Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

The Potential of Quality Target Product Profile in the Optimization of Nanoemulsions

In Press, (this is not the final "Version of Record"). Available online 19 January, 2024
Author(s): Devesh U. Kapoor, Rajiv R. Kukkar, Mansi Gaur, Bhupendra G. Prajapati* and Rishabha Malviya*
Published on: 19 January, 2024

DOI: 10.2174/0124681873280769231217084737

Price: $95

Abstract

The application of Quality Target Product Profile (QTPP) in optimizing nanoemulsion (NEM) shows immense potential in advancing pharmaceutical formulation design for effective drug delivery. By aligning QTPP with nanoemulsion attributes, this approach offers a pathway to tailored formulations that meet specific therapeutic objectives and responses. Incorporating QTPP facilitates informed choices in formulating design, covering pivotal factors like stability, drug re-lease kinetics, bioavailability, and precise targeting. Moreover, this review extensively explores the real-world application of QTPP-guided tactics in refining nanoemulsion optimization. It high-lights their pivotal role in anticipating and regulating in vivo responses, encompassing vital as-pects like pharmacokinetics and pharmacodynamics. By conducting thorough examinations of case studies and research outcomes, this article clarifies the effectiveness of aligning QTPP crite-ria with NEM characteristics. This approach fosters the creation of customized formulations pre-cisely suited to achieve distinct therapeutic objectives. This review amalgamates contemporary insights into harnessing QTPP for nanoemulsion optimization, illuminating its capacity to stream-line formulation design, amplify treatment effectiveness by desiring drug release, and catalyze transformative shifts in pharmaceutical research.

[1]
Aksu B, Yeğen G. Global regulatory perspectives on quality by design in pharma manufacturing. In: Pharmaceutical Quality by Design. Elsevier 2019; pp. 19-41.
[2]
Radhakrishnan R. Nanocarriers-encapsulating phytochemicals as potent therapeutics in cancer therapy 2017Available from: https://researchrepository.rmit.edu.au/esploro/outputs/9921864003901341?institution=61RMIT_INST&skipUsageReporting=true&recordUsage=false
[3]
Cunha S, Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Using the quality by design (QbD) approach to optimize formulations of lipid nanoparticles and nanoemulsions: A review. Nanomedicine 2020; 28: 102206.
[http://dx.doi.org/10.1016/j.nano.2020.102206] [PMID: 32334097]
[4]
Patel RP, Joshi JR. An overview on nanoemulsion: A novel approach. Int J Pharm Sci Res 2012; 3(12): 4640.
[5]
Che Marzuki NH, Wahab RA, Abdul Hamid M. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol Biotechnol Equip 2019; 33(1): 779-97.
[http://dx.doi.org/10.1080/13102818.2019.1620124]
[6]
Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interface Sci 2004; 108-109: 303-18.
[http://dx.doi.org/10.1016/j.cis.2003.10.023] [PMID: 15072948]
[7]
K S, Kumar A. Nanoemulsions: Techniques for the preparation and the recent advances in their food applications. Innov Food Sci Emerg Technol 2022; 76: 102914.
[http://dx.doi.org/10.1016/j.ifset.2021.102914]
[8]
Solans C, Solé I. Nano-emulsions: Formation by low-energy methods. Curr Opin Colloid Interface Sci 2012; 17(5): 246-54.
[http://dx.doi.org/10.1016/j.cocis.2012.07.003]
[9]
Wilson RJ, Li Y, Yang G, Zhao CX. Nanoemulsions for drug delivery. Particuology 2022; 64: 85-97.
[http://dx.doi.org/10.1016/j.partic.2021.05.009]
[10]
Komaiko JS, McClements DJ. Formation of food‐grade nanoemulsions using low‐energy preparation methods: A review of available methods. Compr Rev Food Sci Food Saf 2016; 15(2): 331-52.
[http://dx.doi.org/10.1111/1541-4337.12189] [PMID: 33371595]
[11]
Khunt D, Prajapati BG, Prajapti M, Misra M, Salave S, Patel JK, et al. Drug delivery by micro, nanoemulsions in tuberculosis. In: Tubercular Drug Delivery Systems: Advances in Treatment of Infectious Diseases. Springer 2023; pp. 173-88.
[http://dx.doi.org/10.1007/978-3-031-14100-3_9]
[12]
Gauthier G, Capron I. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. JCIS Open 2021; 4: 100036.
[http://dx.doi.org/10.1016/j.jciso.2021.100036]
[13]
Mariyate J, Bera A. A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery. J Mol Liq 2022; 353: 118791.
[http://dx.doi.org/10.1016/j.molliq.2022.118791]
[14]
Prajapati BG, Patel DV, Khunt DM. Role of quality by design for the optimization of push pull osmotic pump of s-metoprolol succinate. Indian Drugs 2022; 59(10)
[15]
Kapoor D, Sharma S, Verma K, et al. Quality-by-design-based engineered liposomal nanomedicines to treat cancer: An in-depth analysis. Nanomedicine 2022; 17(17): 1173-89.
[http://dx.doi.org/10.2217/nnm-2022-0069] [PMID: 36178357]
[16]
Walsh J, Masini T, Huttner B, Moja L, Penazzato M, Cappello B. Assessing the appropriateness of formulations on the WHO model list of essential medicines for children: Development of a paediatric quality target product profile tool. Pharmaceutics 2022; 14(3): 473.
[http://dx.doi.org/10.3390/pharmaceutics14030473] [PMID: 35335850]
[17]
Patil HD, Patil CB, Patil VV, Patil PS. An overview on quality by design. Asian J Res Pharmaceut Sci 2023; 13(1)
[18]
Chordiya M, Gangurde H, Sancheti V. Quality by design: A Roadmap for quality pharmaceutical products. J Reports Pharmaceut Sci 2019; 8(2): 289.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_2_18]
[19]
Jagtap K, Chaudhari B, Redasani V. Quality by design (QbD) concept review in pharmaceuticals. Int Res J Pharma 2022; 303-7.
[20]
Gurumukhi VC, Bari SB. Fabrication of efavirenz loaded nano-formulation using quality by design (QbD) based approach: Exploring characterizations and in vivo safety. J Drug Deliv Sci Technol 2020; 56: 101545.
[http://dx.doi.org/10.1016/j.jddst.2020.101545]
[21]
Waghule T, Dabholkar N, Gorantla S, Rapalli VK, Saha RN, Singhvi G. Quality by design (QbD) in the formulation and optimization of liquid crystalline nanoparticles (LCNPs): A risk based industrial approach. Biomed Pharmacother 2021; 141: 111940.
[http://dx.doi.org/10.1016/j.biopha.2021.111940] [PMID: 34328089]
[22]
Acharya SD, Tamane PK, Khante SN, Pokharkar VB. QbD based optimization of curcumin nanoemulsion: DoE and cytotoxicity studies. Indian J Pharmaceut Educ Res 2020; 54(2): 329-36.
[http://dx.doi.org/10.5530/ijper.54.2.38]
[23]
Patra CN, Mishra A, Jena GK, et al. QbD enabled formulation development of nanoemulsion of nimodipine for improved biopharmaceutical performance. J Pharm Innov 2023; 1-19.
[http://dx.doi.org/10.1007/s12247-023-09714-9]
[24]
Alshahrani A, Ali A. Pre-clinical safety and efficacy evaluation of a herbal nanoemulsion-based formulation for treating inflammatory bowel disease. J AOAC Int 2022; 105(4): 1153-61.
[http://dx.doi.org/10.1093/jaoacint/qsac020] [PMID: 35167688]
[25]
Namjoshi S, Dabbaghi M, Roberts MS, Grice JE, Mohammed Y. Quality by design: Development of the quality target product profile (QTPP) for semisolid topical products. Pharmaceutics 2020; 12(3): 287.
[http://dx.doi.org/10.3390/pharmaceutics12030287] [PMID: 32210126]
[26]
Rai VK, Sharma A, Thakur A. Quality control of nanoemulsion: By PDCA cycle and 7QC tools. Curr Drug Deliv 2021; 18(9): 1244-55.
[http://dx.doi.org/10.2174/1567201818666210203180516] [PMID: 33538674]
[27]
Li J, Qiao Y, Wu Z. Nanosystem trends in drug delivery using quality-by-design concept. J Control Release 2017; 256: 9-18.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.019] [PMID: 28414149]
[28]
Gurumukhi VC, Sonawane VP, Tapadiya GG, Bari SB, Surana SJ, Chalikwar SS. Quality-by-design based fabrication of febuxostat-loaded nanoemulsion: Statistical optimization, characterizations, permeability, and bioavailability studies. Heliyon 2023; 9(4): e15404.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15404] [PMID: 37128342]
[29]
Yen CC, Chen YC, Wu MT, Wang CC, Wu YT. Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int J Nanomedicine 2018; 13: 669-80.
[http://dx.doi.org/10.2147/IJN.S154824] [PMID: 29440893]
[30]
Nagi A, Iqbal B, Kumar S, Sharma S, Ali J, Baboota S. Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability. J Drug Deliv Sci Technol 2017; 40: 35-44.
[http://dx.doi.org/10.1016/j.jddst.2017.05.019]
[31]
Séguy L, Groo AC, Goux D, Hennequin D, Malzert-Fréon A. Design of non-haemolytic nanoemulsions for intravenous administration of hydrophobic APIs. Pharmaceutics 2020; 12(12): 1141.
[http://dx.doi.org/10.3390/pharmaceutics12121141] [PMID: 33255606]
[32]
Simões A, Veiga F, Figueiras A, Vitorino C. A practical framework for implementing Quality by Design to the development of topical drug products: Nanosystem-based dosage forms. Int J Pharm 2018; 548(1): 385-99.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.052] [PMID: 29953928]
[33]
Soni G, Kale K, Shetty S, Gupta MK, Yadav KS. Quality by design (QbD) approach in processing polymeric nanoparticles loading anticancer drugs by high pressure homogenizer. Heliyon 2020; 6(4): e03846.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03846] [PMID: 32373744]
[34]
Cunha S, Forbes B, Sousa Lobo JM, Silva AC. Improving drug delivery for Alzheimer’s disease through nose-to-brain delivery using nanoemulsions, Nanostructured Lipid Carriers (NLC) and in situ hydrogels. Int J Nanomedicine 2021; 16: 4373-90.
[http://dx.doi.org/10.2147/IJN.S305851] [PMID: 34234432]
[35]
Piraino LR, Benoit DSW, DeLouise LA. Optimizing soluble cues for salivary gland tissue mimetics using a design of experiments (DoE) approach. Cells 2022; 11(12): 1962.
[http://dx.doi.org/10.3390/cells11121962] [PMID: 35741092]
[36]
Upadhyay M, Adena SKR, Vardhan H, Yadav SK, Mishra B. Development of biopolymers based interpenetrating polymeric network of capecitabine: A drug delivery vehicle to extend the release of the model drug. Int J Biol Macromol 2018; 115: 907-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.123] [PMID: 29705110]
[37]
Arslan A, Yet B, Nemutlu E, Akdağ Çaylı Y, Eroğlu H, Öner L. Celecoxib nanoformulations with enhanced solubility, dissolution rate, and oral bioavailability: Experimental approaches over in vitro >/in vivo Evaluation. Pharmaceutics 2023; 15(2): 363.
[http://dx.doi.org/10.3390/pharmaceutics15020363] [PMID: 36839685]
[38]
Bhattacharya S, Prajapati BG. Formulation, design and development of niosome based topical gel for skin cancer. Med Clin Res 2017; 2(2): 1-23.
[39]
Prajapati BG, Patel DV. Formulation and optimization of domperidone fast dissolving tablet by wet granulation techniques using factorial design. IntJ PharmTech 2010; 2(1): 293-9.
[40]
Prajapati B, Varia U. Bosentan loaded Microemulsion: A novel formulation and evaluation of their in-vitro and in-vivo characteristic. Int J Pharm Sci Drug Res 2020; 12(5): 464-72.
[http://dx.doi.org/10.25004/IJPSDR.2020.120506]
[41]
Ilzarbe L, Álvarez MJ, Viles E, Tanco M. Practical applications of design of experiments in the field of engineering: a bibliographical review. Qual Reliab Eng Int 2008; 24(4): 417-28.
[http://dx.doi.org/10.1002/qre.909]
[42]
Tian G, Wei Y, Zhao J, Li W, Qu H. Application of near-infrared spectroscopy combined with design of experiments for process development of the pulsed spray fluid bed granulation process. Powder Technol 2018; 339: 521-33.
[http://dx.doi.org/10.1016/j.powtec.2018.08.009]
[43]
Martínez-Razo G, Pires PC, Domínguez-López ML, Veiga F, Vega-López A, Paiva-Santos AC. Norcantharidin nanoemulsion development, characterization, and in vitro antiproliferation effect on B16F1 melanoma cells. Pharmaceuticals 2023; 16(4): 501.
[http://dx.doi.org/10.3390/ph16040501] [PMID: 37111258]
[44]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[45]
Fernandes SY, de Araújo D, Pontes MS, et al. Pre-emergent bioherbicide potential of Schinus terebinthifolia Raddi essential oil nanoemulsion for Urochloa brizantha. Biocatal Agric Biotechnol 2023; 47: 102598.
[http://dx.doi.org/10.1016/j.bcab.2022.102598]
[46]
Elkateb H, Cauldbeck H, Niezabitowska E, et al. High drug loading solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsions for the dual drug delivery of the HIV drugs darunavir and ritonavir. JCIS Open 2023; 11: 100087.
[http://dx.doi.org/10.1016/j.jciso.2023.100087]
[47]
Akhter S, Jain G, Ahmad F, et al. Investigation of nanoemulsion system for transdermal delivery of domperidone: Ex-vivo and in vivo studies. Curr Nanosci 2008; 4(4): 381-90.
[http://dx.doi.org/10.2174/157341308786306071]
[48]
Baboota S, Shakeel F, Ahuja A, Ali J, Shafiq S. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharm 2007; 57(3): 315-32.
[http://dx.doi.org/10.2478/v10007-007-0025-5] [PMID: 17878111]
[49]
Ahmad N, Khalid MS, Al Ramadhan AM, et al. Preparation of melatonin novel-mucoadhesive nanoemulsion used in the treatment of depression. Polym Bull 2023; 80(7): 8093-132.
[http://dx.doi.org/10.1007/s00289-022-04436-3]
[50]
Zając M, Kotyńska J, Zambrowski G, et al. Exposure to polystyrene nanoparticles leads to changes in the zeta potential of bacterial cells. Sci Rep 2023; 13(1): 9552.
[http://dx.doi.org/10.1038/s41598-023-36603-5] [PMID: 37308531]
[51]
Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci 2018; 80(5)
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000422]
[52]
Pourmadadi M, Ahmadi M, Yazdian F. Synthesis of a novel pH-responsive Fe3O4/chitosan/agarose double nanoemulsion as a promising nanocarrier with sustained release of curcumin to treat MCF-7 cell line. Int J Biol Macromol 2023; 235: 123786.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123786] [PMID: 36828092]
[53]
George MY, El-Derany MO, Ahmed Y, et al. Design and evaluation of chrysin-loaded nanoemulsion against lithium/pilocarpine-induced status epilepticus in rats; emphasis on formulation, neuronal excitotoxicity, oxidative stress, microglia polarization, and AMPK/SIRT-1/PGC-1α pathway. Expert Opin Drug Deliv 2023; 20(1): 159-74.
[http://dx.doi.org/10.1080/17425247.2023.2153831] [PMID: 36446395]
[54]
Gostyńska A, Czerniel J, Kuźmińska J, et al. Honokiol-loaded nanoemulsion for glioblastoma treatment: Statistical optimization, physicochemical characterization, and an in vitro toxicity assay. Pharmaceutics 2023; 15(2): 448.
[http://dx.doi.org/10.3390/pharmaceutics15020448] [PMID: 36839769]
[55]
Ali MS, Alam MS, Alam N, Siddiqui MR. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iran J Pharm Res 2014; 13(4): 1125-40.
[PMID: 25587300]
[56]
Alam MS, Ali MS, Alam MI, Anwer T, Safhi MMA. Stability testing of beclomethasone dipropionate nanoemulsion. Trop J Pharm Res 2015; 14(1): 15-20.
[http://dx.doi.org/10.4314/tjpr.v14i1.3]
[57]
Shaikh NM, Vijayendra Swamy SM, Narsing NS, Kulkarni KB. Formulation and evaluation of nanoemulsion for topical application. J Drug Deliv Ther 2019; 9(4-s): 370-5.
[http://dx.doi.org/10.22270/jddt.v9i4-s.3301]
[58]
Singh P, Kaur G, Singh A. Physical, morphological and storage stability of clove oil nanoemulsion based delivery system. Food Sci Technol Int 2023; 29(2): 156-67.
[http://dx.doi.org/10.1177/10820132211069470] [PMID: 34939458]
[59]
Wani TA, Masoodi FA, Jafari SM, McClements DJ. Safety of nanoemulsions and their regulatory status. In: Nanoemulsions. Elsevier 2018; pp. 613-28.
[60]
Mahdi ZH, Maraie NK. Overview on Nanoemulsion as a recently developed approach in Drug Nanoformulation. Res J Pharma Technol 2019; 12(11): 5554-60.
[http://dx.doi.org/10.5958/0974-360X.2019.00963.6]
[61]
Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R. Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci Rep 2021; 11(1): 20851.
[http://dx.doi.org/10.1038/s41598-021-00409-0] [PMID: 34675286]
[62]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[63]
Cossetin LF, Garlet QI, Velho MC, et al. Development of nanoemulsions containing Lavandula dentata or Myristica fragrans essential oils: Influence of temperature and storage period on physical-chemical properties and chemical stability. Ind Crops Prod 2021; 160: 113115.
[http://dx.doi.org/10.1016/j.indcrop.2020.113115]
[64]
Kumar S, Singh N, Devi LS, et al. Neem oil and its nanoemulsion in sustainable food preservation and packaging: Current status and future prospects. J Agric Food Res 2022; 7: 100254.
[http://dx.doi.org/10.1016/j.jafr.2021.100254]
[65]
Ansarian E, Aminzare M, Hassanzad Azar H, Mehrasbi MR, Bimakr M. Nanoemulsion-based basil seed gum edible film containing resveratrol and clove essential oil: In vitro antioxidant properties and its effect on oxidative stability and sensory characteristic of camel meat during refrigeration storage. Meat Sci 2022; 185: 108716.
[http://dx.doi.org/10.1016/j.meatsci.2021.108716] [PMID: 34839195]
[66]
Latif MS, Nawaz A, Asmari M, Uddin J, Ullah H, Ahmad S. Formulation development and in vitro/in vivo characterization of methotrexate-loaded nanoemulsion gel formulations for enhanced topical delivery. Gels 2022; 9(1): 3.
[http://dx.doi.org/10.3390/gels9010003] [PMID: 36661771]
[67]
Sah MK, Gautam B, Pokhrel KP, Ghani L, Bhattarai A. Quantification of the quercetin nanoemulsion technique using various parameters. Molecules 2023; 28(6): 2540.
[http://dx.doi.org/10.3390/molecules28062540] [PMID: 36985511]
[68]
Arbain NH, Basri M, Salim N, Wui WT, Abdul Rahman MB. Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Mater Today Proc 2018; 5: S137-42.
[http://dx.doi.org/10.1016/j.matpr.2018.08.055]
[69]
Drais HK, Hussein AA. Formulation and characterization of carvedilol nanoemulsion oral liquid dosage form. Int J Pharm Pharm Sci 2015; 7(12): 209-16.
[70]
Ranjani S, Karunya JR, Hemalatha S. Differential actions of nanoparticles and nanoemulsion synthesized from Colletotrichum siamense on food borne pathogen. LWT 2022 Feb 1; 155: 112995.
[http://dx.doi.org/10.1016/j.lwt.2021.112995]
[71]
Hassanzadeh H, Rahbari M, Galali Y, Hosseini M, Ghanbarzadeh B. The garlic extract‐loaded nanoemulsion: Study of physicochemical, rheological, and antimicrobial properties and its application in mayonnaise. Food Sci Nutr 2023; 11(7): 3799-810.
[http://dx.doi.org/10.1002/fsn3.3365] [PMID: 37457174]
[72]
Haider F, Khan BA, Khan MK. Formulation and evaluation of topical linezolid nanoemulsion for open incision wound in diabetic animal model. AAPS PharmSciTech 2022; 23(5): 129.
[http://dx.doi.org/10.1208/s12249-022-02288-8] [PMID: 35484340]
[73]
Prakash V, Parida L. Characterization and rheological behavior of vitamin E nanoemulsions prepared by phase inversion composition technique. Results Eng 2023; 18: 101175.
[http://dx.doi.org/10.1016/j.rineng.2023.101175]
[74]
Ahmed S, Gull A, Alam M, Aqil M, Sultana Y. Ultrasonically tailored, chemically engineered and “QbD” enabled fabrication of agomelatine nanoemulsion; optimization, characterization, ex-vivo permeation and stability study. Ultrason Sonochem 2018; 41: 213-26.
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.042] [PMID: 29137746]
[75]
Mehrotra S, Salwa A, Kumar L. Implementation of quality by design in the formulation and development of nanocarrier-based drug delivery systems. Crit Rev Ther Drug Carrier Syst 2023; 40(3): 1-46.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2022042927] [PMID: 36749082]
[76]
Beg S, Katare OP, Singh B. Formulation by design approach for development of ultrafine self-nanoemulsifying systems of rosuvastatin calcium containing long-chain lipophiles for hyperlipidemia management. Colloids Surf B Biointerfaces 2017; 159: 869-79.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.050] [PMID: 28892871]
[77]
Hosny KM. Development of saquinavir mesylate nanoemulsion-loaded transdermal films: two-step optimization of permeation parameters, characterization, and ex vivo and in vivo evaluation. Int J Nanomedicine 2019; 14: 8589-601.
[http://dx.doi.org/10.2147/IJN.S230747] [PMID: 31802871]
[78]
Aboumanei MH, Fayez H. Intra-articular formulation of colchicine loaded nanoemulsion systems for enhanced locoregional drug delivery: In vitro characterization, 99m Tc coupling and in vivo biodistribution studies. Drug Dev Ind Pharm 2021; 47(5): 770-7.
[http://dx.doi.org/10.1080/03639045.2021.1934865] [PMID: 34032545]
[79]
Patel GM, Shelat PK, Lalwani AN. QbD based development of proliposome of lopinavir for improved oral bioavailability. Eur J Pharm Sci 2017; 108: 50-61.
[http://dx.doi.org/10.1016/j.ejps.2016.08.057] [PMID: 27586019]
[80]
Garg B, Katare OP, Beg S, Lohan S, Singh B. Systematic development of solid self-nanoemulsifying oily formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of lopinavir. Colloids Surf B Biointerfaces 2016; 141: 611-22.
[http://dx.doi.org/10.1016/j.colsurfb.2016.02.012] [PMID: 26916320]
[81]
Beg S, Rahman M, Kohli K. Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discov Today 2019; 24(3): 717-25.
[http://dx.doi.org/10.1016/j.drudis.2018.12.002] [PMID: 30557651]
[82]
Bajwa N, Naryal S, Mahal S, Singh PA, Baldi A. Quality-by-design strategy for the development of arteether loaded solid self-micro emulsifying drug delivery systems. J Drug Deliv Sci Technol 2022; 77: 103707.
[http://dx.doi.org/10.1016/j.jddst.2022.103707]
[83]
Rana H, Patel D, Thakkar V, Gandhi T. Atovaquone smart lipid system: Design, statistical optimization, and in-vitro evaluation. Food Hydrocoll Health 2023; 4: 100144.
[84]
Dhawan S, Nanda S. Implementation of Quality by Design (QbD) concept for the development of emulsion based nanotailored gel for improved antiphotoageing potential of Silymarin. J Drug Deliv Sci Technol 2023; 81: 104201.
[http://dx.doi.org/10.1016/j.jddst.2023.104201]
[85]
Panigrahi KC, Jena J, Jena GK, Patra CN, Rao MEB. QBD-based systematic development of Bosentan SNEDDS: Formulation, characterization and pharmacokinetic assessment. J Drug Deliv Sci Technol 2018; 47: 31-42.
[http://dx.doi.org/10.1016/j.jddst.2018.06.021]
[86]
Patel VD, Rathod V, Haware RV, Stagner WC. Optimized L-SNEDDS and spray-dried S-SNEDDS using a linked QbD-DM3 rational design for model compound ketoprofen. Int J Pharm 2023; 631: 122494.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122494] [PMID: 36528191]
[87]
Donthi MR, Saha RN, Singhvi G, Dubey SK. Dasatinib-loaded topical nano-emulgel for rheumatoid arthritis: Formulation design and optimization by QbD, in vitro, ex vivo, and in vivo evaluation. Pharmaceutics 2023; 15(3): 736.
[http://dx.doi.org/10.3390/pharmaceutics15030736] [PMID: 36986597]
[88]
Beg S, Saini S, Bandopadhyay S, Katare OP, Singh B. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of Olmesartan medoxomil employing multivariate statistical techniques. Drug Dev Ind Pharm 2018; 44(3): 407-20.
[http://dx.doi.org/10.1080/03639045.2017.1395459] [PMID: 29048242]
[89]
Cunha S, Costa CP, Loureiro JA, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the Quality by Design (QbD) approach: Formulation variables and instrumental parameters. Pharmaceutics 2020; 12(7): 599.
[http://dx.doi.org/10.3390/pharmaceutics12070599] [PMID: 32605177]
[90]
Nastiti CMRR, Ponto T, Mohammed Y, Roberts MS, Benson HAE. Novel nanocarriers for targeted topical skin delivery of the antioxidant resveratrol. Pharmaceutics 2020; 12(2): 108.
[http://dx.doi.org/10.3390/pharmaceutics12020108] [PMID: 32013204]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy