Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Case Report

A Case of Intractable Hypophosphatemia in a Patient with Guillain-Barré Syndrome and Encephalitis after SARS-CoV-2 Infection

Author(s): Yawen Zheng, Yuanyuan Hou, Mingzhu Qi, Yongxiang Zhang, Chao Han, Hui Sun and Jiang Li*

Volume 24, Issue 11, 2024

Published on: 16 January, 2024

Page: [1346 - 1350] Pages: 5

DOI: 10.2174/0118715303261924231117055702

Price: $65

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection attacks the respiratory and nervous systems. Among patients with SARS-CoV-2 infection, cases with simultaneous central and peripheral nervous system damage are rare, and those with intractable hypophosphatemia and hypokalemia complicating the former have not been reported yet.

Case Presentation: A 59-year-old woman presented to the emergency department with incoherent speech evolving for 3 days. She had tested positive for the SARS-CoV-2 RT-PCR assay 8 days earlier. Her physical examination showed progressive limb weakness with diminished tendon reflexes and normal sensory examination. Cranial MRI revealed multiple abnormal signals in the brain. Cerebrospinal fluid (CSF) analysis and electromyography revealed acute motor axonal neuropathy (AMAN), further diagnosed as encephalitis combined with GuillainBarré syndrome (GBS). The patient received glucocorticoid therapy, intravenous immune globulin (IVIG), and rehabilitation therapy. The patient experienced an intractable hypophosphatemia and hypokalemia during the treatment period, which was not effectively corrected several times. The symptoms improved after 1 month of treatment.

Conclusion: Early diagnosis is important for the management of Guillain-Barré syndrome associated with SARS-CoV-2 infection. Moreover, in order to prevent life-threatening long-term persistent electrolyte disturbances in non-seriously ill patients, clinicians should pay particular attention to their electrolyte status.

« Previous
Graphical Abstract

[1]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[2]
Michaels, D.; Emanuel, E.J.; Bright, R.A. A national strategy for COVID-19. JAMA, 2022, 327(3), 213-214.
[http://dx.doi.org/10.1001/jama.2021.24168] [PMID: 34989785]
[3]
Mengistu, D.A.; Demmu, Y.M.; Asefa, Y.A. Global COVID-19 vaccine acceptance rate: Systematic review and meta-analysis. Front. Public Health, 2022, 10, 1044193.
[http://dx.doi.org/10.3389/fpubh.2022.1044193] [PMID: 36568768]
[4]
Ren, L-L.; Wang, Y-M.; Wu, Z-Q.; Xiang, Z-C.; Guo, L.; Xu, T.; Jiang, Y-Z.; Xiong, Y.; Li, Y-J.; Li, X-W.; Li, H.; Fan, G-H.; Gu, X-Y.; Xiao, Y.; Gao, H.; Xu, J-Y.; Yang, F.; Wang, X-M.; Wu, C.; Chen, L.; Liu, Y-W.; Liu, B.; Yang, J.; Wang, X-R.; Dong, J.; Li, L.; Huang, C-L.; Zhao, J-P.; Hu, Y.; Cheng, Z-S.; Liu, L-L.; Qian, Z-H.; Qin, C.; Jin, Q.; Cao, B.; Wang, J-W. Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chin. Med. J., 2020, 133(9), 1015-1024.
[http://dx.doi.org/10.1097/CM9.0000000000000722]
[5]
Abu-Rumeileh, S.; Abdelhak, A.; Foschi, M.; Tumani, H.; Otto, M. Guillain–Barré syndrome spectrum associated with COVID-19: An up-to-date systematic review of 73 cases. J. Neurol., 2021, 268(4), 1133-1170.
[http://dx.doi.org/10.1007/s00415-020-10124-x] [PMID: 32840686]
[6]
Bridwell, R.; Long, B.; Gottlieb, M. Neurologic complications of COVID-19. Am. J. Emerg. Med., 2020, 38(7), 1549.e3-1549.e7.
[http://dx.doi.org/10.1016/j.ajem.2020.05.024] [PMID: 32425321]
[7]
Liotta, E.M.; Batra, A.; Clark, J.R.; Shlobin, N.A.; Hoffman, S.C.; Orban, Z.S.; Koralnik, I.J. Frequent neurologic manifestations and encephalopathy‐associated morbidity in COVID‐19 patients. Ann. Clin. Transl. Neurol., 2020, 7(11), 2221-2230.
[http://dx.doi.org/10.1002/acn3.51210] [PMID: 33016619]
[8]
Caress, J.B.; Castoro, R.J.; Simmons, Z.; Scelsa, S.N.; Lewis, R.A.; Ahlawat, A.; Narayanaswami, P. COVID‐19-associated guillain-Barré syndrome: The early pandemic experience. Muscle Nerve, 2020, 62(4), 485-491.
[http://dx.doi.org/10.1002/mus.27024] [PMID: 32678460]
[9]
Lippi, G.; South, A.M.; Henry, B.M. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann. Clin. Biochem., 2020, 57(3), 262-265.
[http://dx.doi.org/10.1177/0004563220922255] [PMID: 32266828]
[10]
van Kempen, T.A.T.G.; Deixler, E. SARS-CoV-2: Influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am. J. Physiol. Endocrinol. Metab., 2021, 320(1), E2-E6.
[http://dx.doi.org/10.1152/ajpendo.00474.2020] [PMID: 33174766]
[11]
Gaasbeek, A.; Meinders, A.E. Hypophosphatemia: An update on its etiology and treatment. Am. J. Med., 2005, 118(10), 1094-1101.
[http://dx.doi.org/10.1016/j.amjmed.2005.02.014] [PMID: 16194637]
[12]
Zamani, R.; Pouremamali, R.; Rezaei, N. Central neuroinflammation in COVID-19: A systematic review of 182 cases with encephalitis, acute disseminated encephalomyelitis, and necrotizing encephalopathies. Rev. Neurosci., 2022, 33(4), 397-412.
[http://dx.doi.org/10.1515/revneuro-2021-0082] [PMID: 34536341]
[13]
Pryce-Roberts, A.; Talaei, M.; Robertson, N.P. Neurological complications of COVID-19: A preliminary review. J. Neurol., 2020, 267(6), 1870-1873.
[http://dx.doi.org/10.1007/s00415-020-09941-x] [PMID: 32494853]
[14]
Widyadharma, I.P.E.; Hendellyn, A.; Laksmi Dewi, A.A.A.P.; Adnyana, I.M.O.; Samatra, D.P.G.P.; Utami, D.K.I. Neurologic manifestations of COVID-19 infection in Asia: A systematic review. Egypt. J. Neurol. Psychiat. Neurosurg., 2021, 57(1), 28.
[http://dx.doi.org/10.1186/s41983-021-00279-3] [PMID: 33613024]
[15]
Unnithan, A.K.A. A brief review of the neurological manifestations of the coronavirus disease. Egypt. J. Neurol. Psychiat. Neurosurg., 2020, 56(1), 109.
[http://dx.doi.org/10.1186/s41983-020-00244-6] [PMID: 33250631]
[16]
Pourfridoni, M.; Abbasnia, S.M.; Shafaei, F.; Razaviyan, J.; Heidari-Soureshjani, R. Fluid and electrolyte disturbances in COVID-19 and their complications. BioMed Res. Int., 2021, 1-5.
[http://dx.doi.org/10.1155/2021/6667047] [PMID: 33937408]
[17]
Tezcan, M.E.; Gokce, G.; Sen, N.; Kaymak, N.; Ozer, R.S. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect., 2020, 37, 100753.
[http://dx.doi.org/10.1016/j.nmni.2020.100753] [PMID: 32904987]
[18]
Vakhshoori, M.; Heidarpour, M.; Bondariyan, N.; Sadeghpour, N.; Mousavi, Z. Adrenal insufficiency in coronavirus disease 2019 (COVID-19)-infected patients without preexisting adrenal diseases: A systematic literature review. Int. J. Endocrinol., 2021, 1-8.
[http://dx.doi.org/10.1155/2021/2271514] [PMID: 34539780]
[19]
Mohamed, F.; Raal, F.J. Severe hypophosphatemia: The hidden truth. Clin. Chem., 2023, 69(5), 450-453.
[http://dx.doi.org/10.1093/clinchem/hvad028] [PMID: 37115578]
[20]
Felsenfeld, A.J.; Levine, B.S. Approach to treatment of hypophosphatemia. Am. J. Kidney Dis., 2012, 60(4), 655-661.
[http://dx.doi.org/10.1053/j.ajkd.2012.03.024] [PMID: 22863286]
[21]
Fakhrolmobasheri, M.; Vakhshoori, M.; Heidarpour, M.; Najimi, A.; Mozafari, A.M.; Rezvanian, H. Hypophosphatemia in coronavirus disease 2019 (COVID-19), complications, and considerations: A systematic review. BioMed Res. Int., 2022, 1-11.
[http://dx.doi.org/10.1155/2022/1468786] [PMID: 36312855]
[22]
Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence regarding vitamin D and risk of COVID-19 and its severity. Nutrients, 2020, 12(11), 3361.
[http://dx.doi.org/10.3390/nu12113361] [PMID: 33142828]
[23]
Rahman, J.; Muralidharan, A.; Quazi, S.J.; Saleem, H.; Khan, S. Neurological and psychological effects of coronavirus (COVID-19): An overview of the current era pandemic. Cureus, 2020, 12(6), e8460.
[http://dx.doi.org/10.7759/cureus.8460] [PMID: 32528783]
[24]
Pal, R.; Ram, S.; Zohmangaihi, D.; Biswas, I.; Suri, V.; Yaddanapudi, L.N.; Malhotra, P.; Soni, S.L.; Puri, G.D.; Bhalla, A.; Bhadada, S.K. High prevalence of hypocalcemia in non-severe COVID-19 patients: A retrospective case-control study. Front. Med., 2021, 7, 590805.
[http://dx.doi.org/10.3389/fmed.2020.590805] [PMID: 33490095]
[25]
Wang, R.; He, M.; Kang, Y. Hypophosphatemia at admission is associated with increased mortality in COVID-19 patients. Int. J. Gen. Med., 2021, 14, 5313-5322.
[http://dx.doi.org/10.2147/IJGM.S319717] [PMID: 34526806]
[26]
Chen, Z.; Gao, C.; Yu, H.; Lu, L.; Liu, J.; Chen, W.; Xiang, X.; Hussain, H.M.J.; Lee, B.J.; Li, C.; Wei, W.; Huang, Y.; Li, X.; Fang, Z.; Yu, S.; Weng, Q.; Ouyang, Y.; Hu, X.; Tong, J.; Liu, J.; Lin, L.; Liu, M.; Xu, X.; Liu, D.; Song, Y.; Lv, X.; Zha, Y.; Ye, Z.; Jiang, T.; Jia, J.; Chen, X.; Bi, Y.; Xue, J.; Chen, N.; Hu, W.; He, C.J.; Wang, H.; Liu, J.; Xie, J. Hypophosphatemia is an independent risk factor for AKI among hospitalized patients with COVID-19 infection. Ren. Fail., 2021, 43(1), 1329-1337.
[http://dx.doi.org/10.1080/0886022X.2021.1979039] [PMID: 34541999]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy