Generic placeholder image

Recent Advances in Food, Nutrition & Agriculture

Editor-in-Chief

ISSN (Print): 2772-574X
ISSN (Online): 2772-5758

Research Article

Production, Optimization, and Characterization of Bio-cellulose Produced from Komagataeibacter (Acetobacter aceti MTCC 3347) Usage of Food Sources as Media

In Press, (this is not the final "Version of Record"). Available online 19 January, 2024
Author(s): Mazia Ahmed, Pinki Saini* and Unaiza Iqbal
Published on: 19 January, 2024

DOI: 10.2174/012772574X284979231231102050

Price: $95

Abstract

Introduction: Bio-cellulose is a type of cellulose that is produced by some particular group of bacteria, for example, Komagataeibacter (previously known as Acetobacter), due to their natural ability to synthesize exopolysaccharide as a byproduct. Gluconacetobacter xylinus is mostly employed for the production of bio-cellulose throughout the world. Therefore, exploring other commonly available strains, such as Komagataeibacter aceti (Acetobacter aceti), is needed for cellulose production.

Method: Bio-cellulose is one of the most reliable biomaterials in the limelight because it is highly pure, crystalline, and biocompatible. Hence, it is necessary to enhance the industrial manufacture of bio-cellulose with low costs. Different media such as fruit waste, milk whey, coconut water, sugarcane juice, mannitol broth, and H&S (Hestrin and Schramm’s) broth were utilized as a medium for culture growth. Other factors like temperature, pH, and time were also optimized to achieve the highest yield of bio-cellulose. Moreover, after the synthesis of bio-cellulose, its physicochemical and structural properties were evaluated. The results depicted that the highest yield of bio-cellulose (45.735 mg/mL) was found at 30 °C, pH 5, and on the 7th day of incubation. Though every culture media experimented with synthesized bio-cellulose, the maximum production (90.25 mg/mL) was reported in fruit waste media.

Result: The results also indicated that bio-cellulose has high water-holding capacity and moisture content. XRD results showed that bio-cellulose is highly crystalline in nature (54.825% crystallinity). SEM micrograph demonstrated that bio-cellulose exhibited rod-shaped, highly porous fibers. The FTIR results demonstrated characteristic and broad peaks for O-H at 3336.25 cm-1, which indicated stronger O-H bonding.

Conclusion: The thermal tests, such as DSC and TGA, indicated that bio-cellulose is a thermally stable material that can withstand temperatures even beyond 500 °C.

[1]
Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites - A review. Biotechnol. Rep., 2019, 21, e00316.
[http://dx.doi.org/10.1016/j.btre.2019.e00316] [PMID: 30847286]
[2]
Dayal, M.S.; Goswami, N.; Sahai, A.; Jain, V.; Mathur, G.; Mathur, A. Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydr. Polym., 2013, 94(1), 12-16.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.018] [PMID: 23544503]
[3]
Sheykhnazari, S.; Tabarsa, T.; Ashori, A.; Shakeri, A.; Golalipour, M. Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydr. Polym., 2011, 86(3), 1187-1191.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.011]
[4]
Fernandes, I.A.A.; Pedro, A.C.; Ribeiro, V.R.; Bortolini, D.G.; Ozaki, M.S.C.; Maciel, G.M.; Haminiuk, C.W.I. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol., 2020, 164, 2598-2611.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.255] [PMID: 32750475]
[5]
Jozala, A.F.; Pértile, R.A.N.; dos Santos, C.A.; de Carvalho Santos-Ebinuma, V.; Seckler, M.M.; Gama, F.M.; Pessoa, A. Jr Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol., 2015, 99(3), 1181-1190.
[http://dx.doi.org/10.1007/s00253-014-6232-3] [PMID: 25472434]
[6]
Castro, C.; Zuluaga, R.; Putaux, J.L.; Caro, G.; Mondragon, I.; Gañán, P. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr. Polym., 2011, 84(1), 96-102.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.072]
[7]
Kamal, T.; Ul-Islam, M.; Fatima, A.; Ullah, M.W.; Manan, S. Cost-effective synthesis of bacterial cellulose and its applications in the food and environmental sectors. Gels, 2022, 8(9), 552.
[http://dx.doi.org/10.3390/gels8090552] [PMID: 36135264]
[8]
Lin, D.; Liu, Z.; Shen, R.; Chen, S.; Yang, X. Bacterial cellulose in food industry: Current research and future prospects. Int. J. Biol. Macromol., 2020, 158, 1007-1019.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.230] [PMID: 32387361]
[9]
Klemm, D.; Schumann, D.; Kramer, F.; Heßler, N.; Hornung, M.; Schmauder, H.P.; Marsch, S. Nanocelluloses as innovative polymers in research and application. Adv. Polym. Sci., 2006, 205, 49-96.
[http://dx.doi.org/10.1007/12_097]
[10]
Ahmed, M.; Saini, P.; Iqbal, U. Microbial cellulose based films and composites for food packaging: A review. An. Univ. Dunarea de Jos Galati Fasc. VI Food Technol., 2021, 45(1), 178-198.
[http://dx.doi.org/10.35219/foodtechnology.2021.1.12]
[11]
Choi, S.M.; Rao, K.M.; Zo, S.M.; Shin, E.J.; Han, S.S. Bacterial cellulose and its applications. Polymers , 2022, 14(6), 1080.
[http://dx.doi.org/10.3390/polym14061080] [PMID: 35335411]
[12]
Nakagaito, A.N.; Nogi, M.; Yano, H. Displays from transparent films of natural nanofibers. MRS Bull., 2010, 35(3), 214-218.
[http://dx.doi.org/10.1557/mrs2010.654]
[13]
Mohite, B.V.; Patil, S.V. A novel biomaterial: Bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem., 2014, 61(2), 101-110.
[http://dx.doi.org/10.1002/bab.1148] [PMID: 24033726]
[14]
Donini, Í.A.; De Salvi, D.T.; Fukumoto, F.K.; Lustri, W.R.; Barud, H.S.; Marchetto, R. Biosynthesis and recent advances in production of bacterial cellulose. Eclét. Quím., 2010, 35, 165-178.
[http://dx.doi.org/10.1590/S0100-46702010000400021]
[15]
Jung, H.I.; Lee, O.M.; Jeong, J.H.; Jeon, Y.D.; Park, K.H.; Kim, H.S.; An, W.G.; Son, H.J. Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl. Biochem. Biotechnol., 2010, 162(2), 486-497.
[http://dx.doi.org/10.1007/s12010-009-8759-9] [PMID: 19730823]
[16]
Panesar, P.S.; Chavan, Y.V.; Bera, M.B.; Chand, O.; Kumar, H. Evaluation of Acetobacter strain for the production of microbial cellulose. Asian J. Chem., 2009, 21(10), 99-102.
[17]
Bae, S.; Shoda, M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol. Prog., 2004, 20(5), 1366-1371.
[http://dx.doi.org/10.1021/bp0498490] [PMID: 15458319]
[18]
Kongruang, S. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl. Biochem. Biotechnol., 2008, 148, 245-256.
[http://dx.doi.org/10.1007/s12010-007-8119-6]
[19]
Yousefi, A. Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran. J. Biotechnol., 2011, 9(2), 94-101.
[20]
Carreira, P.; Mendes, J.A.S.; Trovatti, E.; Serafim, L.S.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour. Technol., 2011, 102(15), 7354-7360.
[http://dx.doi.org/10.1016/j.biortech.2011.04.081] [PMID: 21601445]
[21]
Vazquez, A.; Foresti, M.L.; Cerrutti, P.; Galvagno, M. Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J. Polym. Environ., 2013, 21(2), 545-554.
[http://dx.doi.org/10.1007/s10924-012-0541-3]
[22]
Kurosumi, A.; Sasaki, C.; Yamashita, Y.; Nakamura, Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr. Polym., 2009, 76(2), 333-335.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.009]
[23]
Ahmed, M.; Saini, P.; Iqbal, U. Kirti, Bio cellulose-based edible composite coating for shelf-life extension of tomatoes. Food Human., 2023, 1, 973-984.
[http://dx.doi.org/10.1016/j.foohum.2023.08.016]
[24]
Costa, A.F.S.; Almeida, F.C.G.; Vinhas, G.M.; Sarubbo, L.A. Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol., 2017, 8, 2027.
[http://dx.doi.org/10.3389/fmicb.2017.02027] [PMID: 29089941]
[25]
AOAC In: Official methods of analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Gaithersburg, MD, 2006.
[26]
Feng, X.; Ullah, N.; Wang, X.; Sun, X.; Li, C.; Bai, Y.; Chen, L.; Li, Z. Characterization of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917. J. Food Sci., 2015, 80(10), E2217-E2227.
[http://dx.doi.org/10.1111/1750-3841.13010] [PMID: 26352877]
[27]
Dechojarassri, D.; Okada, T.; Tamura, H.; Furuike, T. Evaluation of cytotoxicity of hyaluronic acid/chitosan/bacterial cellulose-based membrane. Materials , 2023, 16(14), 5189.
[http://dx.doi.org/10.3390/ma16145189] [PMID: 37512462]
[28]
Güzel, M.; Akpınar, Ö. Production and characterization of bacterial cellulose from citrus peels. Waste Biomass Valoriz., 2019, 10(8), 2165-2175.
[http://dx.doi.org/10.1007/s12649-018-0241-x]
[29]
Fang, L.; Catchmark, J.M. Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose, 2014, 21(6), 3965-3978.
[http://dx.doi.org/10.1007/s10570-014-0443-8]
[30]
Hermans, P.H.; Weidinger, A. Quantitative x‐ray investigations on the crystallinity of cellulose fibers. A background analysis. J. Appl. Phys., 1948, 19(5), 491-506.
[http://dx.doi.org/10.1063/1.1698162]
[31]
Jittaut, P.; Hongsachart, P.; Audtarat, S.; Dasri, T. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus BNKC 19 using agricultural waste products as nutrient source. Arab J. Basic Appl. Sci., 2023, 30(1), 221-230.
[http://dx.doi.org/10.1080/25765299.2023.2172844]
[32]
Faroun Ahmed, E.; Shawkat Ali, W.; Hasan Heider, N. Description and determination of the nanocellulose components produced from acetic acid bacteria. Revis Bionatura, 2023, 8(3), 112.
[33]
Kumari, R.; Sakhire, M.; Kumar, M.; Vivekanand, V.; Pareek, N. Enhanced production of bacterial cellulose employing banana peel as a cost-effective nutrient resource. Braz. J. Microbiol., 2023, 1-9.
[34]
Ul-Islam, M.; Khan, T.; Park, J.K. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr. Polym., 2012, 89(4), 1189-1197.
[http://dx.doi.org/10.1016/j.carbpol.2012.03.093] [PMID: 24750931]
[35]
Jurkevicz, C.S.; Porto, F.V.A.; Tischer, C.A.; Fronza, M.; Endringer, D.C.; Ribeiro-Viana, R.M. Papain covalent immobilization in bacterial cellulose films as a wound dressing. J. Pharm. Sci., 2023, 4.
[http://dx.doi.org/10.1016/j.xphs.2023.11.015] [PMID: 38008178]
[36]
Surma-Ślusarska, B.; Presler, S.; Danielewicz, D. Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text. East. Eur., 2008, 16(4), 108-111.
[37]
Zahan, K.A.; Pa’e, N.; Muhamad, I.I. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arab. J. Sci. Eng., 2015, 40(7), 1881-1885.
[http://dx.doi.org/10.1007/s13369-015-1712-z]
[38]
Çoban, E.P.; Biyik, H. Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr. J. Microbiol. Res., 2011, 5(9), 1037-1045.
[39]
Tantratian, S.; Tammarate, P.; Krusong, W.; Bhattarakosol, P.; Phunsri, A. Effect of dissolved oxygen on cellulose production by Acetobacter sp. J. Sci. Res. Chula. Univ., 2005, 30(2), 179-186.
[40]
Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. Bacterial synthesized cellulose - artificial blood vessels for microsurgery. Prog. Polym. Sci., 2001, 26(9), 1561-1603.
[http://dx.doi.org/10.1016/S0079-6700(01)00021-1]
[41]
Lapuz, M.M.; Gallardo, E.G.; Palo, M.A. The nata organism-cultural requirements, characteristics and identity. Philipp. J. Sci., 1967, 96(2), 91-108.
[42]
Hong, F.; Qiu, K. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr. Polym., 2008, 72(3), 545-549.
[http://dx.doi.org/10.1016/j.carbpol.2007.09.015]
[43]
Wang, J.; Tavakoli, J.; Tang, Y. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydr. Polym., 2019, 219, 63-76.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.008] [PMID: 31151547]
[44]
Trovatti, E.; Serafim, L.S.; Freire, C.S.R.; Silvestre, A.J.D.; Neto, C.P. Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory. Carbohydr. Polym., 2011, 86(3), 1417-1420.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.046]
[45]
Mohite, B.V.; Salunke, B.K.; Patil, S.V. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl. Biochem. Biotechnol., 2013, 169(5), 1497-1511.
[http://dx.doi.org/10.1007/s12010-013-0092-7] [PMID: 23319186]
[46]
Lin, S.P.; Loira Calvar, I.; Catchmark, J.M.; Liu, J.R.; Demirci, A.; Cheng, K.C. Biosynthesis, production and applications of bacterial cellulose. Cellulose, 2013, 20(5), 2191-2219.
[http://dx.doi.org/10.1007/s10570-013-9994-3]
[47]
Santoso, S.P.; Chou, C.C.; Lin, S.P.; Soetaredjo, F.E.; Ismadji, S.; Hsieh, C.W.; Cheng, K.C. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose, 2020, 27(5), 2497-2509.
[http://dx.doi.org/10.1007/s10570-019-02961-5]
[48]
Biyik, H.; Coban, E.P. Evaluation of different carbon, nitrogen sources and industrial wastes for bacterial cellulose production. Eur. J. Biotechnol. Biosci, 2017, 5(1), 74-80.
[49]
Hizani, M.H.; Alias, N.; Shaiful Bahri, S.C.; Apendi, K.A. Optimization and characterization of biocellulose production from bacteria isolated from passion fruits. J. Agrobiotechnol., 2021, 12(1S), 21-30.
[http://dx.doi.org/10.37231/jab.2021.12.1S.267]
[50]
Raiszadeh-Jahromi, Y.; Rezazadeh-Bari, M.; Almasi, H.; Amiri, S. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J. Food Sci. Technol., 2020, 57(7), 2524-2533.
[http://dx.doi.org/10.1007/s13197-020-04289-6] [PMID: 32549603]
[51]
Muangrat, R.; Nuankham, C. Production of flour film from waste flour during noodle production and its application for preservation of fresh strawberries. CYTA J. Food, 2018, 16(1), 525-536.
[http://dx.doi.org/10.1080/19476337.2018.1424741]
[52]
Pang, M.; Cao, L.; Cao, L.; She, Y.; Wang, H. Properties of nisin incorporated ZrO 2/poly (vinyl alcohol)-wheat gluten antimicrobial barrier films. CYTA J. Food, 2019, 17(1), 400-407.
[http://dx.doi.org/10.1080/19476337.2019.1587517]
[53]
López-Palestina, C.U.; Aguirre-Mancilla, C.L.; Raya-Pérez, J.C.; Ramirez-Pimentel, J.G.; Vargas-Torres, A.; Hernández-Fuentes, A.D. Physicochemical and antioxidant properties of gelatin-based films containing oily tomato extract (Solanum lycopersicum L.). CYTA J. Food, 2019, 17(1), 142-150.
[http://dx.doi.org/10.1080/19476337.2018.1564793]
[54]
Ludwiczak, S.; Mucha, M. Modeling of water sorption isotherms of chitosan blends. Carbohydr. Polym., 2010, 79(1), 34-39.
[http://dx.doi.org/10.1016/j.carbpol.2009.07.014]
[55]
Cazón, P.; Velázquez, G.; Vázquez, M. Regenerated cellulose films combined with glycerol and polyvinyl alcohol: Effect of moisture content on the physical properties. Food Hydrocoll., 2020, 103, 105657.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105657]
[56]
Nisar, T.; Wang, Z.C.; Alim, A.; Iqbal, M.; Yang, X.; Sun, L.; Guo, Y. Citrus pectin films enriched with thinned young apple polyphenols for potential use as bio-based active packaging. CYTA J. Food, 2019, 17(1), 695-705.
[http://dx.doi.org/10.1080/19476337.2019.1640798]
[57]
Khattak, W.A.; Khan, T.; Ul-Islam, M.; Wahid, F.; Park, J.K. Production, characterization and physico-mechanical properties of bacterial cellulose from industrial wastes. J. Polym. Environ., 2015, 23(1), 45-53.
[http://dx.doi.org/10.1007/s10924-014-0663-x]
[58]
Heydorn, R.L.; Lammers, D.; Gottschling, M.; Dohnt, K. Effect of food industry by-products on bacterial cellulose production and its structural properties. Cellulose, 2023, 30(7), 4159-4179.
[http://dx.doi.org/10.1007/s10570-023-05097-9]
[59]
Mohammadkazemi, F.; Azin, M.; Ashori, A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym., 2015, 117, 518-523.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.008] [PMID: 25498666]
[60]
Ibrahim, M.M.; El-Zawawy, W.K.; Jüttke, Y.; Koschella, A.; Heinze, T. Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose, 2013, 20(5), 2403-2416.
[http://dx.doi.org/10.1007/s10570-013-9992-5]
[61]
Avcioglu, N.H.; Birben, M.; Seyis Bilkay, I. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochem., 2021, 108, 60-68.
[http://dx.doi.org/10.1016/j.procbio.2021.06.005]
[62]
Salama, A.; Saleh, A.K.; Cruz-Maya, I.; Guarino, V. Bacterial cellulose/cellulose imidazolium bio-hybrid membranes for in vitro and antimicrobial applications. J. Funct. Biomater., 2023, 14(2), 60.
[http://dx.doi.org/10.3390/jfb14020060] [PMID: 36826859]
[63]
Gaudreault, R.; van de Ven, T.G.; Whitehead, M.A. Salt necessary for PEO-cofactor association: The role of molecular modelling in PEO flocculation mechanisms. First Applied Pulp & Paper Molecular Modelling Symposium (FAPPMMS 2005),, Montreal, Canada, 2005.
[64]
Neelima, S.; Sreejith, S.; Shajahan, S.; Raj, A.; Vidya, L.; Aparna, V.M.; Radhakrishnan, E.K.; Sudarsanakumar, C. Highly crystalline bacterial cellulose production by Novacetimonas hansenii strain isolated from rotten fruit. Mater. Lett., 2023, 333, 133622.
[http://dx.doi.org/10.1016/j.matlet.2022.133622]
[65]
Ul-Islam, M.; Ha, J.H.; Khan, T.; Park, J.K. Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr. Polym., 2013, 92(1), 360-366.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.060] [PMID: 23218306]
[66]
Shah, N.; Ha, J.H.; Park, J.K. Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol. Bioprocess Eng.; BBE, 2010, 15(1), 110-118.
[http://dx.doi.org/10.1007/s12257-009-3064-6]
[67]
Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose-structure and characterization. Cellul. Chem. Technol., 2011, 45(1), 13.
[68]
Ibrahim, M.M.; Agblevor, F.A.; El-Zawawy, W.K. Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources, 2010, 5(1), 397-418.
[http://dx.doi.org/10.15376/biores.5.1.397-418]
[69]
George, J.; Ramana, K.V.; Bawa, A.S. Siddaramaiah, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int. J. Biol. Macromol., 2011, 48(1), 50-57.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.09.013] [PMID: 20920524]
[70]
Ullah, M.W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Park, J.K. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr. Polym., 2016, 136, 908-916.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.010] [PMID: 26572428]
[71]
Gao, Q.; Shen, X.; Lu, X. Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr. Polym., 2011, 83(3), 1253-1256.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.029]
[72]
Kumar, M.; Kumar, V.; Saran, S. Efficient production of bacterial cellulose based composites using zein protein extracted from corn gluten meal. J. Food Sci. Technol., 2023, 60(3), 1026-1035.
[http://dx.doi.org/10.1007/s13197-022-05443-y] [PMID: 36908356]
[73]
Gomes, R.J.; Ida, E.I.; Spinosa, W.A. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture. Braz. J. Microbiol., 2023, 54(2), 703-713.
[http://dx.doi.org/10.1007/s42770-023-00910-w] [PMID: 36800074]
[74]
George, J.; Ramana, K.V.; Sabapathy, S.N.; Jagannath, J.H.; Bawa, A.S. Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. Int. J. Biol. Macromol., 2005, 37(4), 189-194.
[http://dx.doi.org/10.1016/j.ijbiomac.2005.10.007] [PMID: 16321434]
[75]
Azubuike, C.P.; Okhamafe, A.O. Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int. J. Recycl. Org. Waste Agric., 2012, 1(1), 9.
[http://dx.doi.org/10.1186/2251-7715-1-9]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy