Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications

Author(s): Safia Samir*

Volume 31, Issue 2, 2024

Published on: 22 January, 2024

Page: [85 - 96] Pages: 12

DOI: 10.2174/0109298665181166231212051621

Abstract

Phage therapy, a promising alternative to combat multidrug-resistant bacterial infections, harnesses the lytic cycle of bacteriophages to target and eliminate bacteria. Key players in this process are the phage lysis proteins, including holin, endolysin, and spanin, which work synergistically to disrupt the bacterial cell wall and induce lysis. Understanding the structure and function of these proteins is crucial for the development of effective therapies. Recombinant versions of these proteins have been engineered to enhance their stability and efficacy. Recent progress in the field has led to the approval of bacteriophage-based therapeutics as drugs, paving the way for their clinical use. These proteins can be combined in phage cocktails or combined with antibiotics to enhance their activity against bacterial biofilms, a common cause of treatment failure. Animal studies and clinical trials are being conducted to evaluate the safety and efficacy of phage therapy in humans. Overall, phage therapy holds great potential as a valuable tool in the fight against multidrug- resistant bacteria, offering hope for the future of infectious disease treatment.

« Previous
Graphical Abstract

[1]
Gordillo, A.F.L.; Barr, J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev., 2019, 32(2), e00066-18.
[http://dx.doi.org/10.1128/CMR.00066-18] [PMID: 30651225]
[2]
Samir, S. Phages for treatment of Staphylococcus aureus infection. Prog. Mol. Biol. Transl. Sci., 2023, 200, 275-302.
[http://dx.doi.org/10.1016/bs.pmbts.2023.03.027] [PMID: 37739558]
[3]
Samir, S. Bacteriophages as therapeutic agents: Alternatives to antibiotics. Recent Pat. Biotechnol., 2021, 15(1), 25-33.
[http://dx.doi.org/10.2174/1872208315666210121094311] [PMID: 33475081]
[4]
Samir, S. Basic guidelines for bacteriophage isolation and characterization. Recent Pat. Biotechnol., 2023, 17(4), 312-331.
[http://dx.doi.org/10.2174/1872208317666221017094715] [PMID: 36263478]
[5]
Baeza, N.; Delgado, L.; Comas, J.; Mercade, E. Phage-mediated explosive cell lysis induces the formation of a different type of O-IMV in Shewanella vesiculosa M7T. Front. Microbiol., 2021, 12(October), 713669.
[http://dx.doi.org/10.3389/fmicb.2021.713669] [PMID: 34690958]
[6]
Roach, D.R.; Donovan, D.M. Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage, 2015, 5(3), e1062590.
[http://dx.doi.org/10.1080/21597081.2015.1062590] [PMID: 26442196]
[7]
Cahill, J.; Young, R. Phage lysis: Multiple genes for multiple barriers. Adv. Virus Res., 2019, 103, 33-70.
[http://dx.doi.org/10.1016/bs.aivir.2018.09.003] [PMID: 30635077]
[8]
Rajaure, M.; Berry, J.; Kongari, R.; Cahill, J.; Young, R. Membrane fusion during phage lysis. Proc. Natl. Acad. Sci, 2015, 112(17), 5497-5502.
[http://dx.doi.org/10.1073/pnas.1420588112] [PMID: 25870259]
[9]
Chamakura, K.; Young, R. Phage single-gene lysis: Finding the weak spot in the bacterial cell wall. J. Biol. Chem., 2019, 294(10), 3350-3358.
[http://dx.doi.org/10.1074/jbc.TM118.001773] [PMID: 30420429]
[10]
Pollenz, R.S.; Bland, J.; Pope, W.H. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta. PLoS One, 2022, 17(11), e0276603.
[http://dx.doi.org/10.1371/journal.pone.0276603]
[11]
Samir, S.; El-Far, A.; Okasha, H.; Mahdy, R.; Samir, F.; Nasr, S. Isolation and characterization of lytic bacteriophages from sewage at an egyptian tertiary care hospital against methicillin-resistant Staphylococcus aureus clinical isolates. Saudi J. Biol. Sci., 2022, 29(5), 3097-3106.
[http://dx.doi.org/10.1016/j.sjbs.2022.03.019] [PMID: 35360502]
[12]
Young, R. Phage lysis: Three steps, three choices, one outcome. J. Microbiol., 2014, 52(3), 243-258.
[http://dx.doi.org/10.1007/s12275-014-4087-z] [PMID: 24585055]
[13]
Young, R. Phage lysis: Do we have the hole story yet? Curr. Opin. Microbiol., 2013, 16(6), 790-797.
[http://dx.doi.org/10.1016/j.mib.2013.08.008] [PMID: 24113139]
[14]
Zheng, Y.; Struck, D.K.; Dankenbring, C.A.; Young, R. Evolutionary dominance of holin lysis systems derives from superior genetic malleability. Microbiology, 2018, 154(Pt 6), 1710-1718.
[15]
White, R.; Chiba, S.; Pang, T.; Dewey, J.S.; Savva, C.G.; Holzenburg, A.; Pogliano, K.; Young, R. Holin triggering in real time. Proc. Natl. Acad. Sci., 2011, 108(2), 798-803.
[http://dx.doi.org/10.1073/pnas.1011921108] [PMID: 21187415]
[16]
Pang, T.; Fleming, T.C.; Pogliano, K.; Young, R. Visualization of pinholin lesions in vivo. Proc. Natl. Acad. Sci., 2013, 110(22), E2054-E2063.
[http://dx.doi.org/10.1073/pnas.1222283110] [PMID: 23671069]
[17]
Kongari, R.; Rajaure, M.; Cahill, J.; Rasche, E.; Mijalis, E.; Berry, J.; Young, R. Phage spanins: diversity, topological dynamics and gene convergence. BMC Bioinformatics, 2018, 19(1), 326.
[http://dx.doi.org/10.1186/s12859-018-2342-8] [PMID: 30219026]
[18]
Murray, E.; Draper, L.A.; Ross, R.P.; Hill, C. The advantages and challenges of using endolysins in a clinical setting. Viruses, 2021, 13(4), 680.
[http://dx.doi.org/10.3390/v13040680] [PMID: 33920965]
[19]
Wong, K.Y.; Megat, M.K.M.H.; Song, A.A.L.; Masarudin, M.J.; Chong, C.M.; In, L.L.A.; Teo, M.Y.M. Endolysins against Streptococci as an antibiotic alternative. Front. Microbiol., 2022, 13, 935145.
[http://dx.doi.org/10.3389/fmicb.2022.935145] [PMID: 35983327]
[20]
Liu, H.; Hu, Z.; Li, M.; Yang, Y.; Lu, S.; Rao, X. Therapeutic potential of bacteriophage endolysins for infections caused by Gram-positive bacteria. J. Biomed. Sci., 2023, 30(1), 29.
[http://dx.doi.org/10.1186/s12929-023-00919-1] [PMID: 37101261]
[21]
Chang, Y.; Ryu, S. Characterization of a novel cell wall binding domain-containing Staphylococcus aureus endolysin LysSA97. Appl. Microbiol. Biotechnol., 2017, 101(1), 147-158.
[http://dx.doi.org/10.1007/s00253-016-7747-6] [PMID: 27498125]
[22]
Yu, J.H.; Park, D.W.; Lim, J.A.; Park, J.H. Characterization of staphylococcal endolysin LysSAP33 possessing untypical domain composition. J. Microbiol., 2021, 59(9), 840-847.
[http://dx.doi.org/10.1007/s12275-021-1242-1] [PMID: 34383247]
[23]
Wang, H.W.; Wang, J.W. How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci., 2017, 26(1), 32-39.
[http://dx.doi.org/10.1002/pro.3022] [PMID: 27543495]
[24]
Jaya, L.T.; Meenakshi, S.; Khushboo, G.; Manikyaprabhu, K.; Dinesh, K.; Krishna, M.P. Engineering of a T7 bacteriophage endolysin variant with enhanced amidase activity. Biochemistry, 2023, 62(2), 330-344.
[http://dx.doi.org/10.1021/acs.biochem.1c00710]
[25]
Broendum, S.S.; Buckle, A.M.; McGowan, S. Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins. Mol. Microbiol., 2018, 110(6), 879-896.
[http://dx.doi.org/10.1111/mmi.14134] [PMID: 30230642]
[26]
Oechslin, F.; Zhu, X.; Dion, M.B.; Shi, R.; Moineau, S. Phage endolysins are adapted to specific hosts and are evolutionarily dynamic. PLoS Biol., 2022, 20(8), e3001740.
[http://dx.doi.org/10.1371/journal.pbio.3001740] [PMID: 35913996]
[27]
Haddad, K.H.; Schmelcher, M.; Sabzalipoor, H.; Seyed, H.E.; Moniri, R. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: Current status of research and novel delivery strategies. Clin. Microbiol. Rev., 2018, 31(1), e00071-17.
[http://dx.doi.org/10.1128/CMR.00071-17] [PMID: 29187396]
[28]
To, K.H.; Young, R. Probing the structure of the S105 hole. J. Bacteriol., 2014, 196(21), 3683-3689.
[http://dx.doi.org/10.1128/JB.01673-14] [PMID: 25092029]
[29]
Krupovič, M.; Bamford, D.H. Holin of bacteriophage lambda: Structural insights into a membrane lesion. Mol. Microbiol., 2008, 69(4), 781-783.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06335.x] [PMID: 18573181]
[30]
Ramanculov, E.; Young, R. Functional analysis of the phage T4 holin in a λ context. Mol. Genet. Genomics, 2001, 265(2), 345-353.
[http://dx.doi.org/10.1007/s004380000422] [PMID: 11361346]
[31]
Moussa, S.H.; Lawler, J.L.; Young, R. Genetic dissection of T4 lysis. J. Bacteriol., 2014, 196(12), 2201-2209.
[http://dx.doi.org/10.1128/JB.01548-14] [PMID: 24706740]
[32]
Ramanculov, E.; Young, R. Genetic analysis of the T4 holin: Timing and topology. Gene, 2001, 265(1-2), 25-36.
[http://dx.doi.org/10.1016/S0378-1119(01)00365-1] [PMID: 11255004]
[33]
Krieger, S.J.I.V.; Kuznetsov, V.; Chang, J.Y.; Zhang, J.; Moussa, S.H.; Young, R.F. The structural basis of T4 phage lysis control: DNA as the signal for lysis inhibition. J. Mol. Biol., 2020, 432(16), 4623-4636.
[http://dx.doi.org/10.1016/j.jmb.2020.06.013]
[34]
Alcorlo, M.; González-Huici, V.; Hermoso, J.M.; Meijer, W.J.J.; Salas, M. The phage φ29 membrane protein p16.7, involved in DNA replication, is required for efficient ejection of the viral genome. J. Bacteriol., 2007, 189(15), 5542-5549.
[http://dx.doi.org/10.1128/JB.00402-07] [PMID: 17526715]
[35]
Reddy, B.L.; Saier, M.H., Jr Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochim. Biophys. Acta Biomembr., 2013, 1828(11), 2654-2671.
[http://dx.doi.org/10.1016/j.bbamem.2013.07.004] [PMID: 23856191]
[36]
Kim, Y.; Lee, S.M.; Nong, L.K.; Kim, J.; Kim, S.B.; Kim, D. Characterization of Klebsiella pneumoniae bacteriophages, KP1 and KP12, with deep learning-based structure prediction. Front. Microbiol., 2023, 13, 990910.
[http://dx.doi.org/10.3389/fmicb.2022.990910] [PMID: 36762092]
[37]
To, K.H.; Dewey, J.; Weaver, J.; Park, T.; Young, R. Functional analysis of a class I holin, P2 Y. J. Bacteriol., 2013, 195(6), 1346-1355.
[http://dx.doi.org/10.1128/JB.01986-12] [PMID: 23335412]
[38]
Bläsi, U.; Young, R. Two beginnings for a single purpose: The dual-start holins in the regulation of phage lysis Mol. Microbiol., 1996, 21(4), 675-682.
[http://dx.doi.org/10.1046/j.1365-2958.1996.331395.x] [PMID: 8878031]
[39]
Young, R.; Wang, I.N.; Roof, W.D. Phages will out: Strategies of host cell lysis. Trends Microbiol., 2000, 8(3), 120-128.
[http://dx.doi.org/10.1016/S0966-842X(00)01705-4] [PMID: 10707065]
[40]
Wang, I.N.; Smith, D.L.; Young, R. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol., 2000, 54(1), 799-825.
[http://dx.doi.org/10.1146/annurev.micro.54.1.799] [PMID: 11018145]
[41]
Jesse Cahill, R.Y. Release of phages from prokaryotic cells. In: Encyclopedia of Virology, 4th ed; Academic Press, 2021; pp. 501-518.
[http://dx.doi.org/10.1016/B978-0-12-814515-9.00074-6]
[42]
Berry, J.; Rajaure, M.; Pang, T.; Young, R. The spanin complex is essential for lambda lysis. J. Bacteriol., 2012, 194(20), 5667-5674.
[http://dx.doi.org/10.1128/JB.01245-12] [PMID: 22904283]
[43]
de Miguel, T.; Rama, J.L.R.; Sieiro, C.; Sánchez, S.; Villa, T.G. Bacteriophages and lysins as possible alternatives to treat antibiotic-resistant urinary tract infections. Antibiotics, 2020, 9(8), 466.
[http://dx.doi.org/10.3390/antibiotics9080466] [PMID: 32751681]
[44]
Abeysekera, G.S.; Love, M.J.; Manners, S.H.; Billington, C.; Dobson, R.C.J. Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Front. Microbiol., 2022, 13, 1044143.
[http://dx.doi.org/10.3389/fmicb.2022.1044143] [PMID: 36345304]
[45]
Cernooka, E.; Rumnieks, J.; Zrelovs, N.; Tars, K.; Kazaks, A. Diversity of the lysozyme fold: Structure of the catalytic domain from an unusual endolysin encoded by phage Enc34. Sci. Rep., 2022, 12(1), 5005.
[http://dx.doi.org/10.1038/s41598-022-08765-1] [PMID: 35322067]
[46]
Berry, J.D.; Rajaure, M.; Young, R. Spanin function requires subunit homodimerization through intermolecular disulfide bonds. Mol. Microbiol., 2013, 88(1), 35-47.
[http://dx.doi.org/10.1111/mmi.12167] [PMID: 23387988]
[47]
Ling, H.; Lou, X.; Luo, Q.; He, Z.; Sun, M.; Sun, J. Recent advances in bacteriophage-based therapeutics: Insight into the post-antibiotic era. Acta Pharm. Sin. B, 2022, 12(12), 4348-4364.
[http://dx.doi.org/10.1016/j.apsb.2022.05.007] [PMID: 36561998]
[48]
Loganathan, A.; Manohar, P.; Eniyan, K.; VinodKumar, C.S.; Leptihn, S.; Nachimuthu, R. Phage therapy as a revolutionary medicine against Gram-positive bacterial infections. Beni. Suef Univ. J. Basic Appl. Sci., 2021, 10(1), 49.
[http://dx.doi.org/10.1186/s43088-021-00141-8] [PMID: 34485539]
[49]
Adnan, F.; Torrents, E.; Sanmukh, S.; El-shibiny, A. Phage-encoded endolysins. Antibiotics, 2021, 10(2), 124.
[50]
Kim, S.G.; Khan, S.A.; Lee, Y.D.; Park, J.H.; Moon, G.S. Combination treatment for inhibition of the growth of Staphylococcus aureus with recombinant SAP8 endolysin and nisin. Antibiotics, 2022, 11(9), 1185.
[http://dx.doi.org/10.3390/antibiotics11091185] [PMID: 36139964]
[51]
Lu, Y.; Wang, Y.; Wang, J.; Zhao, Y.; Zhong, Q.; Li, G.; Fu, Z.; Lu, S. Phage endolysin LysP108 showed promising antibacterial potential against methicillin-resistant Staphylococcus aureus. Front. Cell. Infect. Microbiol., 2021, 11(April), 668430.
[http://dx.doi.org/10.3389/fcimb.2021.668430] [PMID: 33937105]
[52]
Letrado, P.; Corsini, B.; Díez-Martínez, R.; Bustamante, N.; Yuste, J.E.; García, P. Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus. Future Microbiol., 2018, 13(11), 1215-1223.
[http://dx.doi.org/10.2217/fmb-2018-0077] [PMID: 30238774]
[53]
Var, I.; AlMatar, M.; Heshmati, B.; Albarri, O. Bacteriophage cocktail can effectively control Salmonella biofilm on gallstone and tooth surfaces. Curr. Drug Targets, 2023, 24(7), 613-625.
[http://dx.doi.org/10.2174/1389450124666230519121940] [PMID: 37211854]
[54]
Grabowski, Ł.; Łepek, K.; Stasiłojć, M.; Kosznik-Kwaśnicka, K.; Zdrojewska, K.; Maciąg-Dorszyńska, M.; Węgrzyn, G.; Węgrzyn, A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol. Res., 2021, 248(March), 126746.
[http://dx.doi.org/10.1016/j.micres.2021.126746] [PMID: 33773329]
[55]
Liu, S.; Lu, H.; Zhang, S.; Shi, Y.; Chen, Q. Phages against pathogenic bacterial biofilms and biofilm-based infections: A review. Pharmaceutics, 2022, 14(2), 427.
[http://dx.doi.org/10.3390/pharmaceutics14020427] [PMID: 35214158]
[56]
Zhang, M.; Wang, Y.; Chen, J.; Hong, X.; Xu, X.; Wu, Z.; Ahmed, T.; Loh, B.; Leptihn, S.; Hassan, S.; Hassan, M.M.; Sun, G.; Li, B. Identification and characterization of a new type of holin-endolysin lysis cassette in acidovorax oryzae phage AP1. Viruses, 2022, 14(2), 167.
[http://dx.doi.org/10.3390/v14020167] [PMID: 35215761]
[57]
Cima Cabal, M.D.; Molina, F.; López-Sánchez, J.I.; Pérez-Santín, E.; del Mar García-Suárez, M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One, 2023, 18(3), e0282970.
[http://dx.doi.org/10.1371/journal.pone.0282970] [PMID: 36947540]
[58]
Indiani, C.; Sauve, K.; Raz, A.; Abdelhady, W.; Xiong, Y.Q.; Cassino, C.; Bayer, A.S.; Schuch, R. The antistaphylococcal lysin, CF-301, activates key host factors in human blood to potentiate methicillin-resistant Staphylococcus aureus bacteriolysis. Antimicrob. Agents Chemother., 2019, 63(4), e02291-18.
[http://dx.doi.org/10.1128/AAC.02291-18] [PMID: 30670427]
[59]
Fenton, M.; McAuliffe, O.; O’Mahony, J.; Coffey, A.; Coffey, A. Recombinant bacteriophage lysins as antibacterials. Bioeng. Bugs, 2010, 1(1), 9-16.
[http://dx.doi.org/10.4161/bbug.1.1.9818] [PMID: 21327123]
[60]
Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev., 2006, 19(2), 403-434.
[http://dx.doi.org/10.1128/CMR.19.2.403-434.2006] [PMID: 16614255]
[61]
Briers, Y.; Walmagh, M.; Van Puyenbroeck, V.; Cornelissen, A.; Cenens, W.; Aertsen, A.; Oliveira, H.; Azeredo, J.; Verween, G.; Pirnay, J.P.; Miller, S.; Volckaert, G.; Lavigne, R. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. MBio, 2014, 5(4), e01379-14.
[http://dx.doi.org/10.1128/mBio.01379-14] [PMID: 24987094]
[62]
Jun, S.Y.; Jang, I.J.; Yoon, S.; Jang, K.; Yu, K.S.; Cho, J.Y.; Seong, M.W.; Jung, G.M.; Yoon, S.J.; Kang, S.H. Pharmacokinetics and Tolerance of the Phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob. Agents Chemother., 2017, 61(6), e02629-16.
[http://dx.doi.org/10.1128/AAC.02629-16] [PMID: 28348152]
[63]
Gervasi, T.; Lo Curto, R.; Minniti, E.; Narbad, A.; Mayer, M.J. Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Lett. Appl. Microbiol., 2014, 59(4), 355-361.
[http://dx.doi.org/10.1111/lam.12298] [PMID: 24961379]
[64]
Love, M.; Bhandari, D.; Dobson, R.; Billington, C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics, 2018, 7(1), 17.
[http://dx.doi.org/10.3390/antibiotics7010017] [PMID: 29495476]
[65]
Fan, J.; Zeng, Z.; Mai, K.; Yang, Y.; Feng, J.; Bai, Y.; Sun, B.; Xie, Q.; Tong, Y.; Ma, J. Preliminary treatment of Bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of S. aureus bacteriophage IME-SA1. Vet. Microbiol., 2016, 191, 65-71.
[http://dx.doi.org/10.1016/j.vetmic.2016.06.001] [PMID: 27374909]
[66]
Zhang, H.; Bao, H.; Billington, C.; Hudson, J.A.; Wang, R. Isolation and lytic activity of the Listeria bacteriophageitalic> endolysin LysZ5 against Listeria monocytogenesitalic> in soya milk. Food Microbiol., 2012, 31(1), 133-136.
[http://dx.doi.org/10.1016/j.fm.2012.01.005] [PMID: 22475951]
[67]
van Nassau, T.J.; Lenz, C.A.; Scherzinger, A.S.; Vogel, R.F. Combination of endolysins and high pressure to inactivate Listeria monocytogenesitalic>. Food Microbiol., 2017, 68, 81-88.
[http://dx.doi.org/10.1016/j.fm.2017.06.005] [PMID: 28800829]
[68]
Eichenseher, F.; Herpers, B.L.; Badoux, P.; Leyva-Castillo, J.M.; Geha, R.S.; van der Zwart, M.; McKellar, J.; Janssen, F.; de Rooij, B.; Selvakumar, L.; Röhrig, C.; Frieling, J.; Offerhaus, M.; Loessner, M.J.; Schmelcher, M. Linker-improved chimeric endolysin selectively kills Staphylococcus aureusin vitro, on reconstituted human epidermis, and in a murine model of skin infection. Antimicrob. Agents Chemother., 2022, 66(5), e02273-21.
[http://dx.doi.org/10.1128/aac.02273-21] [PMID: 35416713]
[69]
Kebriaei, M.T.R.; Lev, K.; Stamper, L.S.KC.; Morales, R.M.S. Bacteriophage-antibiotic combination strategy: An alternative against methicillin-resistant phenotypes of Staphylococcus aureus. Antimicrob Agents Chemother, 2020, 64, e00461.
[http://dx.doi.org/10.1128/AAC.00461-20]

© 2025 Bentham Science Publishers | Privacy Policy