Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Cuproptosis Related Gene DLD Associated with Poor Prognosis and Malignant Biological Characteristics in Lung Adenocarcinoma

Author(s): Xinyang Li, Junshuai Rui, Zihan Yang, Feng Shang-Guan, Haolin Shi, Dengkui Wang and Jiachun Sun*

Volume 24, Issue 8, 2024

Published on: 17 January, 2024

Page: [867 - 880] Pages: 14

DOI: 10.2174/0115680096271679231213060750

Abstract

Purpose: Cuproptosis plays a crucial role in the biological function of cells. The subject of this work was to analyze the effects of cuproptosis-related genes (CRGs) on the prognosis and biological function in lung adenocarcinoma (LUAD).

Methods: In this study, RNA sequencing and clinical data of LUAD samples were screened from public databases and our institution. A CRG signature was identified by least absolute shrinkage and selection operator and Cox regression. In addition, this study analyzed the correlation between prognostic CRGs and clinicopathological features. Finally, this study studied the effect of inhibiting dihydrolipoamide dehydrogenase (DLD) expression on cell biological function.

Results: There were 10 CRGs that showed differential expression between LUAD and normal tissues (p<0.05). A prognostic signature (DLD and lipoyltransferase 1 [LIPT1]) was constructed. Survival analysis suggested that patients with LUAD in the high-risk group had shorter overall survival (OS) (p<0.05). High expression of DLD and low expression of LIPT1 were significantly associated with shorter OS (p<0.05). Immunohistochemical analysis revealed that, in LUAD tissues, DLD was highly expressed, whereas LIPT1 was not detected. Finally, inhibition of DLD expression could significantly restrain cell proliferation, invasion and migration.

Conclusion: Overall, this prognostic CRG signature may play a pivotal role in LUAD outcome, while oncogene DLD may be a future therapeutic candidate for LUAD.

« Previous
Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global epidemiology of lung cancer. Ann. Glob. Health, 2019, 85(1), 8.
[http://dx.doi.org/10.5334/aogh.2419] [PMID: 30741509]
[4]
Ucvet, A.; Yazgan, S.; Gursoy, S.; Samancilar, O. Prognosis of resected non-small cell lung cancer with ipsilateral pulmonary metastasis. Thorac. Cardiovasc. Surg., 2020, 68(2), 176-182.
[http://dx.doi.org/10.1055/s-0038-1667169] [PMID: 30060270]
[5]
Martínez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer, 2021, 21(10), 669-680.
[http://dx.doi.org/10.1038/s41568-021-00378-6] [PMID: 34272515]
[6]
Pavlova, N.N.; Zhu, J.; Thompson, C.B. The hallmarks of cancer metabolism: Still emerging. Cell Metab., 2022, 34(3), 355-377.
[http://dx.doi.org/10.1016/j.cmet.2022.01.007] [PMID: 35123658]
[7]
Rodrigues Mantuano, N.; Natoli, M.; Zippelius, A.; Läubli, H. Tumor-associated carbohydrates and immunomodulatory lectins as targets for cancer immunotherapy. J. Immunother. Cancer, 2020, 8(2), e001222.
[http://dx.doi.org/10.1136/jitc-2020-001222] [PMID: 33020245]
[8]
Sivanand, S.; Vander Heiden, M.G. Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell, 2020, 37(2), 147-156.
[http://dx.doi.org/10.1016/j.ccell.2019.12.011] [PMID: 32049045]
[9]
Mou, Y.; Wang, J.; Wu, J.; He, D.; Zhang, C.; Duan, C.; Li, B. Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J. Hematol. Oncol., 2019, 12(1), 34.
[http://dx.doi.org/10.1186/s13045-019-0720-y] [PMID: 30925886]
[10]
Moujalled, D.; Strasser, A.; Liddell, J.R. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ., 2021, 28(7), 2029-2044.
[http://dx.doi.org/10.1038/s41418-021-00814-y] [PMID: 34099897]
[11]
Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch., 2020, 472(10), 1415-1429.
[http://dx.doi.org/10.1007/s00424-020-02412-2] [PMID: 32506322]
[12]
Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci., 2021, 8, 711227.
[http://dx.doi.org/10.3389/fmolb.2021.711227] [PMID: 34504870]
[13]
Nanni, V.; Di Marco, G.; Sacchetti, G.; Canini, A.; Gismondi, A. Oregano phytocomplex induces programmed cell death in melanoma lines via mitochondria and DNA damage. Foods, 2020, 9(10), 1486.
[http://dx.doi.org/10.3390/foods9101486] [PMID: 33080917]
[14]
Li, Y. Copper homeostasis: Emerging target for cancer treatment. IUBMB Life, 2020, 72(9), 1900-1908.
[http://dx.doi.org/10.1002/iub.2341] [PMID: 32599675]
[15]
Michniewicz, F.; Saletta, F.; Rouaen, J.R.C.; Hewavisenti, R.V.; Mercatelli, D.; Cirillo, G.; Giorgi, F.M.; Trahair, T.; Ziegler, D.; Vittorio, O. Copper: An intracellular Achilles’ heel allowing the targeting of epigenetics, kinase pathways, and cell metabolism in cancer therapeutics. ChemMedChem, 2021, 16(15), 2315-2329.
[http://dx.doi.org/10.1002/cmdc.202100172] [PMID: 33890721]
[16]
Aubert, L.; Nandagopal, N.; Steinhart, Z.; Lavoie, G.; Nourreddine, S.; Berman, J.; Saba-El-Leil, M.K.; Papadopoli, D.; Lin, S.; Hart, T.; Macleod, G.; Topisirovic, I.; Gaboury, L.; Fahrni, C.J.; Schramek, D.; Meloche, S.; Angers, S.; Roux, P.P. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun., 2020, 11(1), 3701.
[http://dx.doi.org/10.1038/s41467-020-17549-y] [PMID: 32709883]
[17]
Chen, F.; Wang, J.; Chen, J.; Yan, L.; Hu, Z.; Wu, J.; Bao, X.; Lin, L.; Wang, R.; Cai, L.; Lin, L.; Qiu, Y.; Liu, F.; He, B. Serum copper and zinc levels and the risk of oral cancer: A new insight based on large-scale case–control study. Oral Dis., 2019, 25(1), 80-86.
[http://dx.doi.org/10.1111/odi.12957] [PMID: 30107072]
[18]
Arnesano, F.; Natile, G. Interference between copper transport systems and platinum drugs. Semin. Cancer Biol., 2021, 76, 173-188.
[http://dx.doi.org/10.1016/j.semcancer.2021.05.023] [PMID: 34058339]
[19]
Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; Eaton, J.K.; Frenkel, E.; Kocak, M.; Corsello, S.M.; Lutsenko, S.; Kanarek, N.; Santagata, S.; Golub, T.R. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science, 2022, 375(6586), 1254-1261.
[http://dx.doi.org/10.1126/science.abf0529] [PMID: 35298263]
[20]
Lu, Y.; Luo, X.; Wang, Q.; Chen, J.; Zhang, X.; Li, Y.; Chen, Y.; Li, X.; Han, S. A novel necroptosis-related lncRNA signature predicts the prognosis of lung adenocarcinoma. Front. Genet., 2022, 13, 862741.
[http://dx.doi.org/10.3389/fgene.2022.862741] [PMID: 35368663]
[21]
Lin, W.; Chen, Y.; Wu, B.; chen, Y.; Li, Z. Identification of the pyroptosis-related prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov., 2021, 7(1), 161.
[http://dx.doi.org/10.1038/s41420-021-00557-2] [PMID: 34226539]
[22]
Peng, X.; Wu, H.; Zhang, B.; Xu, C.; Lang, J. A novel nucleic acid sensing-related genes signature for predicting immunotherapy efficacy and prognosis of lung adenocarcinoma. Curr. Cancer Drug Targets, 2023.
[PMID: 37592781]
[23]
Goldman, M.J.; Craft, B.; Hastie, M.; Repečka, K.; McDade, F.; Kamath, A.; Banerjee, A.; Luo, Y.; Rogers, D.; Brooks, A.N.; Zhu, J.; Haussler, D. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol., 2020, 38(6), 675-678.
[http://dx.doi.org/10.1038/s41587-020-0546-8] [PMID: 32444850]
[24]
Karlstaedt, A.; Barrett, M.; Hu, R.; Gammons, S.T.; Ky, B. Cardio-oncology. JACC Basic Transl. Sci., 2021, 6(8), 705-718.
[http://dx.doi.org/10.1016/j.jacbts.2021.05.008] [PMID: 34466757]
[25]
Qin, Y.; Liu, Y.; Xiang, X.; Long, X.; Chen, Z.; Huang, X.; Yang, J.; Li, W. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Mol. Cancer, 2023, 22(1), 59.
[http://dx.doi.org/10.1186/s12943-023-01752-8] [PMID: 36959665]
[26]
da Silva, D.A.; De Luca, A.; Squitti, R.; Rongioletti, M.; Rossi, L.; Machado, C.M.L.; Cerchiaro, G. Copper in tumors and the use of copper-based compounds in cancer treatment. J. Inorg. Biochem., 2022, 226, 111634.
[http://dx.doi.org/10.1016/j.jinorgbio.2021.111634] [PMID: 34740035]
[27]
Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; Kaler, S.G.; Lutsenko, S.; Mittal, V.; Petris, M.J.; Polishchuk, R.; Ralle, M.; Schilsky, M.L.; Tonks, N.K.; Vahdat, L.T.; Van Aelst, L.; Xi, D.; Yuan, P.; Brady, D.C.; Chang, C.J.; Xi, D.; Yuan, P. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer, 2022, 22(2), 102-113.
[http://dx.doi.org/10.1038/s41568-021-00417-2] [PMID: 34764459]
[28]
Luo, J.; Wang, H.; Wang, L.; Wang, G.; Yao, Y.; Xie, K.; Li, X.; Xu, L.; Shen, Y.; Ren, B. lncRNA GAS6-AS1 inhibits progression and glucose metabolism reprogramming in LUAD via repressing E2F1-mediated transcription of GLUT1. Mol. Ther. Nucleic Acids, 2021, 25, 11-24.
[http://dx.doi.org/10.1016/j.omtn.2021.04.022] [PMID: 34141461]
[29]
Strasser, A.; Vaux, D.L. Cell death in the origin and treatment of cancer. Mol. Cell, 2020, 78(6), 1045-1054.
[http://dx.doi.org/10.1016/j.molcel.2020.05.014] [PMID: 32516599]
[30]
Kahlson, M.A.; Dixon, S.J. Copper-induced cell death. Science, 2022, 375(6586), 1231-1232.
[http://dx.doi.org/10.1126/science.abo3959] [PMID: 35298241]
[31]
Babak, M.V.; Ahn, D. Modulation of intracellular copper levels as the mechanism of action of anticancer copper complexes: Clinical relevance. Biomedicines, 2021, 9(8), 852.
[http://dx.doi.org/10.3390/biomedicines9080852] [PMID: 34440056]
[32]
Theodosis-Nobelos, P.; Papagiouvannis, G.; Tziona, P.; Rekka, E.A. Lipoic acid. Kinetics and pluripotent biological properties and derivatives. Mol. Biol. Rep., 2021, 48(9), 6539-6550.
[http://dx.doi.org/10.1007/s11033-021-06643-z] [PMID: 34420148]
[33]
Cronan, J.E. Progress in the Enzymology of the Mitochondrial Diseases of Lipoic Acid Requiring Enzymes. Front. Genet., 2020, 11, 510.
[http://dx.doi.org/10.3389/fgene.2020.00510] [PMID: 32508887]
[34]
Fleminger, G.; Dayan, A. The moonlighting activities of dihydrolipoamide dehydrogenase: Biotechnological and biomedical applications. J. Mol. Recognit., 2021, 34(11), e2924.
[http://dx.doi.org/10.1002/jmr.2924] [PMID: 34164859]
[35]
Solmonson, A.; DeBerardinis, R.J. Lipoic acid metabolism and mitochondrial redox regulation. J. Biol. Chem., 2018, 293(20), 7522-7530.
[http://dx.doi.org/10.1074/jbc.TM117.000259] [PMID: 29191830]
[36]
Dayan, A.; Yeheskel, A.; Lamed, R.; Fleminger, G.; Ashur-Fabian, O. Dihydrolipoamide dehydrogenase moonlighting activity as a DNA chelating agent. Proteins, 2020.
[PMID: 32761961]
[37]
Yumnam, S.; Kang, M.C.; Oh, S.H.; Kwon, H.C.; Kim, J.C.; Jung, E.S.; Lee, C.H.; Lee, A.Y.; Hwang, J.I.; Kim, S.Y. Downregulation of dihydrolipoyl dehydrogenase by UVA suppresses melanoma progression via triggering oxidative stress and altering energy metabolism. Free Radic. Biol. Med., 2021, 162, 77-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.11.037] [PMID: 33279616]
[38]
Stowe, R.C.; Sun, Q.; Elsea, S.H.; Scaglia, F. LIPT1 deficiency presenting as early infantile epileptic encephalopathy, Leigh disease, and secondary pyruvate dehydrogenase complex deficiency. Am. J. Med. Genet. A., 2018, 176(5), 1184-1189.
[http://dx.doi.org/10.1002/ajmg.a.38654] [PMID: 29681092]
[39]
Ni, M.; Solmonson, A.; Pan, C.; Yang, C.; Li, D.; Notzon, A.; Cai, L.; Guevara, G.; Zacharias, L.G.; Faubert, B.; Vu, H.S.; Jiang, L.; Ko, B.; Morales, N.M.; Pei, J.; Vale, G.; Rakheja, D.; Grishin, N.V.; McDonald, J.G.; Gotway, G.K.; McNutt, M.C.; Pascual, J.M.; DeBerardinis, R.J. Functional assessment of Lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep., 2019, 27(5), 1376-1386.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.04.005] [PMID: 31042466]
[40]
Solmonson, A.; Faubert, B.; Gu, W.; Rao, A.; Cowdin, M.A.; Menendez-Montes, I.; Kelekar, S.; Rogers, T.J.; Pan, C.; Guevara, G.; Tarangelo, A.; Zacharias, L.G.; Martin-Sandoval, M.S.; Do, D.; Pachnis, P.; Dumesnil, D.; Mathews, T.P.; Tasdogan, A.; Pham, A.; Cai, L.; Zhao, Z.; Ni, M.; Cleaver, O.; Sadek, H.A.; Morrison, S.J.; DeBerardinis, R.J. Compartmentalized metabolism supports midgestation mammalian development. Nature, 2022, 604(7905), 349-353.
[http://dx.doi.org/10.1038/s41586-022-04557-9] [PMID: 35388219]
[41]
Li, J.; Tuo, D.; Guo, G.; Gan, J. Aberrant expression of cuproptosis-related gene LIPT1 is associated with metabolic dysregulation of fatty acid and prognosis in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol., 2023, 149(17), 15763-15779.
[http://dx.doi.org/10.1007/s00432-023-05325-6] [PMID: 37668796]
[42]
Yan, C.; Niu, Y.; Ma, L.; Tian, L.; Ma, J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J. Transl. Med., 2022, 20(1), 452.
[http://dx.doi.org/10.1186/s12967-022-03630-1] [PMID: 36195876]
[43]
Najafi, N.; Mehri, S.; Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother. Res., 2022, 36(6), 2300-2323.
[http://dx.doi.org/10.1002/ptr.7406] [PMID: 35234312]
[44]
Tanaka, A.; Sakaguchi, S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol., 2019, 49(8), 1140-1146.
[http://dx.doi.org/10.1002/eji.201847659] [PMID: 31257581]
[45]
Peng, X.; Zheng, J.; Liu, T.; Zhou, Z.; Song, C.; Geng, Y.; Wang, Z.; Huang, Y. Tumor microenvironment heterogeneity, potential therapeutic avenues, and emerging therapies. Curr. Cancer Drug Targets, 2023.
[PMID: 37537777]
[46]
DeNardo, D.G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol., 2019, 19(6), 369-382.
[http://dx.doi.org/10.1038/s41577-019-0127-6] [PMID: 30718830]
[47]
Obarorakpor, N.; Patel, D.; Boyarov, R.; Amarsaikhan, N.; Cepeda, J.R.; Eastes, D.; Robertson, S.; Johnson, T.; Yang, K.; Tang, Q.; Zhang, L. Regulatory T cells targeting a pathogenic MHC class II: Insulin peptide epitope postpone spontaneous autoimmune diabetes. Front. Immunol., 2023, 14, 1207108.
[http://dx.doi.org/10.3389/fimmu.2023.1207108] [PMID: 37593744]
[48]
Marhelava, K.; Krawczyk, M.; Firczuk, M.; Fidyt, K. CAR-T cells shoot for new targets: Novel approaches to boost adoptive cell therapy for b cell-derived malignancies. Cells, 2022, 11(11), 1804.
[http://dx.doi.org/10.3390/cells11111804] [PMID: 35681499]
[49]
Akkaya, B.; Shevach, E.M. Regulatory T cells: Master thieves of the immune system. Cell. Immunol., 2020, 355, 104160.
[http://dx.doi.org/10.1016/j.cellimm.2020.104160] [PMID: 32711171]
[50]
Chen, Z.; Yang, X.; Bi, G.; Liang, J.; Hu, Z.; Zhao, M.; Li, M.; Lu, T.; Zheng, Y.; Sui, Q.; Yang, Y.; Zhan, C.; Jiang, W.; Wang, Q.; Tan, L. Ligand-receptor interaction atlas within and between tumor cells and T cells in lung adenocarcinoma. Int. J. Biol. Sci., 2020, 16(12), 2205-2219.
[http://dx.doi.org/10.7150/ijbs.42080] [PMID: 32549766]
[51]
Lim, S.A.; Wei, J.; Nguyen, T.L.M.; Shi, H.; Su, W.; Palacios, G.; Dhungana, Y.; Chapman, N.M.; Long, L.; Saravia, J.; Vogel, P.; Chi, H. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature, 2021, 591(7849), 306-311.
[http://dx.doi.org/10.1038/s41586-021-03235-6] [PMID: 33627871]
[52]
Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov., 2020, 19(3), 200-218.
[http://dx.doi.org/10.1038/s41573-019-0052-1] [PMID: 31907401]
[53]
Wu, S.Y.; Fu, T.; Jiang, Y.Z.; Shao, Z.M. Natural killer cells in cancer biology and therapy. Mol. Cancer, 2020, 19(1), 120.
[http://dx.doi.org/10.1186/s12943-020-01238-x] [PMID: 32762681]
[54]
Zhu, Z.; Zhang, H.; Chen, B.; Liu, X.; Zhang, S.; Zong, Z.; Gao, M. PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front. Immunol., 2020, 11, 588552.
[http://dx.doi.org/10.3389/fimmu.2020.588552] [PMID: 33329573]
[55]
Belgiovine, C.; Digifico, E.; Anfray, C.; Ummarino, A.; Torres Andón, F. Targeting tumor-associated macrophages in anti-cancer therapies: Convincing the traitors to do the right thing. J. Clin. Med., 2020, 9(10), 3226.
[http://dx.doi.org/10.3390/jcm9103226] [PMID: 33050070]
[56]
Borghaei, H.; Gettinger, S.; Vokes, E.E.; Chow, L.Q.M.; Burgio, M.A.; de Castro Carpeno, J.; Pluzanski, A.; Arrieta, O.; Frontera, O.A.; Chiari, R.; Butts, C.; Wójcik-Tomaszewska, J.; Coudert, B.; Garassino, M.C.; Ready, N.; Felip, E.; García, M.A.; Waterhouse, D.; Domine, M.; Barlesi, F.; Antonia, S.; Wohlleber, M.; Gerber, D.E.; Czyzewicz, G.; Spigel, D.R.; Crino, L.; Eberhardt, W.E.E.; Li, A.; Marimuthu, S.; Brahmer, J.; García, M.A.; Waterhouse, D.; Pluzanski, A.; Arrieta, O.; Vokes, E.E. Five-year outcomes from the randomized, phase III trials checkmate 017 and 057: Nivolumab versus docetaxel in previously treated non–small-cell lung cancer. J. Clin. Oncol., 2021, 39(7), 723-733.
[http://dx.doi.org/10.1200/JCO.20.01605] [PMID: 33449799]
[57]
Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; Kubota, K.; Lubiniecki, G.M.; Zhang, J.; Kush, D.; Lopes, G.; Adamchuk, G.; Ahn, M-J.; Alexandru, A.; Altundag, O.; Alyasova, A.; Andrusenko, O.; Aoe, K.; Araujo, A.; Aren, O.; Arrieta Rodriguez, O.; Ativitavas, T.; Avendano, O.; Barata, F.; Barrios, C.H.; Beato, C.; Bergstrom, P.; Betticher, D.; Bolotina, L.; Bondarenko, I.; Botha, M.; Buddu, S.; Caglevic, C.; Cardona, A.; Castro, G., Jr; Castro, H.; Cay Senler, F.; Cerny, C.A.S.; Cesas, A.; Chan, G-C.; Chang, J.; Chen, G.; Chen, X.; Cheng, S.; Cheng, Y.; Cherciu, N.; Chiu, C-H.; Cho, B.C.; Cicenas, S.; Ciurescu, D.; Cohen, G.; Costa, M.A.; Danchaivijitr, P.; De Angelis, F.; de Azevedo, S.J.; Dediu, M.; Deliverski, T.; De Marchi, P.R.M.; de The Bustamante Valles, F.; Ding, Z.; Doganov, B.; Dreosti, L.; Duarte, R.; Edusma-Dy, R.; Emelyanov, S.; Erman, M.; Fan, Y.; Fein, L.; Feng, J.; Fenton, D.; Fernandes, G.; Ferreira, C.; Franke, F.A.; Freitas, H.; Fujisaka, Y.; Galindo, H.; Galvez, C.; Ganea, D.; Gil, N.; Girotto, G.; Goker, E.; Goksel, T.; Gomez Aubin, G.; Gomez Wolff, L.; Griph, H.; Gumus, M.; Hall, J.; Hart, G.; Havel, L.; He, J.; He, Y.; Hernandez Hernandez, C.; Hespanhol, V.; Hirashima, T.; Ho, C.M.J.; Horiike, A.; Hosomi, Y.; Hotta, K.; Hou, M.; How, S.H.; Hsia, T-C.; Hu, Y.; Ichiki, M.; Imamura, F.; Ivashchuk, O.; Iwamoto, Y.; Jaal, J.; Jassem, J.; Jordaan, C.; Juergens, R.A.; Kaen, D.; Kalinka-Warzocha, E.; Karaseva, N.; Karaszewska, B.; Kazarnowicz, A.; Kasahara, K.; Katakami, N.; Kato, T.; Kawaguchi, T.; Kim, J.H.; Kishi, K.; Kolek, V.; Koleva, M.; Kolman, P.; Koubkova, L.; Kowalyszyn, R.; Kowalski, D.; Koynov, K.; Ksienski, D.; Kubota, K.; Kudaba, I.; Kurata, T.; Kuusk, G.; Kuzina, L.; Laczo, I.; Ladrera, G.E.I.; Laktionov, K.; Landers, G.; Lazarev, S.; Lerzo, G.; Lesniewski Kmak, K.; Li, W.; Liam, C.K.; Lifirenko, I.; Lipatov, O.; Liu, X.; Liu, Z.; Lo, S.H.; Lopes, V.; Lopez, K.; Lu, S.; Martinengo, G.; Mas, L.; Matrosova, M.; Micheva, R.; Milanova, Z.; Miron, L.; Mok, T.; Molina, M.; Murakami, S.; Nakahara, Y.; Nguyen, T.Q.; Nishimura, T.; Ochsenbein, A.; Ohira, T.; Ohman, R.; Ong, C.K.; Ostoros, G.; Ouyang, X.; Ovchinnikova, E.; Ozyilkan, O.; Petruzelka, L.; Pham, X.D.; Picon, P.; Piko, B.; Poltoratsky, A.; Ponomarova, O.; Popelkova, P.; Purkalne, G.; Qin, S.; Ramlau, R.; Rappaport, B.; Rey, F.; Richardet, E.; Roubec, J.; Ruff, P.; Rusyn, A.; Saka, H.; Salas, J.; Sandoval, M.; Santos, L.; Sawa, T.; Seetalarom, K.; Seker, M.; Seki, N.; Seolwane, F.; Shepherd, L.; Shevnya, S.; Shimada, A.K.; Shparyk, Y.; Sinielnikov, I.; Sirbu, D.; Smaletz, O.; Soares, J.P.H.; Sookprasert, A.; Speranza, G.; Srimuninnimit, V.; Sriuranpong, V.; Stara, Z.; Su, W-C.; Sugawara, S.; Szpak, W.; Takahashi, K.; Takigawa, N.; Tanaka, H.; Tan Chun Bing, J.; Tang, Q.; Taranov, P.; Tejada, H.; Tho, L.M.; Torii, Y.; Trukhyn, D.; Turdean, M.; Turna, H.; Ursol, G.; Vanasek, J.; Varela, M.; Vallejo, M.; Vera, L.; Victorino, A-P.; Vlasek, T.; Vynnychenko, I.; Wang, B.; Wang, J.; Wang, K.; Wu, Y.; Yamada, K.; Yang, C-H.; Yokoyama, T.; Yokoyama, T.; Yoshioka, H.; Yumuk, F.; Zambrano, A.; Zarba, J.J.; Zarubenkov, O.; Zemaitis, M.; Zhang, L.; Zhang, L.; Zhang, X.; Zhao, J.; Zhou, C.; Zhou, J.; Zhou, Q.; Zippelius, A. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet, 2019, 393(10183), 1819-1830.
[http://dx.doi.org/10.1016/S0140-6736(18)32409-7] [PMID: 30955977]
[58]
Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; Grossi, F.; Jennens, R.R.; Reck, M.; Hui, R.; Garon, E.B.; Kurata, T.; Gray, J.E.; Schwarzenberger, P.; Jensen, E.; Pietanza, M.C.; Rodríguez-Abreu, D. Pembrolizumab plus pemetrexed and platinum in nonsquamous non–small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study. J. Clin. Oncol., 2023, 41(11), 1992-1998.
[http://dx.doi.org/10.1200/JCO.22.01989] [PMID: 36809080]
[59]
Brahmer, J.R.; Lee, J.S.; Ciuleanu, T.E.; Bernabe Caro, R.; Nishio, M.; Urban, L.; Audigier-Valette, C.; Lupinacci, L.; Sangha, R.; Pluzanski, A.; Burgers, J.; Mahave, M.; Ahmed, S.; Schoenfeld, A.J.; Paz-Ares, L.G.; Reck, M.; Borghaei, H.; O’Byrne, K.J.; Gupta, R.G.; Bushong, J.; Li, L.; Blum, S.I.; Eccles, L.J.; Ramalingam, S.S. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non–small-cell lung cancer in CheckMate 227. J. Clin. Oncol., 2023, 41(6), 1200-1212.
[http://dx.doi.org/10.1200/JCO.22.01503] [PMID: 36223558]
[60]
Wang, W.; Bai, L.; Xu, D.; Li, W.; Cui, J. Immunotherapy: A potential approach to targeting cancer stem cells. Curr. Cancer Drug Targets, 2021, 21(2), 117-131.
[http://dx.doi.org/10.2174/1568009620666200504111914] [PMID: 32364076]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy