Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Unlocking the Pharmacological Potential of Benzimidazole Derivatives: A Pathway to Drug Development

Author(s): Jyoti Monga, Niladry S. Ghosh*, Isha Rani, Ranjit Singh, Geeta Deswal, Ashwani K. Dhingra and Ajmer S. Grewal

Volume 24, Issue 5, 2024

Published on: 19 January, 2024

Page: [437 - 485] Pages: 49

DOI: 10.2174/0115680266283641240109080047

Price: $65

Abstract

Heterocyclic molecules have fascinated a massive interest in medicinal chemistry. They are heterocyclic compounds that have gained significance due to their diverse variety of pharmacological activities. Benzimidazole is a heterocyclic compound consisting of benzene and imidazole rings. The ease of synthesis and the structural versatility of benzimidazole make it a promising scaffold for drug development. Many biological actions of benzimidazole derivatives have been well documented, including antibacterial, antiviral, anticancer, anti-inflammatory, antitubercular, and anthelmintic properties. The mechanism of action of benzimidazole derivatives varies with their chemical structure and target enzyme. This review has explored numerous methods for producing benzimidazole derivatives as well as a broad range of pharmacological activities. SAR investigations are also discussed in this review as they provide crucial details regarding the essential structural qualities that benzimidazole derivatives must have in order to be biologically active, which could aid in the rational design of new drug candidates.

Benzimidazole scaffold is an exclusive structure in drug design and discovery. Many new pharmaceutical drugs containing benzimidazole are anticipated to be available within the next ten years as a result of the extensive therapeutic applications of benzimidazole and its derivatives. This review inspired many researchers to develop more biologically active compounds bearing benzimidazole, expanding the scope of finding a remedy for other diseases. From this study, we concluded that 2-substituted benzimidazole was considered more extensively by researchers.

« Previous
Graphical Abstract

[1]
Ingle, R.G.; Magar, D.D. Heterocyclic chemistry of benzimidazoles and potential activities of derivatives. Int. J. Drug Res. Tech., 2011, 1(1), 26-32.
[2]
Barot, K.; Nikolova, S.; Ivanov, I.; Ghate, M. Novel research strategies of benzimidazole derivatives: A review. Mini Rev. Med. Chem., 2013, 13(10), 1421-1447.
[http://dx.doi.org/10.2174/13895575113139990072] [PMID: 23544603]
[3]
Alaqeel, S.I. Synthetic approaches to benzimidazoles from ophenylenediamine: A literature review. J. Saudi Chem. Soc., 2017, 21(2), 229-237.
[http://dx.doi.org/10.1016/j.jscs.2016.08.001]
[4]
Keri, R.S.; Rajappa, C.K.; Patil, S.A.; Nagaraja, B.M. Benzimidazole-core as an antimycobacterial agent. Pharmacol. Rep., 2016, 68(6), 1254-1265.
[http://dx.doi.org/10.1016/j.pharep.2016.08.002] [PMID: 27686965]
[5]
Bansal, R.K. Herocyclic Chemistry, Publisher; New Age International: New Delhi, 2002.
[6]
Gaba, M.; Mohan, C. Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med. Chem. Res., 2016, 25(2), 173-210.
[http://dx.doi.org/10.1007/s00044-015-1495-5]
[7]
Keri, R.S.; Hiremathad, A.; Budagumpi, S.; Nagaraja, B.M. Comprehensive review in current developments of benzimidazolebased medicinal chemistry. Chem. Biol. Drug Des., 2015, 86(1), 19-65.
[http://dx.doi.org/10.1111/cbdd.12462] [PMID: 25352112]
[8]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure-activity relationship. Arch. Pharm., 2017, 350(6), e201700040.
[http://dx.doi.org/10.1002/ardp.201700040] [PMID: 28544162]
[9]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97, 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[10]
DeSimone, R.; Currie, K.; Mitchell, S.; Darrow, J.; Pippin, D. Privileged structures: Applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-493.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[11]
Gaba, M.; Singh, S.; Mohan, C. Benzimidazole: An emerging scaffold for analgesic and anti-inflammatory agents. Eur. J. Med. Chem., 2014, 76, 494-505.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.030] [PMID: 24602792]
[12]
Ramalakshmi, N; Padma, K; Arunkumar, S; Amuthalakshmi, S; Prabakaran, A; Bhandare, RR; Shaik, AB A critical review on therapeutic potential of benzimidazole derivatives: A privileged scaffold. Med Chem., 2023.
[http://dx.doi.org/10.2174/0115734064253813231025093707]
[13]
Cheson, B.D.; Rummel, M.J. Bendamustine: Rebirth of an old drug. J. Clin. Oncol., 2009, 27(9), 1492-1501.
[http://dx.doi.org/10.1200/JCO.2008.18.7252] [PMID: 19224851]
[14]
Tageja, N.; Nagi, J. Bendamustine: Something old, something new. Cancer Chemother. Pharmacol., 2010, 66(3), 413-423.
[http://dx.doi.org/10.1007/s00280-010-1317-x] [PMID: 20376452]
[15]
Njar, VC; Brodie, AM Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem., 2015, / 58(5), 2077-2087.
[16]
Nicolle, A.; Proctor, S.J.; Summerfield, G.P. High dose chlorambucil in the treatment of lymphoid malignancies. Leuk. Lymphoma, 2004, 45(2), 271-275.
[http://dx.doi.org/10.1080/10428190310001595704] [PMID: 15101711]
[17]
Mavrova, A.T.; Anichina, K.K.; Vuchev, D.I.; Tsenov, J.A.; Denkova, P.S.; Kondeva, M.S.; Micheva, M.K. Antihelminthic activity of some newly synthesized 5(6)-(un)substituted-1H-benzimidazol-2-ylthioacetylpiperazine derivatives. Eur. J. Med. Chem., 2006, 41(12), 1412-1420.
[http://dx.doi.org/10.1016/j.ejmech.2006.07.005] [PMID: 16996654]
[18]
Nikiforova, S.E.; Kubasov, A.S.; Belousova, O.N.; Avdeeva, V.V.; Malinina, E.A.; Kuznetsov, N.T. Features of Copper(I) complexation with benzimidazole derivatives in the presence of the closo-dodecaborate anion. Russ. J. Inorg. Chem., 2023, 68(6), 744-752.
[http://dx.doi.org/10.1134/S0036023623600016]
[19]
He, Y.; Chen, J.; Yu, X.; Kao, H.; Chen, J. Synthesis, crystal structures, and magnetic studies of two six-coordinate nickel(II) complexes with tripodal benzimidazole ligands. Russ. J. Inorg. Chem., 2022, 67(8), 1264-1273.
[http://dx.doi.org/10.1134/S0036023622080162]
[20]
Avdeeva, V.V.; Kubasov, A.S.; Nikiforova, S.E.; Goeva, L.V.; Malinina, E.A.; Kuznetsov, N.T. Features of cadmium(II) complexation with N-donor heterocyclic ligands in the presence of the octadecahydroeicosaborate anion. Russ. J. Inorg. Chem., 2023, 68(10), 1406-1413.
[http://dx.doi.org/10.1134/S0036023623601794]
[21]
Popov, L.D.; Borodkin, S.A.; Kiskin, M.A.; Pavlov, A.A.; Knyazev, P.A.; Chernyavina, V.V.; Shcherbakov, I.N. Synthesis and crystal structure of cobalt(III) chelate with tridentate azomethine ligand containing a benzimidazole moiety. Russ. J. Coord. Chem., 2022, 48(1), 9-15.
[http://dx.doi.org/10.1134/S1070328421110038]
[22]
Hak, J; Aggarwal, A; Kumar, S; Singh, AP; Kumari, A Study on benzimidazole: A comprehensive review. IJFMR, 2023, 5(2)
[23]
Salahuddin, ; Shaharyar, M.; Mazumder, A. Benzimidazoles: A biologically active compounds. Arab. J. Chem., 2017, 10, S157-S173.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.017]
[24]
Gupta Atyam, V.S.S.S.; Sarva Raidu, C.; Nannapaneni, D.T.; Reddy, M.I. Synthesis, characterization, and biological evaluation of benzimidazole derivatives as potential anxiolytics. J. Young Pharm., 2010, 2(3), 273-279.
[http://dx.doi.org/10.4103/0975-1483.66809] [PMID: 21042485]
[25]
Nardi, M.; Cano, N.C.H.; Simeonov, S.; Bence, R.; Kurutos, A.; Scarpelli, R.; Wunderlin, D.; Procopio, A. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities. Catalysts, 2023, 13(2), 392.
[http://dx.doi.org/10.3390/catal13020392]
[26]
Naeimi, H; Alishahi, N. Highly efficient and facile method for synthesis of 2-substituted benzimidazoles via reductive cyclization of O-nitroaniline and aryl aldehydes. Org. Chem. Int., 2012, 2012
[27]
Rithe, S.R.; Jagtap, R.S.; Ubarhande, S.S. One pot synthesis of substituted benzimidazole derivatives and their characterization. Rasayan J. Chem., 2015, 8, 213-217.
[28]
Trivedi, R.; De, S.K.; Gibbs, R.A. A convenient one-pot synthesis of 2-substituted benzimidazoles. J. Mol. Catal. Chem., 2006, 245(1-2), 8-11.
[http://dx.doi.org/10.1016/j.molcata.2005.09.025]
[29]
Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. Copper-catalyzed synthesis of benzimidazoles via cascade reactions of ohaloacetanilide derivatives with amidine hydrochlorides. J. Org. Chem., 2008, 73(19), 7841-7844.
[http://dx.doi.org/10.1021/jo8014984] [PMID: 18754576]
[30]
Peng, J.; Ye, M.; Zong, C.; Hu, F.; Feng, L.; Wang, X.; Wang, Y.; Chen, C. Copper-catalyzed intramolecular C-N bond formation: A straightforward synthesis of benzimidazole derivatives in water. J. Org. Chem., 2011, 76(2), 716-719.
[http://dx.doi.org/10.1021/jo1021426] [PMID: 21175149]
[31]
Rekha, M.; Hamza, A.; Venugopal, B.R.; Nagaraju, N. Synthesis of 2-substituted benzimidazoles and 1, 5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chin. J. Catal., 2012, 33(2-3), 439-446.
[http://dx.doi.org/10.1016/S1872-2067(11)60338-0]
[32]
Venkateswarlu, Y.; Kumar, S.R.; Leelavathi, P. Facile and efficient one-pot synthesis of benzimidazoles using lanthanum chloride. Org. Med. Chem. Lett., 2013, 3(1), 7.
[http://dx.doi.org/10.1186/2191-2858-3-7] [PMID: 23919542]
[33]
Nguyen, T.B.; Ermolenko, L.; Al-Mourabit, A. Iron sulfide catalyzed redox/condensation cascade reaction between 2-amino/hydroxy nitrobenzenes and activated methyl groups: A straightforward atom economical approach to 2-hetarylbenzimidazoles and -benzoxazoles. J. Am. Chem. Soc., 2013, 135(1), 118-121.
[http://dx.doi.org/10.1021/ja311780a] [PMID: 23249371]
[34]
Nguyen, T.B.; Le Bescont, J.; Ermolenko, L.; Al-Mourabit, A. Cobalt- and iron-catalyzed redox condensation of o-substituted nitrobenzenes with alkylamines: A step- and redox-economical synthesis of diazaheterocycles. Org. Lett., 2013, 15(24), 6218-6221.
[http://dx.doi.org/10.1021/ol403064z] [PMID: 24228936]
[35]
Yu, J.; Xia, Y.; Lu, M. Iron-catalyzed highly efficient aerobic oxidative synthesis of benzimidazoles, benzoxazoles, and benzothiazoles directly from aromatic primary amines under solvent-free conditions in the open air. Synth. Commun., 2014, 44(20), 3019-3026.
[http://dx.doi.org/10.1080/00397911.2014.914221]
[36]
Mobinikhaledi, A.; Hamta, A.; Kalhor, M.; Shariatzadeh, M. Simple synthesis and biological evaluation of some benzimidazoles using sodium hexafluroaluminate, Na 3 AlF 6, as an efficient catalyst. Iran. J. Pharm. Res., 2014, 13(1), 95-101.
[PMID: 24734060]
[37]
Srinivasulu, R; Kumar, KR; Satyanarayana, PV Facile and efficient method for synthesis of benzimidazole derivatives catalyzed by zinc triflate. Green Sustain. Chem., 2014, 2014
[http://dx.doi.org/10.4236/gsc.2014.41006]
[38]
Nguyen, T.B.; Ermolenko, L.; Corbin, M.; Al-Mourabit, A. Fe/Scatalyzed decarboxylative redox condensation of arylacetic acids with nitroarenes. Org. Chem. Front., 2014, 1(10), 1157-1160.
[http://dx.doi.org/10.1039/C4QO00221K]
[39]
Nguyen, T.; Al-Mourabit, A.; Ermolenko, L. Sodium sulfide: A sustainable solution for unbalanced redox condensation reaction between o-nitroanilines and alcohols catalyzed by an iron-sulfur system. Synthesis, 2015, 47(12), 1741-1748.
[http://dx.doi.org/10.1055/s-0034-1380134]
[40]
Nguyen, K.M.H.; Largeron, M. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: Synthesis of 1,2-disubstituted benzimidazoles. Chemistry, 2015, 21(36), 12606-12610.
[http://dx.doi.org/10.1002/chem.201502487] [PMID: 26206475]
[41]
Liu, J.; Wang, C.; Ma, X.; Shi, X.; Wang, X.; Li, H.; Xu, Q. Simple synthesis of benzazoles by substrate-promoted CuI-catalyzed aerobic oxidative cyclocondensation of o-Thio/Amino/hydroxyanilines and amines under air. Catal. Lett., 2016, 146(10), 2139-2148.
[http://dx.doi.org/10.1007/s10562-016-1818-2]
[42]
Zhu, J.; Zhang, Z.; Miao, C.; Liu, W.; Sun, W. Synthesis of benzimidazoles from o -phenylenediamines and DMF derivatives in the presence of PhSiH 3. Tetrahedron, 2017, 73(25), 3458-3462.
[http://dx.doi.org/10.1016/j.tet.2017.05.018]
[43]
Daw, P.; Ben-David, Y.; Milstein, D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catal., 2017, 7(11), 7456-7460.
[http://dx.doi.org/10.1021/acscatal.7b02777]
[44]
Das, K.; Mondal, A.; Srimani, D. Selective synthesis of 2-substituted and 1, 2-disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese (I) complex. J. Org. Chem., 2018, 83(16), 9553-9560.
[http://dx.doi.org/10.1021/acs.joc.8b01316] [PMID: 29993244]
[45]
Mokhtari, J.; Hasani Bozcheloei, A. One-pot synthesis of benzoazoles via dehydrogenative coupling of aromatic 1,2-diamines/2-aminothiophenol and alcohols using Pd/Cu-MOF as a recyclable heterogeneous catalyst. Inorg. Chim. Acta, 2018, 482, 726-731.
[http://dx.doi.org/10.1016/j.ica.2018.07.017]
[46]
Tashiro, S.; Umeki, T.; Kubota, R.; Shionoya, M. Rational synthesis of benzimidazole[3]arenes by Cu II -catalyzed postmacrocyclization transformation. Chem. Sci., 2018, 9(39), 7614-7619.
[http://dx.doi.org/10.1039/C8SC03086C] [PMID: 30393521]
[47]
Nguyen, T.B.; Nguyen, L.P.A.; Nguyen, T.T.T. Sulfur‐catalyzed oxidative coupling of dibenzyl disulfides with amines: Access to thioamides and aza heterocycles. Adv. Synth. Catal., 2019, 361(8), 1787-1791.
[http://dx.doi.org/10.1002/adsc.201801695]
[48]
Nguyen, L.A.; Retailleau, P.; Nguyen, T.B. Elemental Sulfur/DMSO‐promoted multicomponent one‐pot synthesis of malonic acid derivatives from maleic anhydride and amines. Adv. Synth. Catal., 2019, 361(12), 2864-2869.
[http://dx.doi.org/10.1002/adsc.201900160]
[49]
Putta, R.R.; Chun, S.; Lee, S.B.; Oh, D.C.; Hong, S. Ironcatalyzed acceptorless dehydrogenative coupling of alcohols with aromatic diamines: Selective synthesis of 1, 2-disubstituted benzimidazoles. Front Chem., 2020, 8, 429.
[http://dx.doi.org/10.3389/fchem.2020.00429] [PMID: 32637390]
[50]
Yang, W.; Zhao, Y.; Zhou, Z.; Li, L.; Cui, L.; Luo, H. Preparation of 1,2-substituted benzimidazoles via a copper-catalyzed three component coupling reaction. RSC Advances, 2021, 11(15), 8701-8707.
[http://dx.doi.org/10.1039/D1RA00650A] [PMID: 35423384]
[51]
Singh, F.V.; Dohi, T.; Kumar, R. Editorial: Metal-free oxidative transformations in organic synthesis. Front Chem., 2022, 10, 956779.
[http://dx.doi.org/10.3389/fchem.2022.956779] [PMID: 36003623]
[52]
Wróbel, Z.; Stachowska, K.; Grudzień, K.; Kwast, A. N-Aryl-2-nitrosoanilines as intermediates in the two-step synthesis of substituted 1,2-diarylbenzimidazoles from simple nitroarenes. Synlett, 2011, 2011(10), 1439-1443.
[http://dx.doi.org/10.1055/s-0030-1260764]
[53]
Ibrahim, K.S.; Begum, J. Synthesis and antimicrobial activity of some benzimidazole derivative with ibuprofen. Int. J. Pharm. Sci. Res., 2011, 2(2), 298.
[54]
Nguyen, T.B.; Ermolenko, L.; Dean, W.A.; Al-Mourabit, A. Benzazoles from aliphatic amines and o-amino/mercaptan/hydroxyanilines: Elemental sulfur as a highly efficient and traceless oxidizing agent. Org. Lett., 2012, 14(23), 5948-5951.
[http://dx.doi.org/10.1021/ol302856w] [PMID: 23171411]
[55]
Tran, M.Q.; Ermolenko, L.; Retailleau, P.; Nguyen, T.B.; Al-Mourabit, A. Reaction of quinones and guanidine derivatives: simple access to bis-2-aminobenzimidazole moiety of benzosceptrin and other benzazole motifs. Org. Lett., 2014, 16(3), 920-923.
[http://dx.doi.org/10.1021/ol403672p] [PMID: 24479902]
[56]
Dhanalakshmi, P.; Thimmarayaperumal, S.; Shanmugam, S. Metal catalyst free one-pot synthesis of 2-arylbenzimidazoles from α-aroylketene dithioacetals. RSC Advances, 2014, 4(23), 12028-12036.
[http://dx.doi.org/10.1039/C3RA47761D]
[57]
Nguyen, T.B.; Ermolenko, L.; Al-Mourabit, A. Formic acid as a sustainable and complementary reductant: An approach to fused benzimidazoles by molecular iodine-catalyzed reductive redox cyclization of o-nitro-t-anilines. Green Chem., 2016, 18(10), 2966-2970.
[http://dx.doi.org/10.1039/C6GC00902F]
[58]
Mostafavi, H.; Islami, M.R.; Ghonchepour, E.; Tikdari, A.M. Synthesis of 1H-1,3-benzimidazoles, benzothiazoles and 3Himidazo[4,5-c]pyridine using DMF in the presence of HMDS as a reagent under the transition-metal-free condition. Chem. Pap., 2018, 72(12), 2973-2978.
[http://dx.doi.org/10.1007/s11696-018-0540-5]
[59]
Feizpour, F.; Jafarpour, M.; Rezaeifard, A. A tandem aerobic photocatalytic synthesis of benzimidazoles by cobalt ascorbic acid complex coated on TiO 2 nanoparticles under visible light. Catal. Lett., 2018, 148(1), 30-40.
[http://dx.doi.org/10.1007/s10562-017-2232-0]
[60]
Gan, Z.; Tian, Q.; Shang, S.; Luo, W.; Dai, Z.; Wang, H.; Li, D.; Wang, X.; Yuan, J. Imidazolium chloride-catalyzed synthesis of benzimidazoles and 2-substituted benzimidazoles from ophenylenediamines and DMF derivatives. Tetrahedron, 2018, 74(52), 7450-7456.
[http://dx.doi.org/10.1016/j.tet.2018.11.014]
[61]
Liu, X.; Cao, H.; Bie, F.; Yan, P.; Han, Y. C N bond formation and cyclization: A straightforward and metal-free synthesis of N-1-alkyl-2-unsubstituted benzimidazoles. Tetrahedron Lett., 2019, 60(15), 1057-1059.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.028]
[62]
Senapak, W.; Saeeng, R.; Jaratjaroonphong, J.; Promarak, V.; Sirion, U. Metal-free selective synthesis of 2-substituted benzimidazoles catalyzed by Brönsted acidic ionic liquid: Convenient access to one-pot synthesis of N-alkylated 1,2-disubstituted benzimidazoles. Tetrahedron, 2019, 75(26), 3543-3552.
[http://dx.doi.org/10.1016/j.tet.2019.05.014]
[63]
Raja, D.; Philips, A.; Palani, P.; Lin, W.Y.; Devikala, S.; Senadi, G.C. Metal-free synthesis of benzimidazoles via oxidative cyclization of d-glucose with o-phenylenediamines in water. J. Org. Chem., 2020, 85(17), 11531-11540.
[http://dx.doi.org/10.1021/acs.joc.0c01053] [PMID: 32786645]
[64]
Ding, Y.; Ma, R.; Ma, Y. Solvent-dependent metal-free chemoselective synthesis of benzimidazoles and 1,3,5-triarylbenzenes from 2-amino anilines and aryl alkyl ketones catalyzed by I2. Tetrahedron Lett., 2021, 70, 153016.
[http://dx.doi.org/10.1016/j.tetlet.2021.153016]
[65]
Hu, J.; Li, M.; Wan, J.; Sun, J.; Gao, H.; Zhang, F.; Zhang, Z. Metal-free oxidative synthesis of benzimidazole compounds by dehydrogenative coupling of diamines and alcohols. Org. Biomol. Chem., 2022, 20(14), 2852-2856.
[http://dx.doi.org/10.1039/D2OB00165A] [PMID: 35297458]
[66]
Poliakoff, M.; Fitzpatrick, J.M.; Farren, T.R.; Anastas, P.T. Green chemistry: Science and politics of change. Science, 2002, 297(5582), 807-810.
[http://dx.doi.org/10.1126/science.297.5582.807] [PMID: 12161647]
[67]
Dunn, P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev., 2012, 41(4), 1452-1461.
[http://dx.doi.org/10.1039/C1CS15041C] [PMID: 21562677]
[68]
Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene glycol: A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J. Chem. Sci., 2010, 122(4), 607-612.
[http://dx.doi.org/10.1007/s12039-010-0095-7]
[69]
Azarifar, D.; Pirhayati, M.; Maleki, B.; Sanginabadi, M.; Yami, N. Acetic acid-promoted condensation of o-phenylenediamine with aldehydes into 2-aryl-1-(arylmethyl)-1H-benzimidazoles under microwave irradiation. J. Serb. Chem. Soc., 2010, 75(9), 1181-1189.
[http://dx.doi.org/10.2298/JSC090901096A]
[70]
Karimi-Jaberi, Z.; Amiri, M. An efficient and inexpensive synthesis of 2-substituted benzimidazoles in water using boric acid at room temperature. E-J. Chem., 2012, 9(1), 167-170.
[http://dx.doi.org/10.1155/2012/793978]
[71]
Nguyen, T.B.; Ermolenko, L.; Al-Mourabit, A. Selective autoxidation of benzylamines: Application to the synthesis of some nitrogen heterocycles. Green Chem., 2013, 15(10), 2713-2717.
[http://dx.doi.org/10.1039/c3gc41186a]
[72]
Hao, L.; Zhao, Y.; Yu, B.; Zhang, H.; Xu, H.; Liu, Z. Au catalyzed synthesis of benzimidazoles from 2-nitroanilines and CO2/H2. Green Chem., 2014, 16(6), 3039-3044.
[http://dx.doi.org/10.1039/c4gc00153b]
[73]
Khunt, MD; Kotadiya, VC; Viradiya, DJ; Baria, BH; Bhoya, UC Easy, simplistic and green synthesis of various benzimidazole and benzoxazole derivatives using PEG400 as a green solvent. Int. Lett. Chem., Phys. Astron., 2014, 6
[74]
Yu, Z.Y.; Zhou, J.; Fang, Q.S.; Chen, L.; Song, Z.B. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive. Chem. Pap., 2016, 70(9), 1293-1298.
[http://dx.doi.org/10.1515/chempap-2016-0056]
[75]
Sahu, P.K. A green approach to the synthesis of a nano catalyst and the role of basicity, calcination, catalytic activity and aging in the green synthesis of 2-aryl bezimidazoles, benzothiazoles and benzoxazoles. RSC Advances, 2017, 7(67), 42000-42012.
[http://dx.doi.org/10.1039/C6RA25293A]
[76]
Kantharaju, K.; Hiremath, P.B. One-Pot, green approach synthesis of 2-aryl substituted benzimidazole derivatives catalyzed by water extract of papaya bark ash. Asian J. Chem., 2018, 30(7), 1634-1638.
[http://dx.doi.org/10.14233/ajchem.2018.21296]
[77]
Nezhad, E.R.; Tahmasebi, R. Ionic liquid supported on magnetic nanoparticles as an efficient and reusable green catalyst for synthesis of benzimidazole derivatives under solvent and solvent-free conditions. Asian J. Green Chem., 2019, 3(1), 34-42.
[78]
Elumalai, V.; Hansen, J.H. A green, scalable, one-minute synthesis of benzimidazoles. Synlett, 2020, 31(6), 547-552.
[http://dx.doi.org/10.1055/s-0039-1690797]
[79]
Tayade, A.P.; Pawar, R.P. The microwave assisted and efficient synthesis of 2-substituted benzimidazole mono-condensation of ophenylenediamines and aldehyde. Polycycl. Aromat. Compd., 2020, 1-5.
[80]
Kohli, S.; Rathee, G.; Hooda, S.; Chandra, R. Al 2 O 3 /CuI/PANI nanocomposite catalyzed green synthesis of biologically active 2-substituted benzimidazole derivatives. Dalton Trans., 2021, 50(22), 7750-7758.
[http://dx.doi.org/10.1039/D1DT00806D] [PMID: 33989371]
[81]
Mahalingam, S.; Murugesan, A.; Thiruppathiraja, T.; Lakshmipathi, S.; Makhanya, T.R.; Gengan, R.M. Green synthesis of benzimidazole derivatives by using zinc boron nitride catalyst and their application from DFT (B3LYP) study. Heliyon, 2022, 8(11), e11480.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11480] [PMID: 36387572]
[82]
Photocatalytic reaction engineering for energy conversion, water and air purification. Cataly. J. 2022.
[83]
Su, F.; Mathew, S.C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed., 2011, 50(3), 657-660.
[http://dx.doi.org/10.1002/anie.201004365] [PMID: 21226146]
[84]
Samanta, S.; Das, S.; Biswas, P. Photocatalysis by 3,6-disubstituted-s-tetrazine: visible-light driven metal-free green synthesis of 2-substituted benzimidazole and benzothiazole. J. Org. Chem., 2013, 78(22), 11184-11193.
[http://dx.doi.org/10.1021/jo401445j] [PMID: 24134516]
[85]
Kovvuri, J.; Nagaraju, B.; Kamal, A.; Srivastava, A.K. An efficient synthesis of 2-substituted benzimidazoles via photocatalytic condensation of o-phenylenediamines and aldehydes. ACS Comb. Sci., 2016, 18(10), 644-650.
[http://dx.doi.org/10.1021/acscombsci.6b00107] [PMID: 27631587]
[86]
Eskandari, A.; Jafarpour, M.; Rezaeifard, A.; Salimi, M. A dendritic TiO 2 -Co( II ) nanocomposite based on the melamine catalyzed one-pot aerobic photocatalytic synthesis of benzimidazoles. New J. Chem., 2018, 42(8), 6449-6456.
[http://dx.doi.org/10.1039/C8NJ00351C]
[87]
Skolia, E.; Apostolopoulou, M.K.; Nikitas, N.F.; Kokotos, C.G. Photochemical synthesis of benzimidazoles from diamines and aldehydes. Eur. J. Org. Chem., 2021, 2021(3), 422-428.
[http://dx.doi.org/10.1002/ejoc.202001357]
[88]
Chen, R.; Jalili, Z.; Tayebee, R. UV-visible light-induced photochemical synthesis of benzimidazoles by coomassie brilliant blue coated on W-ZnO@NH 2 nanoparticles. RSC Advances, 2021, 11(27), 16359-16375.
[http://dx.doi.org/10.1039/D0RA10843J] [PMID: 35479136]
[89]
Jyoti, Ghosh, N. S.; Mukhija, M.; Kamboj, S.; & Singh, R. Development of Benzimidazole a promising scaffold against Breast cancer via in silico approaches. J. Integr. Sci.Techn., 2024, 12(1), 714-714.
[90]
Sawyers, C. Targeted cancer therapy. Nature, 2004, 432(7015), 294-297.
[http://dx.doi.org/10.1038/nature03095] [PMID: 15549090]
[91]
Gerber, D.E. Targeted therapies: A new generation of cancer treatments. Am. Fam. Physician, 2008, 77(3), 311-319.
[PMID: 18297955]
[92]
Ibrahim, H.A.; Refaat, H.M. Versatile mechanisms of 2-substituted benzimidazoles in targeted cancer therapy. Fut. J. Pharmaceut. Sci., 2020, 6(1), 41.
[http://dx.doi.org/10.1186/s43094-020-00048-8]
[93]
Morais, G.R.; Palma, E.; Marques, F.; Gano, L.; Oliveira, M.C.; Abrunhosa, A.; Miranda, H.V.; Outeiro, T.F.; Santos, I.; Paulo, A. Synthesis and biological evaluation of novel 2‐aryl benzimidazoles as chemotherapeutic agents. J. Heterocycl. Chem., 2017, 54(1), 255-267.
[http://dx.doi.org/10.1002/jhet.2575]
[94]
Shaker, Y.M.; Omar, M.A.; Mahmoud, K.; Elhallouty, S.M.; El-Senousy, W.M.; Ali, M.M.; Mahmoud, A.E.; Abdel-Halim, A.H.; Soliman, S.M.; El Diwani, H.I. Synthesis, in vitro and in vivo antitumor and antiviral activity of novel 1-substituted benzimidazole derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 826-845.
[http://dx.doi.org/10.3109/14756366.2014.979344] [PMID: 25567722]
[95]
Bramhananda Reddy, N.; Burra, V.R.; Ravindranath, L.K.; Naresh Kumar, V.; Sreenivasulu, R.; Sadanandam, P. Synthesis and biological evaluation of benzimidazole fused ellipticine derivatives as anticancer agents. Monatsh. Chem., 2016, 147(3), 599-604.
[http://dx.doi.org/10.1007/s00706-016-1684-z]
[96]
Chojnacki, K.; Wińska, P.; Skierka, K.; Wielechowska, M.; Bretner, M. Synthesis, in vitro antiproliferative activity and kinase profile of new benzimidazole and benzotriazole derivatives. Bioorg. Chem., 2017, 72, 1-10.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.017] [PMID: 28340404]
[97]
Wang, Z.; Deng, X.; Xiong, S.; Xiong, R.; Liu, J.; Zou, L.; Lei, X.; Cao, X.; Xie, Z.; Chen, Y.; Liu, Y.; Zheng, X.; Tang, G. Design, synthesis and biological evaluation of chrysin benzimidazole derivatives as potential anticancer agents. Nat. Prod. Res., 2018, 32(24), 2900-2909.
[http://dx.doi.org/10.1080/14786419.2017.1389940] [PMID: 29063798]
[98]
Acar Çevik, U.; Sağlık, B.N.; Korkut, B.; Özkay, Y.; Ilgın, S. Antiproliferative, cytotoxic, and apoptotic effects of new benzimidazole derivatives bearing hydrazone moiety. J. Heterocycl. Chem., 2018, 55(1), 138-148.
[http://dx.doi.org/10.1002/jhet.3016]
[99]
Lien, J.C.; Chung, C.L.; Huang, T.F.; Chang, T.C.; Chen, K.C.; Gao, G.Y.; Hsu, M.J.; Huang, S.W. A novel 2‐aminobenzimidazole‐based compound Jzu 17 exhibits anti‐angiogenesis effects by targeting VEGFR‐2 signalling. Br. J. Pharmacol., 2019, 176(20), 4034-4049.
[http://dx.doi.org/10.1111/bph.14813] [PMID: 31368127]
[100]
Ibrahim, N.; Bonnet, P.; Brion, J.D.; Peyrat, J.F.; Bignon, J.; Levaique, H.; Josselin, B.; Robert, T.; Colas, P.; Bach, S.; Messaoudi, S.; Alami, M.; Hamze, A. Identification of a new series of flavopiridol-like structures as kinase inhibitors with high cytotoxic potency. Eur. J. Med. Chem., 2020, 199, 112355.
[http://dx.doi.org/10.1016/j.ejmech.2020.112355] [PMID: 32402934]
[101]
Siddig, L.A.; Khasawneh, M.A.; Samadi, A.; Saadeh, H.; Abutaha, N.; Wadaan, M.A. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents. Open Chem., 2021, 19(1), 1062-1073.
[http://dx.doi.org/10.1515/chem-2021-0093]
[102]
Gowda, N.R.T.; Kavitha, C.V.; Chiruvella, K.K.; Joy, O.; Rangappa, K.S.; Raghavan, S.C. Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1H-benzimidazole-5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg. Med. Chem. Lett., 2009, 19(16), 4594-4600.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.103] [PMID: 19616939]
[103]
El-Nassan, H.B. Synthesis, antitumor activity and SAR study of novel [1,2,4]triazino[4,5-a]benzimidazole derivatives. Eur. J. Med. Chem., 2012, 53, 22-27.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.028] [PMID: 22542105]
[104]
Xiang, P.; Zhou, T.; Wang, L.; Sun, C.Y.; Hu, J.; Zhao, Y.L.; Yang, L. Novel benzothiazole, benzimidazole and benzoxazole derivatives as potential antitumor agents: Synthesis and preliminary in vitro biological evaluation. Molecules, 2012, 17(1), 873-883.
[http://dx.doi.org/10.3390/molecules17010873] [PMID: 22252503]
[105]
Grosser, T.; Fries, S.; FitzGerald, G.A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest., 2005, 116(1), 4-15.
[http://dx.doi.org/10.1172/JCI27291] [PMID: 16395396]
[106]
Hernández-Díaz, S.; Varas-Lorenzo, C.; García Rodríguez, L.A. Non-steroidal antiinflammatory drugs and the risk of acute myocardial infarction. Basic Clin. Pharmacol. Toxicol., 2006, 98(3), 266-274.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_302.x] [PMID: 16611201]
[107]
Suresh, A.J.; Anitha, K.; Vinod, D. Design, synthesis, characterization and screening of thiophene derivatives for antiinflammatory activity. J. Chem. Biol. Phys. Sci., 2011, 1(2), 304.
[108]
Limaye, S. Design and synthesis of Mannich bases as benzimidazole derivatives as analgesic agents. Anti-Inflammat. Anti-All. Agent. Med. Chem., 2015, 14(1), 35-46.
[109]
Mariappan, G.; Hazarika, R.; Alam, F.; Karki, R.; Patangia, U.; Nath, S. Synthesis and biological evaluation of 2-substituted benzimidazole derivatives. Arab. J. Chem., 2015, 8(5), 715-719.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.008]
[110]
Sethi, P.; Bansal, Y.; Bansal, G. Synthesis and PASS-assisted evaluation of coumarin-benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. Med. Chem. Res., 2018, 27(1), 61-71.
[http://dx.doi.org/10.1007/s00044-017-2036-1]
[111]
Brishty, S.R.; Hossain, M.J.; Khandaker, M.U.; Faruque, M.R.I.; Osman, H.; Rahman, S.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front. Pharmacol., 2021, 12, 762807.
[http://dx.doi.org/10.3389/fphar.2021.762807] [PMID: 34803707]
[112]
Saha, P.; Brishty, S.R.; Rahman, S.M.A. Pharmacological screening of substituted benzimidazole derivatives. Dhaka Univ. J. Pharmaceut. Sci., 2021, 20(1), 95-102.
[http://dx.doi.org/10.3329/dujps.v20i1.54037]
[113]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[114]
Dye-Holden, L.; Walker, R.J. Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells of Ascaris; is this the site of anthelmintic action? Parasitology, 1990, 101(2), 265-271.
[http://dx.doi.org/10.1017/S0031182000063320] [PMID: 2175874]
[115]
Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Invest., 2008, 118(4), 1311-1321.
[http://dx.doi.org/10.1172/JCI34261] [PMID: 18382743]
[116]
Martin, R.J.; Robertson, A.P.; Bjorn, H. Target sites of anthelmintics. Parasitology, 1997, 114(7), 111-124.
[http://dx.doi.org/10.1017/S0031182097001029] [PMID: 9309773]
[117]
Abongwa, M.; Martin, R.J.; Robertson, A.P. A brief review on the mode of action of antinematodal drugs. Acta Vet., 2017, 67(2), 137-152.
[http://dx.doi.org/10.1515/acve-2017-0013] [PMID: 29416226]
[118]
Mukherjee, S.; Mukherjee, N.; Gayen, P.; Roy, P.; Babu, S.P. P Sinha Babu S. Metabolic inhibitors as antiparasitic drugs: Pharmacological, biochemical and molecular perspectives. Curr. Drug Metab., 2016, 17(10), 937-970.
[http://dx.doi.org/10.2174/1389200217666161004143152] [PMID: 27719626]
[119]
Timson, D.J. J Timson D. Metabolic enzymes of helminth parasites: Potential as drug targets. Curr. Protein Pept. Sci., 2016, 17(3), 280-295.
[http://dx.doi.org/10.2174/1389203717999160226180733] [PMID: 26983888]
[120]
Mansour, TE Chemotherapeutic targets in parasites: Contemporary strategies; Cambridge University Press, 2002.
[http://dx.doi.org/10.1017/CBO9780511546440]
[121]
Greenberg, R.M. Ca 2+ signalling, voltage-gated Ca 2+ channels and praziquantel in flatworm neuromusculature. Parasitology, 2005, 131(S1), S97-S108.
[http://dx.doi.org/10.1017/S0031182005008346] [PMID: 16569296]
[122]
Son, D.S.; Lee, E.S.; Adunyah, S.E. The antitumor potentials of benzimidazole anthelmintics as repurposing drugs. Immune Netw., 2020, 20(4), e29.
[http://dx.doi.org/10.4110/in.2020.20.e29] [PMID: 32895616]
[123]
Sawant, R.; Kawade, D. Synthesis and biological evaluation of some novel 2-phenyl benzimidazole-1-acetamide derivatives as potential anthelmintic agents. Acta Pharm., 2011, 61(3), 353-361.
[http://dx.doi.org/10.2478/v10007-011-0029-z] [PMID: 21945914]
[124]
Alam, F; Dey, BK; Sharma, K; Chakraborty, A; Kalita, P Synthesis, antimicrobial and antihementic activity of some novel benzimidazole derivatives. Int. J. Drug Res. Technol., 2014, 4(3), 31-38.
[125]
Kenchappa, R.; Bodke, Y.D.; Telkar, S.; Aruna Sindhe, M. Antifungal and anthelmintic activity of novel benzofuran derivatives containing thiazolo benzimidazole nucleus: An in vitro evaluation. J. Chem. Biol., 2017, 10(1), 11-23.
[http://dx.doi.org/10.1007/s12154-016-0160-x] [PMID: 28101251]
[126]
Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther., 2008, 120(1), 1-34.
[http://dx.doi.org/10.1016/j.pharmthera.2008.05.005] [PMID: 18616962]
[127]
Unnikrishnan, MK; Veerapur, V; Nayak, Y; Mudgal, PP; Mathew, G Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoids. In: Polyphenols in human health and disease; Academic Press, 2014.
[http://dx.doi.org/10.1016/B978-0-12-398456-2.00013-X]
[128]
Taha, M.; Ismail, N.H.; Jamil, W.; Rashwan, H.; Kashif, S.M.; Sain, A.A.; Adenan, M.I.; Anouar, E.H.; Ali, M.; Rahim, F.; Khan, K.M. Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities. Eur. J. Med. Chem., 2014, 84, 731-738.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.078] [PMID: 25069019]
[129]
Mobinikhaledi, A.; Asghari, B.; Jabbarpour, M. Design and synthesis of new benzimidazole and pyrimidine derivatives as α-glucosidase inhibitor. Iran. J. Pharm. Res., 2015, 14(3), 723-731.
[PMID: 26330860]
[130]
Özil, M.; Emirik, M.; Beldüz, A.; Ülker, S. Molecular docking studies and synthesis of novel bisbenzimidazole derivatives as inhibitors of α-glucosidase. Bioorg. Med. Chem., 2016, 24(21), 5103-5114.
[http://dx.doi.org/10.1016/j.bmc.2016.08.024] [PMID: 27576293]
[131]
Ishikawa, M.; Nonoshita, K.; Ogino, Y.; Nagae, Y.; Tsukahara, D.; Hosaka, H.; Maruki, H.; Ohyama, S.; Yoshimoto, R.; Sasaki, K.; Nagata, Y.; Eiki, J.; Nishimura, T. Discovery of novel 2-(pyridine-2-yl)-1H-benzimidazole derivatives as potent glucokinase activators. Bioorg. Med. Chem. Lett., 2009, 19(15), 4450-4454.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.038] [PMID: 19540111]
[132]
Zawawi, N.K.N.A.; Taha, M.; Ahmat, N.; Ismail, N.H.; Wadood, A.; Rahim, F. Synthesis, molecular docking studies of hybrid benzimidazole as α -glucosidase inhibitor. Bioorg. Chem., 2017, 70, 184-191.
[http://dx.doi.org/10.1016/j.bioorg.2016.12.009] [PMID: 28043716]
[133]
Kanwal, A.; Ullah, S.; Ahmad, M.; Pelletier, J.; Aslam, S.; Sultan, S.; Sévigny, J.; Iqbal, M.; Iqbal, J. Synthesis and nucleotide pyrophosphatase/phosphodiesterase inhibition studies of carbohydrazides based on benzimidazole‐benzothiazine skeleton. ChemistrySelect, 2020, 5(45), 14399-14407.
[http://dx.doi.org/10.1002/slct.202003479]
[134]
Shaikh, MM; Kruger, HG; Smith, P; Munro, OQ; Bodenstein, J; du Toit, K Crystal structure and potent antifungal activity of synthetic homoisoflavanone analogues. J. Pharma. Res., 2013, 6(1), 1-5.
[135]
Yadav, S.; Narasimhan, B.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Mathur, A. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. Egypt. J. Basic. Appl. Sci., 2018, 5(1), 100-109.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.001]
[136]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[137]
Mahmoud, M.A.; Ibrahim, S.K.; Rdaiaan, M.A. Antibacterial evaluation of some new benzimidazole derivatives. Int. J. Pharmaceut. Res., 2020, 12(1), 282-287.
[138]
Garudachari, B.; Satyanarayana, M.N.; Thippeswamy, B.; Shivakumar, C.K.; Shivananda, K.N.; Hegde, G.; Isloor, A.M. Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. Eur. J. Med. Chem., 2012, 54, 900-906.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.027] [PMID: 22732060]
[139]
Luo, Y.L.; Baathulaa, K.; Kannekanti, V.K.; Zhou, C.H.; Cai, G.X. Novel benzimidazole derived naphthalimide triazoles: Synthesis, antimicrobial activity and interactions with calf thymus DNA. Sci. China Chem., 2015, 58(3), 483-494.
[http://dx.doi.org/10.1007/s11426-014-5296-3]
[140]
Singh, L.R.; Avula, S.R.; Raj, S.; Srivastava, A.; Palnati, G.R.; Tripathi, C.K.M.; Pasupuleti, M.; Sashidhara, K.V. Coumarinbenzimidazole hybrids as a potent antimicrobial agent: Synthesis and biological elevation. J. Antibiot., 2017, 70(9), 954-961.
[http://dx.doi.org/10.1038/ja.2017.70] [PMID: 28634338]
[141]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996] [PMID: 33190958]
[142]
Barreca, M.L.; Rao, A.; De Luca, L.; Zappalà, M.; Monforte, A.M.; Maga, G.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Chimirri, A.; Monforte, P. Computational strategies in discovering novel non-nucleoside inhibitors of HIV-1 RT. J. Med. Chem., 2005, 48(9), 3433-3437.
[http://dx.doi.org/10.1021/jm049279a] [PMID: 15857150]
[143]
Monforte, A.M.; Logoteta, P.; Luca, L.D.; Iraci, N.; Ferro, S.; Maga, G.; De Clercq, E.; Pannecouque, C.; Chimirri, A. Novel 1,3-dihydro-benzimidazol-2-ones and their analogues as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2010, 18(4), 1702-1710.
[http://dx.doi.org/10.1016/j.bmc.2009.12.059] [PMID: 20097079]
[144]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]
[145]
Youssif, B.G.M.; Mohamed, Y.A.M.; Salim, M.T.A.; Inagaki, F.; Mukai, C.; Abdu-Allah, H.H.M. Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm., 2016, 66(2), 219-231.
[http://dx.doi.org/10.1515/acph-2016-0014] [PMID: 27279065]
[146]
Ferro, S.; Buemi, M.R.; De Luca, L.; Agharbaoui, F.E.; Pannecouque, C.; Monforte, A.M. Searching for novel N 1 -substituted benzimidazol-2-ones as non-nucleoside HIV-1 RT inhibitors. Bioorg. Med. Chem., 2017, 25(14), 3861-3870.
[http://dx.doi.org/10.1016/j.bmc.2017.05.040] [PMID: 28559060]
[147]
Monforte, A.M.; Ferro, S.; De Luca, L.; Lo Surdo, G.; Morreale, F.; Pannecouque, C.; Balzarini, J.; Chimirri, A. Design and synthesis of N1-aryl-benzimidazoles 2-substituted as novel HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., 2014, 22(4), 1459-1467.
[http://dx.doi.org/10.1016/j.bmc.2013.12.045] [PMID: 24457088]
[148]
Singh, V.K.; Srivastava, R.; Gupta, P.S.S.; Naaz, F.; Chaurasia, H.; Mishra, R.; Rana, M.K.; Singh, R.K. Anti-HIV potential of diarylpyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors: Design, synthesis, docking, TOPKAT analysis and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2021, 39(7), 2430-2446.
[http://dx.doi.org/10.1080/07391102.2020.1748111] [PMID: 32216610]
[149]
Ibba, R.; Carta, A.; Madeddu, S.; Caria, P.; Serreli, G.; Piras, S.; Sestito, S.; Loddo, R.; Sanna, G. Inhibition of enterovirus A71 by a novel 2-phenyl-benzimidazole derivative. Viruses, 2021, 13(1), 58.
[http://dx.doi.org/10.3390/v13010058] [PMID: 33406781]
[150]
Luo, Y.; Yao, J.P.; Yang, L.; Feng, C.L.; Tang, W.; Wang, G.F.; Zuo, J.P.; Lu, W. Design and synthesis of novel benzimidazole derivatives as inhibitors of hepatitis B virus. Bioorg. Med. Chem., 2010, 18(14), 5048-5055.
[http://dx.doi.org/10.1016/j.bmc.2010.05.076] [PMID: 20639110]
[151]
Konturek, S.J.; Kweicień, N.; Obtułowicz, W.; Kopp, B.; Oleksy, J. Action of omeprazole (a benzimidazole derivative) on secretory responses to sham feeding and pentagastrin and upon serum gastrin and pancreatic polypeptide in duodenal ulcer patients. Gut, 1984, 25(1), 14-18.
[http://dx.doi.org/10.1136/gut.25.1.14] [PMID: 6418621]
[152]
Kromer, W. Similarities and differences in the properties of substituted benzimidazoles: A comparison between pantoprazole and related compounds. Digestion, 1995, 56(6), 443-454.
[http://dx.doi.org/10.1159/000201275] [PMID: 8536813]
[153]
Oxberry, M.E.; Geary, T.G.; Prichard, R.K. Assessment of benzimidazole binding to individual recombinant tubulin isotypes from Haemonchus contortus. Parasitology, 2001, 122(6), 683-687.
[http://dx.doi.org/10.1017/S0031182001007788] [PMID: 11444621]
[154]
Horton, J. Albendazole: A review of anthelmintic efficacy and safety in humans. Parasitology, 2000, 121(S1), S113-S132.
[http://dx.doi.org/10.1017/S0031182000007290] [PMID: 11386684]
[155]
George, AC AntHelmintics. In: Antibiotics and Chemotherapy; Elsevier, 2010.
[156]
Kakuta, H.; Sudoh, K.; Sasamata, M.; Yamagishi, S. Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: Comparison with other angiotensin II type 1 receptor blockers. Int. J. Clin. Pharmacol. Res., 2005, 25(1), 41-46.
[PMID: 15864875]
[157]
Husain, A; Azim, MS; Mitra, M; Bhasin, PS A review on candesartan: Pharmacological and pharmaceutical profile. J. Appl. Pharmaceut. Sci., 2011, 30, 12-17.
[158]
Molkhou, P. [General review of a non-sedative antihistaminic, astemizole (Hismanal), a H1 receptor antagonist]. Allerg. Immunol., 1988, 20(5), 197-201.
[PMID: 2900641]
[159]
Trofe, J.; Pote, L.; Wade, E.; Blumberg, E.; Bloom, R.D. Maribavir: A novel antiviral agent with activity against cytomegalovirus. Ann. Pharmacother., 2008, 42(10), 1447-1457.
[http://dx.doi.org/10.1345/aph.1L065] [PMID: 18698013]
[160]
Sharif, N.A.; Su, S.X.; Yanni, J.M. Emedastine: A potent, high affinity histamine H1-receptor-selective antagonist for ocular use: Receptor binding and second messenger studies. J. Ocul. Pharmacol. Ther., 1994, 10(4), 653-664.
[http://dx.doi.org/10.1089/jop.1994.10.653] [PMID: 7714409]
[161]
Rani, I; Kaur, N; Goyal, A; Sharma, M An appraisal on synthetic and medicinal aspects of fused pyrimidines as anti-neoplastic agents. Anti-Cancer Agent. Med. Chem., 2023, 23(5), 525-561.
[http://dx.doi.org/10.2174/1871520622666220701113204]
[162]
Maertens, J.; Cordonnier, C.; Jaksch, P.; Poiré, X.; Uknis, M.; Wu, J.; Wijatyk, A.; Saliba, F.; Witzke, O.; Villano, S. Maribavir for preemptive treatment of cytomegalovirus reactivation. N. Engl. J. Med., 2019, 381(12), 1136-1147.
[http://dx.doi.org/10.1056/NEJMoa1714656] [PMID: 31532960]
[163]
Papanicolaou, G.A.; Silveira, F.P.; Langston, A.A.; Pereira, M.R.; Avery, R.K.; Uknis, M.; Wijatyk, A.; Wu, J.; Boeckh, M.; Marty, F.M.; Villano, S. Maribavir for refractory or resistant cytomegalovirus infections in hematopoietic-cell or solid-organ transplant recipients: A randomized, dose-ranging, double-blind, phase 2 study. Clin. Infect. Dis., 2019, 68(8), 1255-1264.
[http://dx.doi.org/10.1093/cid/ciy706] [PMID: 30329038]
[164]
Kim, Y.C.; Park, J.H.; Williams, D.; Jung, D.W. Novel P2X7 receptor antagonists based on 1-Piperidinyl Imidazole and Compositions for inhibiting cancer cell migration and invasion. K.R. Patent 101787709B1, 2017.
[165]
Haddach, M. Compositions, uses and methods for making them. U.S. Patent 9758518B2, 2017.
[166]
Schiltz, G.E.; Mishra, R.K.; Platanlas, L.C.; Izquierdo-Ferrer, J. Substituted aromatic N-heterocyclic compounds as inhibitors of mitogen-activated protein kinase interacting kinase 1 (Mnk1) and 2 (Mnk2). U.S. Patent 10093668B2, 2018.
[167]
Park, J.S.; Yoon, Y.J.; Cho, M.J.; Lee, H.B.; Yoo, J.K.; Lee, B.Y. Heterocyclic compound, method for preparing the same, and pharmaceutical composition comprising the same. U.S. Patent 10011586B2, 2018.
[168]
Bartlett, M.J.; Codelli, J.A.; Corkey, B.K.; Cosman, J.L.; Elbel, K.; Loyer Drew, J.A.; Sperandio, D.; Veldhuizen, J.V.; Yang, H.; Yeung, S.C. Benzimidazole and imadazopyridine carboximidamide compounds. U.S. Patent 9951065B2, 2018.
[169]
Zhang, Y.; Ma, X.L.; Guang, W.B.; Yu, Y.C.; Huang, R.C. 3-benzimidazolyl-2 radicals (1H)-qualone derivative and its preparation method and application. C.N. Patent 105622574B, 2018.
[170]
Peng, S.Q.; Zhao, M.; Wang, Y.J.; Wu, J.H.; An, R. Benzimidazole and quinazoline dimethoxy-benzene oxygen acetyl-AA-OBzl, synthesis, activity and application. C.N. Patent 106349244B, 2018.
[171]
Chandrasekhar, J; Codelli, JA; Naduthambi, D; Patel, L; Perreault, S; Phillips, G; Sedillo, KF; Treiberg, JA; Veldhuizen, JV; Watkins, WJ Phosphatidylinositol 3-kinase inhibitors. U.S. Patent 10214519B2, 2019.
[172]
Schirmer, H. Inhibitor of the mutated isocitrate dehydrogenase IDH1 R132H. U.S. Patent 10344004B2, 2019.
[173]
Ring, S.; Panknin, O.; Zimmermann, K.; Günther, J.; Bürfacker, L. N-Methylbenzimidazoles as mIDH1 inhibitors. U.S. Patent 10370339B2, 2019.
[174]
O’Malley, B.W.; Lonard, D.M.; Wang, J.; Xu, J.; Chen, J. Small molecule regulators of steroid receptor coactivators and methods of use thereof. U.S. Patent 10265315B2, 2019.
[175]
Bader, M.; Specker, E.; Matthes, S.; Schütz, A.; Mallow, K.; Grohmann, M.; Nazaré, M. Xanthine derivatives, their use as a medicament, and pharmaceutical preparations comprising the same. E.P. Patent 3262044B1, 2019.
[176]
Francesco, M.E.D.; Jones, P.; Carroll, C.L.; Cross, J.B.; Ramaswamy, S.K.V.; Johnson, M.G.; Lively, S.; Lapointe, D. Heterocyclic inhibitors of ATR kinase. U.S. Patent 10392376B2, 2019.
[177]
Cai, X.; Qian, C.G.; Liu, B.; Li, J.Q.; Lin, M.S.; Qing, Y.H.; Weng, Y.W.; Wang, Y.Y.; Xue, W.C.; You, H.J.; Zhou, S.Q. Pyridine pyrimidinamine compound or pyridine pyridyl amine compound and its application. C.N. Patent 105153119B, 2019.
[178]
Sampson, P.B.; Patel, N.K.B.; Pauls, H.W.; Li, S.W.; Ng, G.; Laufer, R.; Liu, Y.; Lang, Y. HPK1 inhibitors and methods of using same. U.S. Patent 10501474B2, 2019.
[179]
Yang, X.D.; Zhang, H.B.; Li, L.J.; Chen, W.; Li, L.; Liu, J.P. A kind of substitution Oxoindole-benzimidazole salt compound and preparation method thereof. C.N. Patent 106543148B, 2019.
[180]
Si, J; Jiang, M Urea compound, preparation method therefor and medical use thereof. U.S. Patent 10647680B2, 2020.
[181]
Peto, C.J.; Jablons, D.; Lemjabbar-Alaoui, H. Anti-cancer compounds. U.S. Patent 10562886B2, 2019.
[182]
Peto, C.J.; Jablons, D.M.; Tsang, T.; Lemjabbar-Alaoui, H. Phthalazine derivatives as inhibitors of PARP1, PARP2, and/or tubulin useful for the treatment of cancer. U.S. Patent 10640493B2, 2020.
[183]
Schultz, J; Vågberg, J; Olsson, E; Färnegårdh, K; Jönsson, M; Hammer, K; Krüger, L Benzimidazole derivates useful as inhibitors of mammalian histone deacetylase activity (Kancer AB). E.P. Patent 3294715B1, 2020.
[184]
Xia, G.; Wang, Q.; Shi, C.; Zhai, X.; Ge, H.; Liao, X.; Mao, Y.; Xiang, Z.; Han, Y.; Huo, G.; Liu, Y. Substituted pyrimidines as cyclin-dependent kinase inhibitors. U.S. Patent 10662186B2, 2020.
[185]
Long, Y. Benzimidazoles for use in the treatment of cancer and inflammatory diseases. U.S. Patent 10590108B2, 2020.
[186]
Zhao, M.; Peng, S.Q.; Wang, Y.J.; Wu, J.H.; Chen, P. Benzimidazole quinazoline salicyloyl amino acid benzyl ester, preparation thereof, anti-tumor activity thereof and application thereof. C.N. Patent 107629056B, 2020.
[187]
Zhengfen, L.; Xiaodong, Y.; Flying, C.; Zhang, Y. Quinolinebenzimidazole salt compound and synthesis method and application thereof. C.N. Patent 113683594B, 2021.
[188]
Awate, B.P.; Bhagat, V.C. Antioxidant dihydrobenzimidazole thiopyranooxazinone drug composition. D.E. Patent 202022103037U1, 2022.
[189]
Alexandrovna, K.; Olga Nikolaevna, C.; Alexandrovna, M. Method of reducing the number of stem cells of human breast adenocarcinoma. R.U. Patent 2798550C2, 2023.
[190]
Gu, H.; Li, Y.; Xu, Y.; Zhang, Q.; Zhu, Y.; Tan, W.; Jiang, T.; Zhu, Q. Benzoheterocycle compound and preparation method, pharmaceutical composition and application thereof. C.N. Patent 114805309A, 2023.
[191]
Jahan, H.; Choudhary, M.I.; Shah, Z.; Khan, K.M.; Rahman, A. Inhibitors of advanced glycation end-products (ages)formation. U.S. Patent 9387198B1, 2016.
[192]
Berrebi-Bertrand, I.; Billot, X.; Calmels, T.; Capet, M.; Krief, S.; Labeeuw, O.; Lecomte, J.M.; Levoin, N.; Ligneau, X.; Robert, P.; Schwartz, J.C. Benzimidazole derivatives as dual histamine H1 and histamine H4 receptor ligands (Bioprojet). E.P. Patent 3486243B1, 2019.
[193]
Xiao, H.Y.; Dhar, T.G.M.; Jiang, B.; Duan, J. Cyclic compounds useful as modulators of TNF α (Bristol-Myers Squibb Co.). U.S. Patent 10335392B2, 2019.
[194]
Laurent, A.; Rose, Y.; Morris, S.J. Benzimidazoles derivatives as Tec kinases family inhibitors(GB005, INC.). U.S. Patent 10562893B2, 2020.
[195]
Arbeit, R.D.; Ragan, P.M. Methods for treating immunodeficiency disease (X4 Pharmaceuticals, Inc.). U.S. Patent 10610527B2, 2020.
[196]
Heer, J.P. Substituted benzimidazole derivative as a modulator of TNF activity (UCB Biopharma SRL). U.S. Patent 10669263B2, 2020.
[197]
Zhang, H.Z.; Liu, F.Z.; Wang, H. A kind of bisbenzimidazole aminated compounds and preparation method thereof. C.N. Patent 105311020B, 2017.
[198]
Zhou, C.H.; Kumar, V.; Peng, S.M. Berberine benzimidazole compounds or pharmaceutically acceptable salts thereof as well as preparation methods and applications of berberine benzimidazole compounds or pharmaceutically acceptable salts of berberine benzimidazole compounds. C.N. Patent 105218537B, 2017.
[199]
Zhou, C.H.; Kumar, V.; Zhang, L. Berberine benzimidazole compounds, and preparation method and application thereof. C.N. Patent 105130981B, 2018.
[200]
Cole, S.; Rybniker, J.L. Benzimidazole sulfide derivatives for the treatment or prevention of tuberculosis (École Polytechnique Fédérale de Lausanne). U.S. Patent 10137116B2, 2018.
[201]
Heckel, A.; Hamprecht, D.; Kley, J. Substituted benzimidazolium compounds useful in the treatment of respiratory diseases (Boehringer Ingelheim International GmbH). U.S. Patent 10155749B2, 2018.
[202]
Kley, J.; Hehn, J.P.; Heckel, A. Substituted benzimidazolium compounds useful in the treatment of respiratory diseases (Boehringer Ingelheim International GmbH). U.S. Patent 9932324B2, 2018.
[203]
Heckel, A.; Frattini, S.; Kley, J. 2-(pyrazin-2-ylcarbonylaminomethyl) benzimidazolium compounds as epithelial sodium channel inhibitors. U.S. Patent 9981954B2, 2018.
[204]
Wang, CD Benzimidazole derivatives and preparation process and pharmaceutical uses thereof. U.S. Patent 9708306B2, 2017.
[205]
Liu, YL; Lin, XT; Mao, XY; Chen, GS A kind of 2- difluoro methylene substituted pyrimidines simultaneously [1,2-a] benzimidazole compound and its preparation and application. C.N. Patent 108690027B, 2019.
[206]
Meredith, F.; Eastman, B.; Leonard, H.; Hilary, G.M.; Victor, P.; Huong, K.; Michael, H.; Mark Day, R.; Rosen, L.; Xiumin, Z. Benzimidazole as a prolyl hydroxylase inhibitor. J.P. Patent 6900424B2, 2019.
[207]
Hulme, C.; Dunckley, T.; Shaw, Y.J. Small molecule inhibitors of DYRK1A and uses thereof (Arizona Board of Regents on behalf of the University of Arizona). A.U. Patent 2016315881B2, 2017.
[208]
Ha, J.M.; Yang, S.I. Novel benzoimidazole derivates having JNKinhibitory activity and use thereof. K.R. Patent 101840674B1, 2018.
[209]
Nguyen, KD; Engleman, EG Method for preventing and/or treating aging-associated cognitive impairment and neuroinflammation. U.S. Patent 10653669B2, 2020.
[210]
Berrebi-Bertrand, I.; Billot, X. Benzimidazole derivatives as dual ligands of the histamine H1 receptor and the histamine H4 receptor. E.S. Patent 2807191T3, 2021.
[211]
LeXu Jun, D.; Kumar, D.; Tan, P.; Zhiqiang, C.X. Method for preparing 2-arylamino benzimidazole and N1-aryl-2-amino benzimidazole. C.N. Patent 115819353B, 2023.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy