roshandel, G.; Roth, G.A.; Rothenbacher, D.; Roy, A.; Sagar, R.; Sahathevan, R.; Sanabria, J.R.; Sanchez-Niño, M.D.; Santos, I.S.; Santos, J.V.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shackelford, K.A.; Shaheen, A.; Shaikh, M.A.; Sharma, R.; Sharma, U.; Shen, J.; Shepard, D.S.; Sheth, K.N.; Shibuya, K.; Shin, M-J.; Shiri, R.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Singh, O.P.; Singh, P.K.; Sivonda, A.; Skirbekk, V.; Skogen, J.C.; Sligar, A.; Sliwa, K.; Soljak, M.; Søreide, K.; Sorensen, R.J.D.; Soriano, J.B.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Steel, N.; Stein, D.J.; Steiner, T.J.; Steinke, S.; Stovner, L.; Stroumpoulis, K.; Sunguya, B.F.; Sur, P.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Takala, J.S.; Tandon, N.; Tanne, D.; Tavakkoli, M.; Taye, B.; Taylor, H.R.; Ao, B.J.T.; Tedla, B.A.; Terkawi, A.S.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tobe-Gai, R.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Tran, B.X.; Truelsen, T.; Dimbuene, Z.T.; Tsilimbaris, M.; Tura, A.K.; Tuzcu, E.M.; Tyrovolas, S.; Ukwaja, K.N.; Undurraga, E.A.; Uneke, C.J.; Uthman, O.A.; van Gool, C.H.; Varakin, Y.Y.; Vasankari, T.; Venketasubramanian, N.; Verma, R.K.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.V.; Vollset, S.E.; Wagner, G.R.; Waller, S.G.; Wang, L.; Watkins, D.A.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; White, R.A.; Williams, H.C.; Wiysonge, C.S.; Wolfe, C.D.A.; Won, S.; Woodbrook, R.; Wubshet, M.; Xavier, D.; Xu, G.; Yadav, A.K.; Yan, L.L.; Yano, Y.; Yaseri, M.; Ye, P.; Yebyo, H.G.; Yip, P.; Yonemoto, N.; Yoon, S-J.; Younis, M.Z.; Yu, C.; Zaidi, Z.; Zaki, M.E.S.; Zeeb, H.; Zhou, M.; Zodpey, S.; Zuhlke, L.J.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1545-1602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[60]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer, 2010, 127(12), 2893-2917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[61]
Kim, W.J.; Bae, S.C. Molecular biomarkers in urothelial bladder cancer. Cancer Sci., 2008, 99(4), 646-652.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00735.x] [PMID: 18377416]
[62]
Guo, L.; Yin, M.; Wang, Y. CREB1, a direct target of miR-122, promotes cell proliferation and invasion in bladder cancer. Oncol. Lett., 2018, 16(3), 3842-3848.
[http://dx.doi.org/10.3892/ol.2018.9118] [PMID: 30127997]
[63]
Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin., 2014, 64(1), 9-29.
[http://dx.doi.org/10.3322/caac.21208] [PMID: 24399786]
[64]
Rasmussen, F. Metastatic renal cell cancer. Cancer Imaging, 2013, 13(3), 374-380.
[http://dx.doi.org/10.1102/1470-7330.2013.9035] [PMID: 24061106]
[65]
Wang, Z.; Qin, C.; Zhang, J.; Han, Z.; Tao, J.; Cao, Q.; Zhou, W.; Xu, Z.; Zhao, C.; Tan, R.; Gu, M. MiR-122 promotes renal cancer cell proliferation by targeting Sprouty2. Tumour Biol., 2017, 39(2)
[http://dx.doi.org/10.1177/1010428317691184] [PMID: 28231730]
[66]
Fan, Y.; Ma, X.; Li, H.; Gao, Y.; Huang, Q.; Zhang, Y.; Bao, X.; Du, Q.; Luo, G.; Liu, K.; Meng, Q.; Zhao, C.; Zhang, X. miR-122 promotes metastasis of clear-cell renal cell carcinoma by downregulating Dicer. Int. J. Cancer, 2018, 142(3), 547-560.
[http://dx.doi.org/10.1002/ijc.31050] [PMID: 28921581]
[67]
Lian, J.H.; Wang, W.H.; Wang, J.Q.; Zhang, Y.H.; Li, Y. MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway. Asian Pac. J. Cancer Prev., 2013, 14(9), 5017-5021.
[http://dx.doi.org/10.7314/APJCP.2013.14.9.5017] [PMID: 24175769]
[68]
Nie, W.; Ni, D.; Ma, X.; Zhang, Y.; Gao, Y.; Peng, C.; Zhang, X. [Corrigendum] miR 122 promotes proliferation and invasion of clear cell renal cell carcinoma by suppressing Forkhead box O3. Int. J. Oncol., 2019, 54(2), 559-571.
[http://dx.doi.org/10.3892/ijo.2019.4694] [PMID: 30483771]
[69]
Jingushi, K.; Kashiwagi, Y.; Ueda, Y.; Kitae, K.; Hase, H.; Nakata, W.; Fujita, K.; Uemura, M.; Nonomura, N.; Tsujikawa, K. High miR-122 expression promotes malignant phenotypes in ccRCC by targeting occludin. Int. J. Oncol., 2017, 51(1), 289-297.
[http://dx.doi.org/10.3892/ijo.2017.4016] [PMID: 28534944]
[70]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61(2), 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[71]
Duan, Y.; Dong, Y.; Dang, R.; Hu, Z.; Yang, Y.; Hu, Y.; Cheng, J. MiR-122 inhibits epithelial mesenchymal transition by regulating P4HA1 in ovarian cancer cells. Cell Biol. Int., 2018, 42(11), 1564-1574.
[http://dx.doi.org/10.1002/cbin.11052] [PMID: 30136751]
[72]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[73]
Abboud, H.; Petrak, A.; Mealy, M.; Sasidharan, S.; Siddique, L.; Levy, M. Treatment of acute relapses in neuromyelitis optica: Steroids alone versus steroids plus plasma exchange. Mult. Scler., 2016, 22(2), 185-192.
[http://dx.doi.org/10.1177/1352458515581438] [PMID: 25921047]
[74]
Dryden-Peterson, S.; Bvochora-Nsingo, M.; Suneja, G.; Efstathiou, J.A.; Grover, S.; Chiyapo, S.; Ramogola-Masire, D.; Kebabonye-Pusoentsi, M.; Clayman, R.; Mapes, A.C.; Tapela, N.; Asmelash, A.; Medhin, H.; Viswanathan, A.N.; Russell, A.H.; Lin, L.L.; Kayembe, M.K.A.; Mmalane, M.; Randall, T.C.; Chabner, B.; Lockman, S. HIV Infection and Survival Among Women With Cervical Cancer. J. Clin. Oncol., 2016, 34(31), 3749-3757.
[http://dx.doi.org/10.1200/JCO.2016.67.9613] [PMID: 27573661]
[75]
Li, Y.; Wang, H.; Huang, H. Long non-coding RNA MIR205HG function as a ceRNA to accelerate tumor growth and progression via sponging miR-122–5p in cervical cancer. Biochem. Biophys. Res. Commun., 2019, 514(1), 78-85.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.102] [PMID: 31023531]
[76]
Hundal, R.; Shaffer, E.A. Gallbladder cancer: Epidemiology and outcome. Clin. Epidemiol., 2014, 6, 99-109.
[PMID: 24634588]
[77]
Rakić, M.; Patrlj, L.; Kopljar, M.; Kliček, R.; Kolovrat, M.; Loncar, B.; Busic, Z. Gallbladder cancer. Hepatobiliary Surg. Nutr., 2014, 3(5), 221-226.
[PMID: 25392833]
[78]
Lu, W.; Zhang, Y.; Zhou, L.; Wang, X.; Mu, J.; Jiang, L.; Hu, Y.; Dong, P.; Liu, Y. miR-122 inhibits cancer cell malignancy by targeting PKM2 in gallbladder carcinoma. Tumour Biol., 2015.
[PMID: 26546436]
[79]
Wen, P.Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med., 2008, 359(5), 492-507.
[http://dx.doi.org/10.1056/NEJMra0708126] [PMID: 18669428]
[80]
Ding, C.Q.; Deng, W.S.; Yin, X.F.; Ding, X.D. MiR-122 inhibits cell proliferation and induces apoptosis by targeting runt-related transcription factors 2 in human glioma. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(15), 4925-4933.
[PMID: 30070328]
[81]
Tang, Y.; Zhao, S.; Wang, J.; Li, D.; Ren, Q.; Tang, Y. Plasma miR-122 as a potential diagnostic and prognostic indicator in human glioma. Neurol. Sci., 2017, 38(6), 1087-1092.
[http://dx.doi.org/10.1007/s10072-017-2912-y] [PMID: 28367610]
[82]
Wang, G.; Zhao, Y.; Zheng, Y. miR-122/Wnt/β-catenin regulatory circuitry sustains glioma progression. Tumour Biol., 2014, 35(9), 8565-8572.
[http://dx.doi.org/10.1007/s13277-014-2089-4] [PMID: 24863942]
[83]
Prawira, A.; Oosting, S.F.; Chen, T.W. delos Santos, K.A.; Saluja, R.; Wang, L.; Siu, L.L.; Chan, K.K.W.; Hansen, A.R. Systemic therapies for recurrent or metastatic nasopharyngeal carcinoma: A systematic review. Br. J. Cancer, 2017, 117(12), 1743-1752.
[http://dx.doi.org/10.1038/bjc.2017.357] [PMID: 29065104]
[84]
Laskar, S.G.; Gurram, L.; Gupta, T.; Budrukkar, A.; Murthy, V.; Agarwal, J.P. Outcomes in nasopharyngeal carcinoma: Results from a nonendemic cohort. Indian J. Cancer, 2016, 53(4), 493-498.
[http://dx.doi.org/10.4103/0019-509X.204762] [PMID: 28485337]
[85]
Cheng, C.; Xiaohua, W.; Ning, J.; Dan, Z.; Chengyun, Y.; Lijun, Z.; Li, Y.; Shengfu, H.; Hong, J.; He, X. MiR-122 exerts anti-proliferative and apoptotic effects on nasopharyngeal carcinoma cells via the PI3K/AKT signaling pathway. Cell. Mol. Biol., 2018, 64(13), 21-25.
[http://dx.doi.org/10.14715/cmb/2018.64.13.5] [PMID: 30403591]
[86]
Yang, Y.; Li, Q.; Guo, L. MicroRNA 122 acts as tumor suppressor by targeting TRIM29 and blocking the activity of PI3K/AKT signaling in nasopharyngeal carcinoma in vitro. Mol. Med. Rep., 2018, 17(6), 8244-8252.
[http://dx.doi.org/10.3892/mmr.2018.8894] [PMID: 29693120]
[87]
Zhou, J.; Shi, K.; Huang, W.; Zhang, Y.; Chen, Q.; Mou, T.; Wu, Z.; Wei, X. LncRNA RPPH1 acts as a molecular sponge for miR-122 to regulate Wnt1/β-catenin signaling in hepatocellular carcinoma. Int. J. Med. Sci., 2023, 20(1), 23-34.
[http://dx.doi.org/10.7150/ijms.68778] [PMID: 36619232]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy