Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

A Brief Review on Recent Developments in Diels-Alder Reactions

In Press, (this is not the final "Version of Record"). Available online 15 January, 2024
Author(s): Manish Chaudhary, Shareef Shaik, Muskan Magan, Sharwan Hudda, Mukta Gupta, Gurvinder Singh and Pankaj Wadhwa*
Published on: 15 January, 2024

DOI: 10.2174/0115701794262102231214074336

Price: $95

Abstract

The [4+2] Diels-Alder cycloaddition has been widely used for the synthesis of six-mem-ber scaffolds. In recent years, there have been significant developments in this area, including the discovery and design of novel dienes and dienophiles with improved reactivity and selectivity. These new building blocks can be used to develop diverse molecular structures with functional group compatibility. Additionally, there is the use of catalytic systems and metal-mediated reactions to enable asymmetric [4+2] cycloadditions, resulting in enantiomerically enriched products. Over-all, recent studies related to [4+2] Diels-Alder cycloaddition using numerous dienes, dienophiles, and catalysts in different reaction conditions have significantly improved the efficiency, selectivity, and versatility of the reaction, making it an increasingly important tool in the synthesis of complex organic molecules as presented in this review. These advancements offer exciting possibilities for the development of new methods and reagents for the construction of six-membered rings and the synthesis of bioactive compounds.

[1]
Phillips, A.M.F. Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, 2 Volume Set; John Wiley & Sons, 2020.
[http://dx.doi.org/10.1002/9781119708841]
[2]
Kobayashi, S.; Jørgensen, K.A. Cycloaddition reactions in organic synthesis; John Wiley & Sons, 2002.
[3]
Alcaide, B.; Almendros, P. Novel cyclization reactions of aminoallenes. Adv. Synth. Catal., 2011, 353(14-15), 2561-2576.
[http://dx.doi.org/10.1002/adsc.201100160]
[4]
Harvey, D.F.; Sigano, D.M. Carbene− alkyne− alkene cyclization reactions. Chem. Rev., 1996, 96(1), 271-288.
[http://dx.doi.org/10.1021/cr950010w] [PMID: 11848753]
[5]
Zhang, M.; Zhong, Z.; Liao, L.; Zhang, A.Q. Application of a transient directing strategy in cyclization reactions via C–H activation. Org. Chem. Front., 2022, 9(14), 3882-3896.
[http://dx.doi.org/10.1039/D2QO00765G]
[6]
Zhang, T.; Zhang, Y.; Das, S. Deal;Photoredox catalysis for the cycloaddition reactions. ChemCatChem, 2020, 12(24), 6173-6185.
[http://dx.doi.org/10.1002/cctc.202001195]
[7]
Min, L.; Hu, Y.J.; Fan, J.H.; Zhang, W.; Li, C.C. Synthetic applications of type II intramolecular cycloadditions. Chem. Soc. Rev., 2020, 49(19), 7015-7043.
[http://dx.doi.org/10.1039/D0CS00365D] [PMID: 32869796]
[8]
Maji, B. Stereoselective haliranium, thiiranium and seleniranium ion‐triggered friedel–crafts‐type alkylations for polyene cyclizations. Adv. Synth. Catal., 2019, 361(15), 3453-3489.
[http://dx.doi.org/10.1002/adsc.201900028]
[9]
Duret, G.; Le Fouler, V.; Bisseret, P.; Bizet, V.; Blanchard, N. Diels–Alder and formal Diels–Alder cycloaddition reactions of ynamines and ynamides. Eur. J. Org. Chem., 2017, 2017(46), 6816-6830.
[http://dx.doi.org/10.1002/ejoc.201700986]
[10]
Kalník, M.; Gabko, P.; Bella, M.; Koóš, M. The bucherer–bergs multicomponent synthesis of hydantoins—excellence in simplicity. Molecules, 2021, 26(13), 4024.
[http://dx.doi.org/10.3390/molecules26134024] [PMID: 34209381]
[11]
Frontier, A.J.; Hernandez, J.J. New twists in Nazarov cyclization chemistry. Acc. Chem. Res., 2020, 53(9), 1822-1832.
[http://dx.doi.org/10.1021/acs.accounts.0c00284] [PMID: 32790284]
[12]
Pulka, K. Pictet-Spengler reactions for the synthesis of pharmaceutically relevant heterocycles. Curr. Opin. Drug Discov. Devel., 2010, 13(6), 669-684.
[PMID: 21061230]
[13]
Heravi, M.M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Advances, 2017, 7(83), 52852-52887.
[http://dx.doi.org/10.1039/C7RA10716A]
[14]
Diels, O.; Alder, K. Synthesen in der hydroaromatischen Reihe. Justus Liebigs Ann. Chem., 1928, 460(1), 98-122.
[http://dx.doi.org/10.1002/jlac.19284600106]
[15]
Sauer, J.; Sustmann, R. Mechanistic aspects of Diels‐Alder reactions: A critical survey. Angew. Chem. Int. Ed. Engl., 1980, 19(10), 779-807.
[http://dx.doi.org/10.1002/anie.198007791]
[16]
Chauhan, A.N.S.; Mali, G.; Erande, R.D. Regioselectivity switch towards the development of innovative diels‐alder cycloaddition and productive applications in organic synthesis. Asian J. Org. Chem., 2022, 11(4), e202100793.
[http://dx.doi.org/10.1002/ajoc.202100793]
[17]
Houk, K.N.; Liu, F.; Yang, Z.; Seeman, J.I. Evolution of the diels–alder reaction mechanism since the 1930s: Woodward, houk with woodward, and the influence of computational chemistry on understanding cycloadditions. Angew. Chem. Int. Ed., 2021, 60(23), 12660-12681.
[http://dx.doi.org/10.1002/anie.202001654] [PMID: 32662195]
[18]
Wessig, P.; Müller, G. The dehydro-diels-alder reaction. Chem. Rev., 2008, 108(6), 2051-2063.
[http://dx.doi.org/10.1021/cr0783986] [PMID: 18479169]
[19]
Fernández, I.; Bickelhaupt, F.M. Deeper insight into the Diels–Alder reaction through the activation strain model. Chem. Asian J., 2016, 11(23), 3297-3304.
[http://dx.doi.org/10.1002/asia.201601203] [PMID: 27863108]
[20]
Nicolaou, K.C.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G. The Diels--Alder reaction in total synthesis. Angew. Chem. Int. Ed., 2002, 41(10), 1668-1698.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1668:AID-ANIE1668>3.0.CO;2-Z] [PMID: 19750686]
[21]
Oliveira, B.L.; Guo, Z.; Bernardes, G.J.L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev., 2017, 46(16), 4895-4950.
[http://dx.doi.org/10.1039/C7CS00184C] [PMID: 28660957]
[22]
Heravi, M.M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Advances, 2015, 5(123), 101999-102075.
[http://dx.doi.org/10.1039/C5RA17488K]
[23]
Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Recent advances in lewis acid catalyzed diels−alder reactions in aqueous media. Eur. J. Org. Chem., 2001, 2001(3), 439-455.
[http://dx.doi.org/10.1002/1099-0690(200102)2001:3<439:AID-EJOC439>3.0.CO;2-B]
[24]
Reymond, S.; Cossy, J. Copper-catalyzed diels-alder reactions. Chem. Rev., 2008, 108(12), 5359-5406.
[http://dx.doi.org/10.1021/cr078346g] [PMID: 18942879]
[25]
Heravi, M.M.; Vavsari, V.F. Recent applications of intramolecular Diels–Alder reaction in total synthesis of natural products. RSC Advances, 2015, 5(63), 50890-50912.
[http://dx.doi.org/10.1039/C5RA08306K]
[26]
Masson, G.; Lalli, C.; Benohoud, M.; Dagousset, G. Catalytic enantioselective [4 + 2]-cycloaddition: A strategy to access aza-hexacycles. Chem. Soc. Rev., 2013, 42(3), 902-923.
[http://dx.doi.org/10.1039/C2CS35370A] [PMID: 23172010]
[27]
Jasiński, R. On the question of stepwise [4+ 2] cycloaddition reactions and their stereochemical aspects. Symmetry, 2021, 13(10), 1911.
[http://dx.doi.org/10.3390/sym13101911]
[28]
Lichman, B.R.; O’Connor, S.E.; Kries, H. Biocatalytic strategies towards [4+ 2] cycloadditions. Chemistry, 2019, 25(28), 6864-6877.
[http://dx.doi.org/10.1002/chem.201805412] [PMID: 30664302]
[29]
Yamamoto, K.; Nagae, H.; Tsurugi, H.; Mashima, K. Mechanistic understanding of alkyne cyclotrimerization on mononuclear and dinuclear scaffolds: [4 + 2] cycloaddition of the third alkyne onto metallacyclopentadienes and dimetallacyclopentadienes. Dalton Trans., 2016, 45(43), 17072-17081.
[http://dx.doi.org/10.1039/C6DT03389J] [PMID: 27730228]
[30]
Moschona, F.; Savvopoulou, I.; Tsitopoulou, M.; Tataraki, D.; Rassias, G. Epoxide syntheses and ring-opening reactions in drug development. Catalysts, 2020, 10(10), 1117.
[http://dx.doi.org/10.3390/catal10101117]
[31]
Gawroński, J. Asymmetric syntheses and transformations--tools for chirality multiplication in drug synthesis. Acta Pol. Pharm., 2006, 63(5), 333-351.
[PMID: 17357583]
[32]
Juhl, M.; Tanner, D. Recent applications of intramolecular Diels–Alder reactions to natural product synthesis. Chem. Soc. Rev., 2009, 38(11), 2983-2992.
[http://dx.doi.org/10.1039/b816703f] [PMID: 19847335]
[33]
Rammohan, A.; Krinochkin, A.P.; Khasanov, A.F.; Kopchuk, D.S.; Zyryanov, G.V. Sustainable solvent-free diels–alder approaches in the development of constructive heterocycles and functionalized materials: A review. Top. Curr. Chem., 2022, 380(5), 43.
[http://dx.doi.org/10.1007/s41061-022-00398-2] [PMID: 35951264]
[34]
Soares, M.I.L.; Cardoso, A.L.; Pinho e Melo, T.M.V.D. Diels–Alder cycloaddition reactions in sustainable media. Molecules, 2022, 27(4), 1304.
[http://dx.doi.org/10.3390/molecules27041304] [PMID: 35209094]
[35]
Yang, B.; Gao, S. Recent advances in the application of Diels–Alder reactions involving o -quinodimethanes, aza- o -quinone methides and o -quinone methides in natural product total synthesis. Chem. Soc. Rev., 2018, 47(21), 7926-7953.
[http://dx.doi.org/10.1039/C8CS00274F] [PMID: 29993045]
[36]
Li, J.; Yu, B.; Lu, Z. Chiral imidazoline ligands and their applications in METAL‐CATALYZED asymmetric synthesis†. Chin. J. Chem., 2021, 39(2), 488-514.
[http://dx.doi.org/10.1002/cjoc.202000486]
[37]
Li, M. Iron (III) catalyzed asymmetric Diels-Alder reaction-Iron (II) catalyzed thia-Michael addition and aldehyde allylation reactions; Université Laval, 2019.
[38]
Zhang, Y.; Wei, Y.; Shi, M. A silver-catalyzed domino inverse electron-demand oxo-Diels–Alder reaction of 3-cyclopropylideneprop-2-en-1-ones with 2,3-dioxopyrrolidines via cyclobutane-fused furan. Chem. Commun., 2021, 57(29), 3599-3602.
[http://dx.doi.org/10.1039/D1CC00707F] [PMID: 33710234]
[39]
Yang, Y.; Zhang, X.; Zhong, L.P.; Lan, J.; Li, X.; Li, C.C.; Chung, L.W. Unusual KIE and dynamics effects in the Fe-catalyzed hetero-Diels-Alder reaction of unactivated aldehydes and dienes. Nat. Commun., 2020, 11(1), 1850.
[http://dx.doi.org/10.1038/s41467-020-15599-w] [PMID: 32296076]
[40]
Beeck, S.; Wegner, H.A. Mechanistic studies on the bidentate lewis acid catalyzed domino inverse electron‐demand diels‐alder/thiol transfer reaction. Eur. J. Org. Chem., 2023, 26(8), e202201289.
[http://dx.doi.org/10.1002/ejoc.202201289]
[41]
Luo, N.; Wang, S.; Zhang, Y.; Xin, J.; Wang, C. DBU-promoted cascade selective nucleophilic addition/C–C bond cleavage/hetero-diels–alder reactions of 2-amino-4 h -chromen-4-ones with β-nitrostyrenes and/or aryl aldehydes: Access to 5 H -Chromeno[2,3- b]pyridin-5-ones. J. Org. Chem., 2020, 85(21), 14219-14228.
[http://dx.doi.org/10.1021/acs.joc.0c01993] [PMID: 33118353]
[42]
Li, X.; Kong, X.; Yang, S.; Meng, M.; Zhan, X.; Zeng, M.; Fang, X. Bifunctional thiourea-catalyzed asymmetric inverse-electron-demand diels–alder reaction of allyl ketones and vinyl 1,2-diketones via dienolate intermediate. Org. Lett., 2019, 21(7), 1979-1983.
[http://dx.doi.org/10.1021/acs.orglett.9b00035] [PMID: 30865466]
[43]
Qin, J.; Zhang, Y.; Liu, C.; Zhou, J.; Zhan, R.; Chen, W.; Huang, H. Asymmetric inverse-electron-demand Diels–Alder reaction of β, γ-unsaturated amides through dienolate catalysis. Org. Lett., 2019, 21(18), 7337-7341.
[http://dx.doi.org/10.1021/acs.orglett.9b02629] [PMID: 31465234]
[44]
Chithanna, S.; Yang, D.Y. Intramolecular diels–alder cycloaddition of furan-derived β-enamino diketones: An entry to diastereoselective synthesis of polycyclic pyrano[3,2- c]quinolin-5-one Derivatives. J. Org. Chem., 2022, 87(8), 5178-5187.
[http://dx.doi.org/10.1021/acs.joc.1c03163] [PMID: 35380043]
[45]
Shen, L.W.; Zhang, Y.P.; You, Y.; Zhao, J.Q.; Wang, Z.H.; Yuan, W.C. Inverse electron-demand aza-Diels–Alder reaction of α, β-unsaturated thioesters with in situ-generated 1, 2-diaza-1, 3-dienes for the synthesis of 1, 3, 4-thiadiazines. J. Org. Chem., 2022, 87(6), 4232-4240.
[http://dx.doi.org/10.1021/acs.joc.1c03072] [PMID: 35212520]
[46]
Wang, Z.; Yamazaki, S.; Mikata, Y.; Oba, M.; Takashima, H.; Morimoto, T.; Ogawa, A. Intramolecular diels–alder reactions of α-bromostyrene-functionalized unsaturated carboxamides. J. Org. Chem., 2022, 87(16), 11148-11164.
[http://dx.doi.org/10.1021/acs.joc.2c01417] [PMID: 35944162]
[47]
Yuan, C.; Wang, J.; Wang, G.; Sun, S.; Wang, J. Assembly of dihydropyridazines via [4+2] cycloaddition of in situ generated azoalkenes. Asian J. Org. Chem., 2023, 12(2), e202200671.
[http://dx.doi.org/10.1002/ajoc.202200671]
[48]
Pan, L.N.; Wang, Q.; Sun, J.; Yan, C-G. Intramolecular diels‐alder reaction of styrene with phenoxy‐acrylate for construction of functionalized naphthalenes. Asian J. Org. Chem., 2021, 10(10), 2591-2595.
[http://dx.doi.org/10.1002/ajoc.202100401]
[49]
Miao, Y.H.; Hua, Y.Z.; Gao, H.J.; Mo, N.N.; Wang, M.C.; Mei, G.J. Catalytic asymmetric inverse-electron-demand aza-Diels–Alder reaction of 1,3-diazadienes with 3-vinylindoles. Chem. Commun., 2022, 58(54), 7515-7518.
[http://dx.doi.org/10.1039/D2CC02458F] [PMID: 35687078]
[50]
Koay, W.L.; Mei, G.J.; Lu, Y. Facile access to benzofuran-fused tetrahydropyridines via catalytic asymmetric [4 + 2] cycloaddition of aurone-derived 1-azadienes with 3-vinylindoles. Org. Chem. Front., 2021, 8(5), 968-974.
[http://dx.doi.org/10.1039/D0QO01236J]
[51]
Kikuchi, J.; Ye, H.; Terada, M. Chiral phosphoric acid catalyzed enantioselective [4+ 2] cycloaddition reaction of α-fluorostyrenes with imines. Org. Lett., 2020, 22(22), 8957-8961.
[http://dx.doi.org/10.1021/acs.orglett.0c03360] [PMID: 33136411]
[52]
Si, X.G.; Zhang, Z.M.; Zheng, C.G.; Li, Z.T.; Cai, Q. Enantioselective synthesis of cis ‐decalin derivatives by the inverse‐electron‐demand diels–alder reaction of 2‐pyrones. Angew. Chem. Int. Ed., 2020, 59(42), 18412-18417.
[http://dx.doi.org/10.1002/anie.202006841] [PMID: 32662155]
[53]
Varlet, T.; Gelis, C.; Retailleau, P.; Bernadat, G.; Neuville, L.; Masson, G. Enantioselective redox‐divergent chiral phosphoric acid catalyzed quinone Diels–Alder reactions. Angew. Chem. Int. Ed., 2020, 59(22), 8491-8496.
[http://dx.doi.org/10.1002/anie.202000838] [PMID: 32112662]
[54]
Zhu, X.Q.; Wang, Q.; Zhu, J. Organocatalytic enantioselective diels–alder reaction of 2‐trifluoroacetamido‐1,3‐dienes with α,β‐unsaturated ketones. Angew. Chem. Int. Ed., 2023, 62(1), e202214925.
[http://dx.doi.org/10.1002/anie.202214925] [PMID: 36347807]
[55]
Mendoza, S.D.; Rombola, M.; Tao, Y.; Zuend, S.J.; Götz, R.; McLaughlin, M.J.; Reisman, S.E. Expanding the chiral monoterpene pool: Enantioselective diels–alder reactions of α-acyloxy enones. Org. Lett., 2022, 24(21), 3802-3806.
[http://dx.doi.org/10.1021/acs.orglett.2c01343] [PMID: 35594569]
[56]
Ngamnithiporn, A.; Chuentragool, P.; Ploypradith, P.; Ruchirawat, S. Syntheses of 3-aryl tetrahydroisoquinolines via an intermolecular [4 + 2] cycloaddition of sultines with imines. Org. Lett., 2022, 24(23), 4192-4196.
[http://dx.doi.org/10.1021/acs.orglett.2c01437] [PMID: 35639829]
[57]
Yang, X.X.; Zhao, X-L.; Ouyang, Q.; Du, W.; Chen, Y-C. Palladium-catalysed diastereodivergent inverse-electron-demand oxa-Diels–Alder reactions of in situ formed cyclopentadienones via ligand-control. Org. Chem. Front., 2022, 9(5), 1364-1369.
[http://dx.doi.org/10.1039/D1QO01876K]
[58]
Shcherbakov, N.V.; Dar’in, D.V.; Kukushkin, V.Y.; Dubovtsev, A.Y. Hetero-tetradehydro-diels–alder cycloaddition of enynamides and cyanamides: Gold-catalyzed generation of diversely substituted 2,6-diaminopyridines. J. Org. Chem., 2021, 86(10), 7218-7228.
[http://dx.doi.org/10.1021/acs.joc.1c00558] [PMID: 33961747]
[59]
Stefaniak, M.; Buda, S.; Mlynarski, J. Asymmetric hetero‐diels‐alder reaction of trans ‐1‐methoxy‐3‐trimethylsilyloxy‐buta‐1,3‐diene catalyzed by zinc complexes. Eur. J. Org. Chem., 2020, 2020(33), 5388-5393.
[http://dx.doi.org/10.1002/ejoc.202000822]
[60]
Xu, W.L.; Hu, W.; Zhao, W.M.; Wang, M.; Chen, J.; Zhou, L. Copper(I)/DDQ-mediated double-dehydrogenative diels–alder reaction of aryl butenes with 1,4-diketones and indolones. Org. Lett., 2020, 22(18), 7169-7174.
[http://dx.doi.org/10.1021/acs.orglett.0c02486] [PMID: 32902298]
[61]
Giofrè, S.; Keller, M.; Lo Presti, L.; Beccalli, E.M.; Molteni, L. Switchable oxidative reactions of N -allyl-2-Aminophenols: Palladium-catalyzed alkoxyacyloxylation vs an intramolecular diels–alder reaction. Org. Lett., 2021, 23(20), 7698-7702.
[http://dx.doi.org/10.1021/acs.orglett.1c02539] [PMID: 34570517]
[62]
Yesilcimen, A.; Jiang, N.C.; Gottlieb, F.H.; Wasa, M. Enantioselective organocopper-catalyzed hetero diels–alder reaction through in situ oxidation of ethers into enol ethers. J. Am. Chem. Soc., 2022, 144(14), 6173-6179.
[http://dx.doi.org/10.1021/jacs.2c01656] [PMID: 35380438]
[63]
Masuda, K.; Agalave, S.G.; Chen, W.; Onozawa, S.; Shimada, S.; Sato, K.; Kobayashi, S. Continuous‐flow diels‐alder reactions of unactivated dienes over zeolitic catalysts. Asian J. Org. Chem., 2023, 12(1), e202200382.
[http://dx.doi.org/10.1002/ajoc.202200382]
[64]
Kamo, S.; Kurosawa, H.; Matsuzawa, A.; Sugita, K. Total synthesis of (−)-Lamellodysidine a via an intramolecular diels–alder reaction. Org. Lett., 2022, 24(3), 921-923.
[http://dx.doi.org/10.1021/acs.orglett.1c04289] [PMID: 35019657]
[65]
Marzabadi, C.H.; Kelty, S.P.; Altamura, A. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines. Carbohydr. Res., 2022, 519, 108623.
[http://dx.doi.org/10.1016/j.carres.2022.108623] [PMID: 35738050]
[66]
Merkulova, E.A.; Kolobov, A.V.; Lyssenko, K.A.; Nenajdenko, V.G. Diene-transmissive hetero-Diels–Alder reaction of distyryl thioketone. Mendeleev Commun., 2022, 32(3), 384-385.
[http://dx.doi.org/10.1016/j.mencom.2022.05.031]
[67]
Nouali, F.; Sousa, J.L.C.; Albuquerque, H.M.T.; Mendes, R.F.; Paz, F.A.A.; Saher, L.; Kibou, Z.; Choukchou-Braham, N.; Talhi, O.; Silva, A.M.S. Microwave-assisted synthesis of 4,6-disubstituted isoindoline-1,3-diones by Diels-Alder reactions. J. Mol. Struct., 2023, 1275, 134608.
[http://dx.doi.org/10.1016/j.molstruc.2022.134608]
[68]
Schwinger, D.P.; Peschel, M.T.; Jaschke, C.; Jandl, C.; de Vivie-Riedle, R.; Bach, T. Diels–alder reaction of photochemically generated (E)-Cyclohept-2-enones: Diene scope, reaction pathway, and synthetic application. J. Org. Chem., 2022, 87(7), 4838-4851.
[http://dx.doi.org/10.1021/acs.joc.2c00186] [PMID: 35315664]
[69]
Xie, F.; Li, X.; Xu, L.; Ma, J.; Sun, L.; Zhang, B.; Lin, B.; Cheng, M.; Liu, Y. Diels‐alder cycloaddition of azepino[4,5‐ b]indoles towards hydrocarbazole derivatives and related heterocycles. Adv. Synth. Catal., 2022, 364(4), 873-889.
[http://dx.doi.org/10.1002/adsc.202101401]
[70]
Jessen, B.M.; Taarning, E.; Madsen, R. Synthesis, stability, and diels‐alder reactions of methyl 2‐oxobut‐3‐enoate. Eur. J. Org. Chem., 2021, 2021(29), 4049-4053.
[http://dx.doi.org/10.1002/ejoc.202100370]
[71]
de la Rosa-Barrales, A.; Alvano Pérez-Bautista, J.; Cruz-Gregorio, S.; Luisa Meza-León, R.; Quintero, L.; Cortezano-Arellano, O.; Sartillo-Piscil, F. Chiron approach and the [4 + 2] Diels-Alder cycloaddition of 2-pyrones for the synthesis of cis-(-)-aminoindan-2-ol. Results in Chemistry, 2021, 3, 100174.
[http://dx.doi.org/10.1016/j.rechem.2021.100174]
[72]
Craig, D.; Spreadbury, S.R.J.; White, A.J.P. Synthesis and hetero-Diels–Alder reactions of enantiomerically pure dihydro-1 H -azepines. Chem. Commun., 2020, 56(68), 9803-9806.
[http://dx.doi.org/10.1039/D0CC04413J] [PMID: 32705107]
[73]
Manikandan, P.; Karunakaran, J.; Varathan, E.; Schreckenbach, G.; Mohanakrishnan, A.K. Diels–Alder reaction of tetraarylcyclopentadienones with benzo[ b]thiophene S, S -dioxides: An unprecedented de-oxygenation vs. sulfur dioxide extrusion. Chem. Commun. , 2020, 56(97), 15317-15320.
[http://dx.doi.org/10.1039/D0CC05842D] [PMID: 33179634]
[74]
Singh, V.; Verma, R.S.; Khatana, A.K.; Tiwari, B. Construction of phenanthrenes and chrysenes from β-bromovinylarenes via aryne diels–alder reaction/aromatization. J. Org. Chem., 2019, 84(21), 14161-14167.
[http://dx.doi.org/10.1021/acs.joc.9b01644] [PMID: 31552743]
[75]
Lv, W.X.; Li, Z.; Lin, E.; Li, J.L.; Tan, D.H.; Cai, Y.H.; Li, Q.; Wang, H. Regio‐ and diastereoselective synthesis of cyclohexadienylborons via an intermolecular diels–alder reaction of alkenyl MIDA boronates with 2‐pyrones. Chemistry, 2019, 25(16), 4058-4061.
[http://dx.doi.org/10.1002/chem.201900011] [PMID: 30697832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy