Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Nuclear Factor Kappa B: A Nobel Therapeutic Target of Flavonoids Against Parkinson's Disease

Author(s): Niraj Kumar Singh*, Ashini Singh and Mayank

Volume 27, Issue 14, 2024

Published on: 18 January, 2024

Page: [2062 - 2077] Pages: 16

DOI: 10.2174/0113862073295568240105025006

Price: $65

Abstract

Parkinson's disease (PD), the most common brain-related neurodegenerative disorder, is comprised of several pathophysiological mechanisms, such as mitochondrial dysfunction, neuroinflammation, aggregation of misfolded alpha-synuclein, and synaptic loss in the substantia nigra pars compacta region of the midbrain. Misfolded alpha-synuclein, originating from damaged neurons, triggers a series of signaling pathways in both glial and neuronal cells. Activation of such events results in the production and expression of several proinflammatory cytokines via the activation of the nuclear factor κB (NF-κB) signaling pathway. Consequently, this cascade of events worsens the neurodegenerative processes, particularly in conditions, such as PD and synucleinopathies. Microglia, astrocytes, and neurons are just a few of the many cells and tissues that express the NF-κB family of inducible types of transcription factors. The dual role of NF-κB activation can be crucial for neuronal survival, although the classical NF-κB pathway is important for controlling the generation of inflammatory mediators during neuroinflammation. Modulating NF-κB-associated pathways through the selective action of several agents holds promise for mitigating dopaminergic neuronal degeneration and PD. Several naturally occurring compounds in medicinal plants can be an effective treatment option in attenuating PD-associated dopaminergic neuronal loss via selectively modifying the NF-κB-mediated signaling pathways. Recently, flavonoids have gained notable attention from researchers because of their remarkable anti-neuroinflammatory activity and significant antioxidant properties in numerous neurodegenerative disorders, including PD. Several subclasses of flavonoids, including flavones, flavonols, isoflavones, and anthocyanins, have been evaluated for neuroprotective effects against in vitro and in vivo models of PD. In this aspect, the present review highlights the pathological role of NF-κB in the progression of PD and investigates the therapeutic potential of natural flavonoids targeting the NF-κB signaling pathway for the prevention and management of PD-like manifestations with a comprehensive list for further reference. Available facts strongly support that bioactive flavonoids could be considered in food and/or as lead pharmacophores for the treatment of neuroinflammation-mediated PD. Furthermore, natural flavonoids having potent pharmacological properties could be helpful in enhancing the economy of countries that cultivate medicinal plants yielding bioactive flavonoids on a large scale.

Graphical Abstract

[1]
Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord., 2013, 28(3), 311-318.
[http://dx.doi.org/10.1002/mds.25292] [PMID: 23436720]
[2]
Singh, N.K.; Singh, A.; Varshney, M.; Agrawal, R. A research update on exendin-4 as a novel molecule against parkinson’s disease. Curr. Mol. Med., 2023, 23(9), 889-900.
[http://dx.doi.org/10.2174/1566524023666230529093314] [PMID: 37254536]
[3]
Davie, C.A. A review of Parkinson’s disease. Br. Med. Bull., 2008, 86(1), 109-127.
[http://dx.doi.org/10.1093/bmb/ldn013] [PMID: 18398010]
[4]
Goyal, A.; Verma, A.; Agrawal, A.; Dubey, N.; Kumar, A.; Behl, T. Therapeutic implications of crocin in Parkinson’s disease: A review of preclinical research. Chem. Biol. Drug Des., 2023, 101(6), 1229-1240.
[http://dx.doi.org/10.1111/cbdd.14210] [PMID: 36752710]
[5]
Surmeier, D.J. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J., 2018, 285(19), 3657-3668.
[http://dx.doi.org/10.1111/febs.14607] [PMID: 30028088]
[6]
Bansal, K.; Singh, S.; Singh, V.; Bajpai, M. Nutraceuticals a food for thought in the treatment of parkinson’s disease. Curr. Nutr. Food Sci., 2023, 19(9), 961-977.
[http://dx.doi.org/10.2174/1573401319666230515104325]
[7]
Goyal, A.; Verma, A.; Dubey, N.; Raghav, J.; Agrawal, A. Naringenin: A prospective therapeutic agent for Alzheimer’s and Parkinson’s disease. J. Food Biochem., 2022, 46(12), e14415.
[http://dx.doi.org/10.1111/jfbc.14415] [PMID: 36106706]
[8]
Verma, A.; Goyal, A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev. Bras. Farmacogn., 2022, 32(4), 563-574.
[http://dx.doi.org/10.1007/s43450-022-00277-3]
[9]
Amor, S.; Puentes, F.; Baker, D.; Van Der Valk, P. Inflammation in neurodegenerative diseases. Immunology, 2010, 129(2), 154-169.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03225.x] [PMID: 20561356]
[10]
Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinson’s disease. Adv. Protein Chem. Struct. Biol., 2012, 88, 69-132.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00004-0] [PMID: 22814707]
[11]
Monahan, A.J.; Warren, M.; Carvey, P.M. Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: An autoimmune hypothesis. Cell Transplant., 2008, 17(4), 363-372.
[http://dx.doi.org/10.3727/096368908784423328] [PMID: 18522239]
[12]
Tansey, M.G.; Goldberg, M.S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis., 2010, 37(3), 510-518.
[http://dx.doi.org/10.1016/j.nbd.2009.11.004] [PMID: 19913097]
[13]
Pajares, M.I.; Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687.
[http://dx.doi.org/10.3390/cells9071687] [PMID: 32674367]
[14]
Church, F.C. Treatment options for motor and non-motor symptoms of parkinson’s disease. Biomolecules, 2021, 11(4), 612.
[http://dx.doi.org/10.3390/biom11040612] [PMID: 33924103]
[15]
Karin, M.; Lin, A. NF-κB at the crossroads of life and death. Nat. Immunol., 2002, 3(3), 221-227.
[http://dx.doi.org/10.1038/ni0302-221] [PMID: 11875461]
[16]
Li, Q.; Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol., 2002, 2(10), 725-734.
[http://dx.doi.org/10.1038/nri910] [PMID: 12360211]
[17]
Perkins, N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol., 2007, 8(1), 49-62.
[http://dx.doi.org/10.1038/nrm2083] [PMID: 17183360]
[18]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[19]
Mattson, M.P.; Camandola, S. NF-κB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 2001, 107(3), 247-254.
[http://dx.doi.org/10.1172/JCI11916] [PMID: 11160145]
[20]
Rocha, S.M.; Kirkley, K.S.; Chatterjee, D.; Aboellail, T.A.; Smeyne, R.J.; Tjalkens, R.B. Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the inhibition of p62/SEQUESTOSOME -1-dependent autophagy in the rotenone model of Parkinson’s disease. Glia, 2023, 71(9), 2154-2179.
[http://dx.doi.org/10.1002/glia.24385] [PMID: 37199240]
[21]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2(1), 17023.
[http://dx.doi.org/10.1038/sigtrans.2017.23] [PMID: 29158945]
[22]
Mattson, M.P.; Meffert, M.K. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ., 2006, 13(5), 852-860.
[http://dx.doi.org/10.1038/sj.cdd.4401837] [PMID: 16397579]
[23]
Salles, A.; Romano, A.; Freudenthal, R. Synaptic NF-kappa B pathway in neuronal plasticity and memory. J. Physiol. Paris, 2014, 108(4-6), 256-262.
[http://dx.doi.org/10.1016/j.jphysparis.2014.05.002] [PMID: 24854662]
[24]
Dutta, D.; Jana, M.; Majumder, M.; Mondal, S.; Roy, A.; Pahan, K. Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat. Commun., 2021, 12(1), 5382.
[http://dx.doi.org/10.1038/s41467-021-25767-1] [PMID: 34508096]
[25]
Shi, Z.M.; Han, Y.W.; Han, X.H.; Zhang, K.; Chang, Y.N.; Hu, Z.M.; Qi, H.X.; Ting, C.; Zhen, Z.; Hong, W. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J. Neurol. Sci., 2016, 366, 127-134.
[http://dx.doi.org/10.1016/j.jns.2016.05.022] [PMID: 27288790]
[26]
Srinivasan, M.; Lahiri, D.K. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin. Ther. Targets, 2015, 19(4), 471-487.
[http://dx.doi.org/10.1517/14728222.2014.989834] [PMID: 25652642]
[27]
Singh, S.S.; Rai, S.N.; Birla, H.; Zahra, W.; Rathore, A.S.; Singh, S.P. NF-κB-mediated neuroinflammation in Parkinson’s Disease and potential therapeutic effect of polyphenols. Neurotox. Res., 2020, 37(3), 491-507.
[http://dx.doi.org/10.1007/s12640-019-00147-2] [PMID: 31823227]
[28]
Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[29]
Gasparini, L.; Ongini, E.; Wenk, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[30]
Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 2022, 27(9), 2901.
[http://dx.doi.org/10.3390/molecules27092901] [PMID: 35566252]
[31]
Kaltschmidt, B.; Helweg, L.P; Greiner, J.F.W.; Kaltschmidt, C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front. Mol. Neurosci., 2022, 15, 954541.
[http://dx.doi.org/10.3389/fnmol.2022.954541] [PMID: 35983068]
[32]
Ghosh, G.; Wang, V.Y.F.; Huang, D.B.; Fusco, A. NF-κB regulation: Lessons from structures. Immunol. Rev., 2012, 246(1), 36-58.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01097.x] [PMID: 22435546]
[33]
Moynagh, P.N. The NF-κB pathway. J. Cell Sci., 2005, 118(20), 4589-4592.
[http://dx.doi.org/10.1242/jcs.02579] [PMID: 16219681]
[34]
Gilmore, T.D. Introduction to NF-κB: Players, pathways, perspectives. Oncogene, 2006, 25(51), 6680-6684.
[http://dx.doi.org/10.1038/sj.onc.1209954] [PMID: 17072321]
[35]
Cai, M.; Zhuang, W.; Lv, E.; Liu, Z.; Wang, Y.; Zhang, W.; Fu, W. Kaemperfol alleviates pyroptosis and microglia-mediated neuroinflammation in Parkinson’s disease via inhibiting p38MAPK/NF-κB signaling pathway. Neurochem. Int., 2022, 152, 105221.
[http://dx.doi.org/10.1016/j.neuint.2021.105221] [PMID: 34780806]
[36]
Hoffmann, A.; Natoli, G.; Ghosh, G. Transcriptional regulation via the NF-κB signaling module. Oncogene, 2006, 25(51), 6706-6716.
[http://dx.doi.org/10.1038/sj.onc.1209933] [PMID: 17072323]
[37]
Dolatshahi, M.; Ranjbar Hameghavandi, M.H.; Sabahi, M.; Rostamkhani, S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: Diverse patterns and mechanisms contributing to neurodegeneration. Eur. J. Neurosci., 2021, 54(1), 4101-4123.
[http://dx.doi.org/10.1111/ejn.15242] [PMID: 33884689]
[38]
Brasier, A.R. The NF-kappaB regulatory network. Cardiovasc. Toxicol., 2006, 6(2), 111-130.
[http://dx.doi.org/10.1385/CT:6:2:111] [PMID: 17303919]
[39]
Tergaonkar, V. NF κB pathway: A good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol., 2006, 38(10), 1647-1653.
[http://dx.doi.org/10.1016/j.biocel.2006.03.023] [PMID: 16766221]
[40]
Pomerantz, J.L.; Baltimore, D. Two Pathways to NF-κ. B. Mol. Cell, 2002, 10(4), 693-695.
[http://dx.doi.org/10.1016/S1097-2765(02)00697-4] [PMID: 12419209]
[41]
Songkiatisak, P. Rahman, S.M.T.; Aqdas, M.; Sung, M.H. NF-κB, a culprit of both inflamm-ageing and declining immunity? Immun. Ageing, 2022, 19(1), 20.
[http://dx.doi.org/10.1186/s12979-022-00277-w] [PMID: 35581646]
[42]
Scheidereit, C. IκB kinase complexes: Gateways to NF-κB activation and transcription Oncogene, 2006, 25(51), 6685-6705.
[http://dx.doi.org/10.1038/sj.onc.1209934] [PMID: 17072322]
[43]
Panet, H.; Barzilai, A.; Daily, D.; Melamed, E.; Offen, D. Activation of nuclear transcription factor kappa B (NF-κB) is essential for dopamine-induced apoptosis in PC12 cells. J. Neurochem., 2001, 77(2), 391-398.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00213.x] [PMID: 11299301]
[44]
Baiguera, C.; Alghisi, M.; Pinna, A.; Bellucci, A.; De Luca, M.A.; Frau, L.; Morelli, M.; Ingrassia, R.; Benarese, M.; Porrini, V.; Pellitteri, M.; Bertini, G.; Fabene, P.F.; Sigala, S.; Spillantini, M.G.; Liou, H.C.; Spano, P.F.; Pizzi, M. Late-onset Parkinsonism in NF B/c-Rel-deficient mice. Brain, 2012, 135(9), 2750-2765.
[http://dx.doi.org/10.1093/brain/aws193] [PMID: 22915735]
[45]
Parrella, E.; Bellucci, A.; Porrini, V.; Benarese, M.; Lanzillotta, A.; Faustini, G.; Longhena, F.; Abate, G.; Uberti, D.; Pizzi, M. NF-κB/c-Rel deficiency causes Parkinson’s disease-like prodromal symptoms and progressive pathology in mice. Transl. Neurodegener., 2019, 8(1), 16.
[http://dx.doi.org/10.1186/s40035-019-0154-z] [PMID: 31139367]
[46]
Wang, Z.; Dong, H.; Wang, J.; Huang, Y.; Zhang, X.; Tang, Y.; Li, Q.; Liu, Z.; Ma, Y.; Tong, J.; Huang, L.; Fei, J.; Yu, M.; Wang, J.; Huang, F. Pro-survival and anti-inflammatory roles of NF-κB c-Rel in the Parkinson’s disease models. Redox Biol., 2020, 30, 101427.
[http://dx.doi.org/10.1016/j.redox.2020.101427] [PMID: 31986466]
[47]
Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. , 2007, 104(47), 18754-18759.
[http://dx.doi.org/10.1073/pnas.0704908104] [PMID: 18000063]
[48]
Gan, L.; Li, Z.; Lv, Q.; Huang, W. Rabies virus glycoprotein (RVG29)-linked microRNA-124-loaded polymeric nanoparticles inhibit neuroinflammation in a Parkinson’s disease model. Int. J. Pharm., 2019, 567, 118449.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118449] [PMID: 31226473]
[49]
Goes, A.T.R.; Jesse, C.R.; Antunes, M.S.; Lobo Ladd, F.V.; Lobo Ladd, A.A.B.; Luchese, C.; Paroul, N.; Boeira, S.P. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem. Biol. Interact., 2018, 279, 111-120.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[50]
Jiang, X.; Wang, X.; Tuo, M.; Ma, J.; Xie, A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci. Lett., 2018, 672, 65-69.
[http://dx.doi.org/10.1016/j.neulet.2018.02.049] [PMID: 29477598]
[51]
Hassanzadeh, K.; Rahimmi, A. Oxidative stress and neuroinflammation in the story of Parkinson’s disease: Could targeting these pathways write a good ending? J. Cell. Physiol., 2019, 234(1), 23-32.
[http://dx.doi.org/10.1002/jcp.26865] [PMID: 30078201]
[52]
Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176.
[http://dx.doi.org/10.1007/BF03033137] [PMID: 12835121]
[53]
Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet., 2011, 20(15), 3067-3078.
[http://dx.doi.org/10.1093/hmg/ddr210] [PMID: 21558425]
[54]
Harraz, M.M.; Dawson, T.M.; Dawson, V.L. MicroRNAs in Parkinson’s disease. J. Chem. Neuroanat., 2011, 42(2), 127-130.
[http://dx.doi.org/10.1016/j.jchemneu.2011.01.005] [PMID: 21295133]
[55]
Correddu, D.; Leung, I.K.H. Targeting mRNA translation in Parkinson’s disease. Drug Discov. Today, 2019, 24(6), 1295-1303.
[http://dx.doi.org/10.1016/j.drudis.2019.04.003] [PMID: 30974176]
[56]
Martín-Nieto, J.; Uribe, M.L.; Esteve-Rudd, J.; Herrero, M.T.; Campello, L. A role for DJ-1 against oxidative stress in the mammalian retina. Neurosci. Lett., 2019, 708, 134361.
[http://dx.doi.org/10.1016/j.neulet.2019.134361] [PMID: 31276729]
[57]
Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Mouradian, M.M.; Junn, E. Inhibition of miR-34b and miR-34c enhances α-synuclein expression in Parkinson’s disease. FEBS Lett., 2015, 589(3), 319-325.
[http://dx.doi.org/10.1016/j.febslet.2014.12.014] [PMID: 25541488]
[58]
Yao, L.; Zhu, Z.; Wu, J.; Zhang, Y.; Zhang, H.; Sun, X.; Qian, C.; Wang, B.; Xie, L.; Zhang, S.; Lu, A.G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. FASEB J., 2019, 33(7), 8648-8665.
[http://dx.doi.org/10.1096/fj.201900363R] [PMID: 30995872]
[59]
Wu, S.P.; Zhang, J.W.; Ma, J.J.; Li, X.; Qi, Y.W.; Yang, H.Q. The role of miR-146a in MPTP treated mice with Parkinson’s disease. Int. J. Clin. Exp. Med., 2019, 12(4), 3668-3676.
[60]
Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy , 2020, 10(8), 1209.
[http://dx.doi.org/10.3390/agronomy10081209]
[61]
Chen, Y.; Peng, F.; Xing, Z.; Chen, J.; Peng, C.; Li, D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol., 2022, 13, 1006434.
[http://dx.doi.org/10.3389/fimmu.2022.1006434] [PMID: 36353622]
[62]
Schmitt-Schillig, S.; Schaffer, S.; Weber, C.C.; Eckert, G.P.; Müller, W.E. Flavonoids and the aging brain. J. Physiol. Pharmacol., 2005, 56(1)(Suppl. 1), 23-36.
[PMID: 15800383]
[63]
Ishige, K.; Schubert, D.; Sagara, Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic. Biol. Med., 2001, 30(4), 433-446.
[http://dx.doi.org/10.1016/S0891-5849(00)00498-6] [PMID: 11182299]
[64]
Bellavite, P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants, 2023, 12(2), 280.
[http://dx.doi.org/10.3390/antiox12020280] [PMID: 36829840]
[65]
Behl, T.; Kaur, G.; Sehgal, A.; Zengin, G.; Singh, S.; Ahmadi, A.; Bungau, S. Flavonoids, the family of plant-derived antioxidants making inroads into novel therapeutic design against ionizing radiation-induced oxidative stress in parkinson’s disease. Curr. Neuropharmacol., 2022, 20(2), 324-343.
[http://dx.doi.org/10.2174/1570159X19666210524152817] [PMID: 34030619]
[66]
Magalingam, K.B.; Radhakrishnan, A.K.; Haleagrahara, N. Protective mechanisms of flavonoids in parkinson’s disease. Oxid. Med. Cell. Longev., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/314560] [PMID: 26576219]
[67]
Gao, B.; Chang, C.; Zhou, J.; Zhao, T.; Wang, C.; Li, C.; Gao, G. Pycnogenol protects against rotenone-induced neurotoxicity in PC12 cells through regulating NF-κB-iNOS signaling pathway. DNA Cell Biol., 2015, 34(10), 643-649.
[http://dx.doi.org/10.1089/dna.2015.2953] [PMID: 26203556]
[68]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[69]
Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[70]
Muhammad, T.; Ikram, M.; Ullah, R.; Rehman, S.; Kim, M. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients, 2019, 11(3), 648.
[http://dx.doi.org/10.3390/nu11030648] [PMID: 30884890]
[71]
Li, Y.; Zeng, Y.; Meng, T.; Gao, X.; Huang, B.; He, D.; Ran, X.; Du, J.; Zhang, Y.; Fu, S.; Hu, G. Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinson’s disease by suppressing the activation of the AKT and NF-κB signaling pathways. Int. Immunopharmacol., 2019, 75, 105739.
[http://dx.doi.org/10.1016/j.intimp.2019.105739] [PMID: 31351366]
[72]
Kim, D.C.; Quang, T.; Oh, H.; Kim, Y.C. Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in LPS-Stimulated BV2 and primary rat microglial cells. Molecules, 2017, 22(12), 2130.
[http://dx.doi.org/10.3390/molecules22122130] [PMID: 29207498]
[73]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[74]
Patel, M.; Singh, S. Apigenin attenuates functional and structural alterations via targeting NF-kB/Nrf2 signaling pathway in LPS-induced parkinsonism in experimental rats. Neurotox. Res., 2022, 40(4), 941-960.
[http://dx.doi.org/10.1007/s12640-022-00521-7] [PMID: 35608813]
[75]
Zhang, X.; Yang, Y.; Du, L.; Zhang, W.; Du, G. Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int. Immunopharmacol., 2017, 50, 38-47.
[http://dx.doi.org/10.1016/j.intimp.2017.06.007] [PMID: 28623717]
[76]
Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139.
[http://dx.doi.org/10.1002/jnr.23307] [PMID: 24166733]
[77]
Gao, X.; He, D.; Liu, D.; Hu, G.; Zhang, Y.; Meng, T.; Su, Y.; Zhou, A.; Huang, B.; Du, J.; Fu, S. Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-κB signaling axis. Immunobiology, 2020, 225(4), 151965.
[http://dx.doi.org/10.1016/j.imbio.2020.151965] [PMID: 32747020]
[78]
Habib, C.N.; Mohamed, M.R.; Tadros, M.G.; Tolba, M.F.; Menze, E.T.; Masoud, S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur. J. Pharmacol., 2022, 914, 174573.
[http://dx.doi.org/10.1016/j.ejphar.2021.174573] [PMID: 34656609]
[79]
Qi, G.; Mi, Y.; Fan, R.; Li, R.; Liu, Z.; Liu, X. Nobiletin protects against systemic inflammation-stimulated memory impairment via MAPK and NF-κB signaling pathways. J. Agric. Food Chem., 2019, 67(18), 5122-5134.
[http://dx.doi.org/10.1021/acs.jafc.9b00133] [PMID: 30995031]
[80]
Meng, H.W.; Shen, Z.B.; Meng, X.S. Leng-Wei; Yin, Z.Q.; Wang, X.R.; Zou, T.F.; Liu, Z.G.; Wang, T.X.; Zhang, S.; Chen, Y.L.; Yang, X.X.; Li, Q.S.; Duan, Y.J. Novel flavonoid 1,3,4-oxadiazole derivatives ameliorate MPTP-induced Parkinson’s disease via Nrf2/NF-κB signaling pathway. Bioorg. Chem., 2023, 138, 106654.
[http://dx.doi.org/10.1016/j.bioorg.2023.106654] [PMID: 37300959]
[81]
Zhou, X.; Gan, P.; Hao, L.; Tao, L.; Jia, J.; Gao, B.; Liu, J.; Zheng, L.T.; Zhen, X. Antiinflammatory effects of orientin-2”-O-galactopyranoside on lipopolysaccharide-stimulated microglia. Biol. Pharm. Bull., 2014, 37(8), 1282-1294.
[http://dx.doi.org/10.1248/bpb.b14-00083] [PMID: 25087950]
[82]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 29, 47.
[http://dx.doi.org/10.1017/jns.2016.41]
[83]
Akinmoladun, A.C.; Famusiwa, C.D.; Josiah, S.S.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A. Dihydroquercetin improves rotenone-induced Parkinsonism by regulating NF-κB-mediated inflammation pathway in rats. J. Biochem. Mol. Toxicol., 2022, 36(5), e23022.
[http://dx.doi.org/10.1002/jbt.23022] [PMID: 35187747]
[84]
Josiah, S.S.; Famusiwa, C.D.; Crown, O.O.; Lawal, A.O.; Olaleye, M.T.; Akindahunsi, A.A.; Akinmoladun, A.C. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 2022, 90, 158-171.
[http://dx.doi.org/10.1016/j.neuro.2022.03.004] [PMID: 35337893]
[85]
Iwashina, T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull. Natl. Mus. Nat. Sci., 2013, 39(1), 25-51.
[86]
Zhang, F.X.; Xu, R.S. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed. Pharmacother., 2018, 97, 1011-1019.
[http://dx.doi.org/10.1016/j.biopha.2017.08.132] [PMID: 29136779]
[87]
Lee, M.; McGeer, E.G.; McGeer, P.L. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol. Aging, 2016, 46, 113-123.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.06.015] [PMID: 27479153]
[88]
Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-κB and HO-1/Nrf2 Pathways. Int. J. Mol. Sci., 2017, 18(9), 1989.
[http://dx.doi.org/10.3390/ijms18091989] [PMID: 28914791]
[89]
Notarte, K.I.R.; Quimque, M.T.J.; Macaranas, I.T.; Khan, A.; Pastrana, A.M.; Villaflores, O.B.; Arturo, H.C.P.; Pilapil, D.Y.H., IV; Tan, S.M.M.; Wei, D.Q.; Wenzel-Storjohann, A.; Tasdemir, D.; Yen, C.H.; Ji, S.Y.; Kim, G.Y.; Choi, Y.H.; Macabeo, A.P.G. Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-κB Pathway and the Increased NRF2 Level by a Flavonol-Enriched n -Butanol Fraction from Uvaria alba. ACS Omega, 2023, 8(6), 5377-5392.
[http://dx.doi.org/10.1021/acsomega.2c06451] [PMID: 36816691]
[90]
Wang, Y.H.; Yu, H.T.; Pu, X.P.; Du, G.H. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells. J. Mol. Neurosci., 2014, 53(4), 562-570.
[http://dx.doi.org/10.1007/s12031-013-0222-2] [PMID: 24510749]
[91]
Zheng, L.T.; Ock, J.; Kwon, B.M.; Suk, K. Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol., 2008, 8(3), 484-494.
[http://dx.doi.org/10.1016/j.intimp.2007.12.012] [PMID: 18279803]
[92]
Zhou, J.; Deng, Y.; Li, F.; Yin, C.; Shi, J.; Gong, Q. Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed. Pharmacother., 2019, 111, 315-324.
[http://dx.doi.org/10.1016/j.biopha.2018.10.201] [PMID: 30590319]
[93]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[94]
Yang, J.; Jia, M.; Zhang, X.; Wang, P. Calycosin attenuates MPTP-induced Parkinson’s disease by suppressing the activation of TLR/NF-κB and MAPK pathways. Phytother. Res., 2019, 33(2), 309-318.
[http://dx.doi.org/10.1002/ptr.6221] [PMID: 30421460]
[95]
Zhao, Y.; Sang, Y.; Sun, Y.; Wu, J. Pomiferin exerts antineuroinflammatory effects through activating Akt/Nrf2 pathway and inhibiting NF-κB pathway. Mediators Inflamm., 2022, 2022, 1-11.
[http://dx.doi.org/10.1155/2022/5824657] [PMID: 35418806]
[96]
Chinta, S.J.; Ganesan, A.; Reis-Rodrigues, P.; Lithgow, G.J.; Andersen, J.K. Anti-inflammatory role of the isoflavone diadzein in lipopolysaccharide-stimulated microglia: implications for Parkinson’s disease. Neurotox. Res., 2013, 23(2), 145-153.
[http://dx.doi.org/10.1007/s12640-012-9328-5] [PMID: 22573480]
[97]
Bai, Y.; Zhou, J.; Zhu, H.; Tao, Y.; Wang, L.; Yang, L.; Wu, H.; Huang, F.; Shi, H.; Wu, X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson’s disease via JNK / AKT NFκ/B signaling pathway. Phytother. Res., 2023, 37(3), 848-859.
[http://dx.doi.org/10.1002/ptr.7665] [PMID: 36484427]
[98]
Giusti, M.M.; Wrolstad, R.E. Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 2003, 14(3), 217-225.
[http://dx.doi.org/10.1016/S1369-703X(02)00221-8]
[99]
Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res., 2017, 61(1), 1361779.
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[100]
Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.I.; Kim, M.O. Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol., 2019, 56(1), 671-687.
[http://dx.doi.org/10.1007/s12035-018-1101-1] [PMID: 29779175]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy