Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Mannose: A Promising Player in Clinical and Biomedical Applications

Author(s): Sijing Chen, Kana Wang and Qiao Wang*

Volume 21, Issue 11, 2024

Published on: 15 January, 2024

Page: [1435 - 1444] Pages: 10

DOI: 10.2174/0115672018275954231220101637

Price: $65

Abstract

Mannose, an isomer of glucose, exhibits a distinct molecular structure with the same formula but a different atom arrangement, contributing to its specific biological functions. Widely distributed in body fluids and tissues, particularly in the nervous system, skin, testes, and retinas, mannose plays a crucial role as a direct precursor for glycoprotein synthesis. Glycoproteins, essential for immune regulation and glycosylation processes, underscore the significance of mannose in these physiological activities. The clinical and biomedical applications of mannose are diverse, encompassing its anti-inflammatory properties, potential to inhibit bacterial infections, role in metabolism regulation, and suggested involvement in alleviating diabetes and obesity. Additionally, mannose shows promise in antitumor effects, immune modulation, and the construction of drug carriers, indicating a broad spectrum of therapeutic potential. The article aims to present a comprehensive review of mannose, focusing on its molecular structure, metabolic pathways, and clinical and biomedical applications, and also to emphasize its status as a promising therapeutic agent.

Next »
[1]
Takahashi, M.; Kuroki, Y.; Ohtsubo, K.; Taniguchi, N. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins. Carbohydr. Res., 2009, 344(12), 1387-1390.
[http://dx.doi.org/10.1016/j.carres.2009.04.031] [PMID: 19508951]
[2]
Dhanalakshmi, M.; Sruthi, D.; Jinuraj, K.R.; Das, K.; Dave, S.; Andal, N.M.; Das, J. Mannose: A potential saccharide candidate in disease management. Med. Chem. Res., 2023, 32(3), 391-408.
[http://dx.doi.org/10.1007/s00044-023-03015-z] [PMID: 36694836]
[3]
Zhang, D.; Chia, C.; Jiao, X.; Jin, W.; Kasagi, S.; Wu, R.; Konkel, J.E.; Nakatsukasa, H.; Zanvit, P.; Goldberg, N.; Chen, Q.; Sun, L.; Chen, Z.J.; Chen, W. D-mannose induces regulatory T cells and suppresses immunopathology. Nat. Med., 2017, 23(9), 1036-1045.
[http://dx.doi.org/10.1038/nm.4375] [PMID: 28759052]
[4]
Kranjčec, B.; Papeš, D.; Altarac, S. d-mannose powder for prophylaxis of recurrent urinary tract infections in women: A randomized clinical trial. World J. Urol., 2014, 32(1), 79-84.
[http://dx.doi.org/10.1007/s00345-013-1091-6] [PMID: 23633128]
[5]
Wang, Y.; Xie, S.; He, B. Mannose shows antitumour properties against lung cancer via inhibiting proliferation, promoting cisplatin mediated apoptosis and reducing metastasis. Mol. Med. Rep., 2020, 22(4), 2957-2965.
[http://dx.doi.org/10.3892/mmr.2020.11354] [PMID: 32700756]
[6]
Gonzalez, P.S.; O’Prey, J.; Cardaci, S.; Barthet, V.J.A.; Sakamaki, J.; Beaumatin, F.; Roseweir, A.; Gay, D.M.; Mackay, G.; Malviya, G.; Kania, E.; Ritchie, S.; Baudot, A.D.; Zunino, B.; Mrowinska, A.; Nixon, C.; Ennis, D.; Hoyle, A.; Millan, D.; McNeish, I.A.; Sansom, O.J.; Edwards, J.; Ryan, K.M. Mannose impairs tumour growth and enhances chemotherapy. Nature, 2018, 563(7733), 719-723.
[http://dx.doi.org/10.1038/s41586-018-0729-3] [PMID: 30464341]
[7]
Sharma, V.; Smolin, J.; Nayak, J.; Ayala, J.E.; Scott, D.A.; Peterson, S.N.; Freeze, H.H. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism. Cell Rep., 2018, 24(12), 3087-3098.
[http://dx.doi.org/10.1016/j.celrep.2018.08.064] [PMID: 30231992]
[8]
Harms, H.K.; Zimmer, K-P.; Kurnik, K.; Bertele-Harms, R.M.; Weidinger, S.; Reiter, K. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency. Acta Paediatr., 2002, 91(10), 1065-1072.
[http://dx.doi.org/10.1111/j.1651-2227.2002.tb00101.x] [PMID: 12434892]
[9]
Sharma, V.; Ichikawa, M.; Freeze, H.H. Mannose metabolism: More than meets the eye. Biochem. Biophys. Res. Commun., 2014, 453(2), 220-228.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.021] [PMID: 24931670]
[10]
Wei, Z.; Huang, L.; Cui, L.; Zhu, X. Mannose: Good player and assister in pharmacotherapy. Biomed. Pharmacother., 2020, 129, 110420.
[http://dx.doi.org/10.1016/j.biopha.2020.110420] [PMID: 32563989]
[11]
Sharma, V.; Freeze, H.H. Mannose efflux from the cells: A potential source of mannose in blood. J. Biol. Chem., 2011, 286(12), 10193-10200.
[http://dx.doi.org/10.1074/jbc.M110.194241] [PMID: 21273394]
[12]
Alton, G.; Hasilik, M.; Niehues, R.; Panneerselvam, K.; Etchison, J.R.; Fana, F.; Freeze, H.H. Direct utilization of mannose for mammalian glycoprotein biosynthesis. Glycobiology, 1998, 8(3), 285-295.
[http://dx.doi.org/10.1093/glycob/8.3.285] [PMID: 9451038]
[13]
de la Fuente, M.; Hernanz, A. Enzymes of mannose metabolism in murine and human lymphocytic leukaemia. Br. J. Cancer, 1988, 58(5), 567-569.
[http://dx.doi.org/10.1038/bjc.1988.260] [PMID: 3219265]
[14]
Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. Am. J. Physiol. Endocrinol. Metab., 2010, 298(2), E141-E145.
[http://dx.doi.org/10.1152/ajpendo.00712.2009] [PMID: 20009031]
[15]
Alton, G.; Kjaergaard, S.; Etchison, J.R.; Skovby, F.; Freeze, H.H. Oral ingestion of mannose elevates blood mannose levels: A first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I. Biochem. Mol. Med., 1997, 60(2), 127-133.
[http://dx.doi.org/10.1006/bmme.1997.2574] [PMID: 9169093]
[16]
Liu, X.; Olszewski, K.; Zhang, Y.; Lim, E.W.; Shi, J.; Zhang, X.; Zhang, J.; Lee, H.; Koppula, P.; Lei, G.; Zhuang, L.; You, M.J.; Fang, B.; Li, W.; Metallo, C.M.; Poyurovsky, M.V.; Gan, B. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat. Cell Biol., 2020, 22(4), 476-486.
[http://dx.doi.org/10.1038/s41556-020-0496-x] [PMID: 32231310]
[17]
Buchanan, T.; Freinkel, N.; Lewis, N.J.; Metzger, B.E.; Akazawa, S. Fuel-mediated teratogenesis. Use of D-mannose to modify organogenesis in the rat embryo in vivo. J. Clin. Invest., 1985, 75(6), 1927-1934.
[http://dx.doi.org/10.1172/JCI111908] [PMID: 2409111]
[18]
Choe, H.S.; Lee, S.J.; Yang, S.S.; Hamasuna, R.; Yamamoto, S.; Cho, Y.H.; Matsumoto, T. Summary of the UAA‐AAUS guidelines for urinary tract infections. Int. J. Urol., 2018, 25(3), 175-185.
[http://dx.doi.org/10.1111/iju.13493] [PMID: 29193372]
[19]
Anger, J.T.; Bixler, B.R.; Holmes, R.S.; Lee, U.J.; Santiago-Lastra, Y.; Selph, S.S. Updates to recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline. J. Urol., 2022, 208(3), 536-541.
[http://dx.doi.org/10.1097/JU.0000000000002860] [PMID: 35942788]
[20]
Abujnah, A.A.; Zorgani, A.; Sabri, M.A.M.; El-Mohammady, H.; Khalek, R.A.; Ghenghesh, K.S. Multidrug resistance and extended-spectrum β-lactamases genes among Escherichia coli from patients with urinary tract infections in Northwestern Libya. Libyan J. Med., 2015, 10(1), 26412.
[http://dx.doi.org/10.3402/ljm.v10.26412] [PMID: 25651907]
[21]
Naziri, Z.; Kilegolan, J.A.; Moezzi, M.S.; Derakhshandeh, A. Biofilm formation by uropathogenic Escherichia coli: A complicating factor for treatment and recurrence of urinary tract infections. J. Hosp. Infect., 2021, 117, 9-16.
[http://dx.doi.org/10.1016/j.jhin.2021.08.017] [PMID: 34428502]
[22]
Zagaglia, C.; Ammendolia, M.G.; Maurizi, L.; Nicoletti, M.; Longhi, C. Urinary tract infections caused by uropathogenic escherichia coli strains—new strategies for an old pathogen. Microorganisms, 2022, 10(7), 1425.
[http://dx.doi.org/10.3390/microorganisms10071425] [PMID: 35889146]
[23]
Scribano, D.; Sarshar, M.; Fettucciari, L.; Ambrosi, C. Urinary tract infections: Can we prevent uropathogenic Escherichia coli infection with dietary intervention? Int. J. Vitam. Nutr. Res., 2021, 91(5-6), 391-395.
[http://dx.doi.org/10.1024/0300-9831/a000704] [PMID: 33880966]
[24]
Spaulding, C.N.; Klein, R.D.; Ruer, S.; Kau, A.L.; Schreiber, H.L.; Cusumano, Z.T.; Dodson, K.W.; Pinkner, J.S.; Fremont, D.H.; Janetka, J.W.; Remaut, H.; Gordon, J.I.; Hultgren, S.J. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature, 2017, 546(7659), 528-532.
[http://dx.doi.org/10.1038/nature22972] [PMID: 28614296]
[25]
Porru, D. Oral D mannose in the prevention and treatment of recurrent urinary tract infections: A review. Int Urogynecol J., 2021, 33(1)
[26]
Liu, H.; Gu, R.; Zhu, Y.; Lian, X.; Wang, S.; Liu, X.; Ping, Z.; Liu, Y.; Zhou, Y. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects. Ther. Adv. Chronic Dis., 2020, 11.
[http://dx.doi.org/10.1177/2040622320912661] [PMID: 32341776]
[27]
Guo, L.; Hou, Y.; Song, L.; Zhu, S.; Lin, F.; Bai, Y. D-Mannose enhanced immunomodulation of periodontal ligament stem cells via inhibiting IL-6 secretion. Stem Cells Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/7168231] [PMID: 30271438]
[28]
Torretta, S.; Scagliola, A.; Ricci, L.; Mainini, F.; Di Marco, S.; Cuccovillo, I.; Kajaste-Rudnitski, A.; Sumpton, D.; Ryan, K.M.; Cardaci, S. D-mannose suppresses macrophage IL-1β production. Nat. Commun., 2020, 11(1), 6343.
[http://dx.doi.org/10.1038/s41467-020-20164-6] [PMID: 33311467]
[29]
Harada, Y.; Mizote, Y.; Suzuki, T.; Hirayama, A.; Ikeda, S.; Nishida, M.; Hiratsuka, T.; Ueda, A.; Imagawa, Y.; Maeda, K.; Ohkawa, Y.; Murai, J.; Freeze, H.H.; Miyoshi, E.; Higashiyama, S.; Udono, H.; Dohmae, N.; Tahara, H.; Taniguchi, N. Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells. eLife, 2023, 12, e83870.
[http://dx.doi.org/10.7554/eLife.83870] [PMID: 37461317]
[30]
Shan, M.; Dai, D.; Vudem, A.; Varner, J.D.; Stroock, A.D. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors. PLOS Comput. Biol., 2018, 14(12), e1006584.
[http://dx.doi.org/10.1371/journal.pcbi.1006584] [PMID: 30532226]
[31]
Gu, J.; Liang, D.; Pierzynski, J.A.; Zheng, L.; Ye, Y.; Zhang, J.; Ajani, J.A.; Wu, X. D-mannose: A novel prognostic biomarker for patients with esophageal adenocarcinoma. Carcinogenesis, 2017, 38(2), bgw207.
[http://dx.doi.org/10.1093/carcin/bgw207] [PMID: 28062409]
[32]
Fei, Y.Q.; Shi, R.T.; Zhou, Y.F.; Wu, J.Z.; Song, Z. Mannose inhibits proliferation and promotes apoptosis to enhance sensitivity of glioma cells to temozolomide through Wnt/β-catenin signaling pathway. Neurochem. Int., 2022, 157, 105348.
[http://dx.doi.org/10.1016/j.neuint.2022.105348] [PMID: 35490896]
[33]
DeRossi, C.; Bode, L.; Eklund, E.A.; Zhang, F.; Davis, J.A.; Westphal, V.; Wang, L.; Borowsky, A.D.; Freeze, H.H. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J. Biol. Chem., 2006, 281(9), 5916-5927.
[http://dx.doi.org/10.1074/jbc.M511982200] [PMID: 16339137]
[34]
Israelsen, W.J.; Vander Heiden, M.G. Pyruvate kinase: Function, regulation and role in cancer. Semin. Cell Dev. Biol., 2015, 43, 43-51.
[http://dx.doi.org/10.1016/j.semcdb.2015.08.004] [PMID: 26277545]
[35]
Zhu, J-G.; Zhong, W-D.; Deng, Y-L.; Liu, R.; Cai, Z-D.; Han, Z-D.; Feng, Y-F.; Cai, S-H.; Chen, Q-B. Mannose inhibits the growth of prostate cancer through a mitochondrial mechanism. Asian J. Androl., 2022, 24(5), 540-548.
[http://dx.doi.org/10.4103/aja2021104] [PMID: 35142655]
[36]
Shtraizent, N.; DeRossi, C.; Nayar, S.; Sachidanandam, R.; Katz, L.S.; Prince, A.; Koh, A.P.; Vincek, A.; Hadas, Y.; Hoshida, Y.; Scott, D.K.; Eliyahu, E.; Freeze, H.H.; Sadler, K.C.; Chu, J. MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect. eLife, 2017, 6, e22477.
[http://dx.doi.org/10.7554/eLife.22477] [PMID: 28644127]
[37]
Cai, C.; Zhu, X. The Wnt/β-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol. Med. Rep., 2012, 5(5), 1191-1196.
[PMID: 22367735]
[38]
Lan, F.; Pan, Q.; Yu, H.; Yue, X. Sulforaphane enhances temozolomide‐induced apoptosis because of down‐regulation of miR‐21 via Wnt/β‐catenin signaling in glioblastoma. J. Neurochem., 2015, 134(5), 811-818.
[http://dx.doi.org/10.1111/jnc.13174] [PMID: 25991372]
[39]
He, L.; Zhou, H.; Zeng, Z.; Yao, H.; Jiang, W.; Qu, H. Wnt/β‐catenin signaling cascade: A promising target for glioma therapy. J. Cell. Physiol., 2019, 234(3), 2217-2228.
[http://dx.doi.org/10.1002/jcp.27186] [PMID: 30277583]
[40]
Tan, A.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC). Thorac. Cancer, 2020, 11(3), 511-518.
[http://dx.doi.org/10.1111/1759-7714.13328] [PMID: 31989769]
[41]
Campbell, I.G.; Russell, S.E.; Choong, D.Y.H.; Montgomery, K.G.; Ciavarella, M.L.; Hooi, C.S.F.; Cristiano, B.E.; Pearson, R.B.; Phillips, W.A. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res., 2004, 64(21), 7678-7681.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2933] [PMID: 15520168]
[42]
Khalilov, R.; Abdullayeva, S. Mechanisms of insulin action and insulin resistance. Adv. Biol. Res. Earth Sci., 2023, 8(2), 165-169.
[43]
Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; Willson, J.K.V.; Markowitz, S.; Kinzler, K.W.; Vogelstein, B.; Velculescu, V.E. High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004, 304(5670), 554.
[http://dx.doi.org/10.1126/science.1096502] [PMID: 15016963]
[44]
Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005, 307(5712), 1098-1101.
[http://dx.doi.org/10.1126/science.1106148] [PMID: 15718470]
[45]
Yi, M.; Niu, M.; Xu, L.; Luo, S.; Wu, K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol., 2021, 14(1), 10.
[http://dx.doi.org/10.1186/s13045-020-01027-5] [PMID: 33413496]
[46]
Zhang, R.; Yang, Y.; Dong, W.; Lin, M.; He, J.; Zhang, X.; Tian, T.; Yang, Y.; Chen, K.; Lei, Q.Y.; Zhang, S.; Xu, Y.; Lv, L. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc. Natl. Acad. Sci., 2022, 119(8), e2114851119.
[http://dx.doi.org/10.1073/pnas.2114851119] [PMID: 35181605]
[47]
Sha, J.; Cao, D.; Cui, R.; Xia, L.; Hua, X.; Lu, Y.; Han, S. Mannose impairs lung adenocarcinoma growth and enhances the sensitivity of A549 cells to carboplatin. Cancer Manag. Res., 2020, 12, 11077-11083.
[http://dx.doi.org/10.2147/CMAR.S278673] [PMID: 33173340]
[48]
Khalilov, R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv. Biol. Earth Sci., 2023, 8(1), 5-18.
[49]
Mei, H.; Cai, S.; Huang, D.; Gao, H.; Cao, J.; He, B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioact. Mater., 2022, 8, 220-240.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.035] [PMID: 34541398]
[50]
Chen, F.; Huang, G.; Huang, H. Sugar ligand-mediated drug delivery. Future Med. Chem., 2020, 12(2), 161-171.
[http://dx.doi.org/10.4155/fmc-2019-0114] [PMID: 31718289]
[51]
Hu, J.; Wei, P.; Seeberger, P.H.; Yin, J. Mannose‐functionalized nanoscaffolds for targeted delivery in biomedical applications. Chem. Asian J., 2018, 13(22), 3448-3459.
[http://dx.doi.org/10.1002/asia.201801088] [PMID: 30251341]
[52]
Fang, Z.; Wang, R.; Zhao, H.; Yao, H.; Ouyang, J.; Zhang, X. Mannose promotes metabolic discrimination of osteosarcoma cells at single-cell level by mass spectrometry. Anal. Chem., 2020, 92(3), 2690-2696.
[http://dx.doi.org/10.1021/acs.analchem.9b04773] [PMID: 31913607]
[53]
Fan, Z.; Wang, Y.; Xiang, S.; Zuo, W.; Huang, D.; Jiang, B.; Sun, H.; Yin, W.; Xie, L.; Hou, Z. Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate–mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(9), 1922-1934.
[http://dx.doi.org/10.1039/D0TB00049C] [PMID: 32052817]
[54]
Shen, Y.; Shuhendler, A.J.; Ye, D.; Xu, J.J.; Chen, H.Y. Two-photon excitation nanoparticles for photodynamic therapy. Chem. Soc. Rev., 2016, 45(24), 6725-6741.
[http://dx.doi.org/10.1039/C6CS00442C] [PMID: 27711672]
[55]
Zhao, S.; Niu, G.; Wu, F.; Yan, L.; Zhang, H.; Zhao, J.; Zeng, L.; Lan, M. Lysosome-targetable polythiophene nanoparticles for two-photon excitation photodynamic therapy and deep tissue imaging. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(20), 3651-3657.
[http://dx.doi.org/10.1039/C7TB00371D] [PMID: 32264053]
[56]
Li, S.; Shen, X.; Xu, Q.H.; Cao, Y. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Nanoscale, 2019, 11(41), 19551-19560.
[http://dx.doi.org/10.1039/C9NR05488J] [PMID: 31578535]
[57]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[58]
Chakrabarty, A.M.; Bernardes, N.; Fialho, A.M. Bacterial proteins and peptides in cancer therapy. Bioengineered, 2014, 5(4), 234-242.
[http://dx.doi.org/10.4161/bioe.29266] [PMID: 24875003]
[59]
Rogers, L.M.; Veeramani, S.; Weiner, G.J. Complement in monoclonal antibody therapy of cancer. Immunol. Res., 2014, 59(1-3), 203-210.
[http://dx.doi.org/10.1007/s12026-014-8542-z] [PMID: 24906530]
[60]
Zhang, Q.; Cai, Y.; Li, Q.Y.; Hao, L.N.; Ma, Z.; Wang, X.J.; Yin, J. Targeted delivery of a mannose‐conjugated bodipy photosensitizer by nanomicelles for photodynamic breast cancer therapy. Chemistry, 2017, 23(57), 14307-14315.
[http://dx.doi.org/10.1002/chem.201702935] [PMID: 28753238]
[61]
Pacis, E.; Yu, M.; Autsen, J.; Bayer, R.; Li, F. Effects of cell culture conditions on antibody N ‐linked glycosylation—what affects high mannose 5 glycoform. Biotechnol. Bioeng., 2011, 108(10), 2348-2358.
[http://dx.doi.org/10.1002/bit.23200] [PMID: 21557201]
[62]
Shi, H.H.; Goudar, C.T. Recent advances in the understanding of biological implications and modulation methodologies of monoclonal antibody N‐linked high mannose glycans. Biotechnol. Bioeng., 2014, 111(10), 1907-1919.
[http://dx.doi.org/10.1002/bit.25318] [PMID: 24975601]
[63]
Slade, P.G.; Caspary, R.G.; Nargund, S.; Huang, C.J. Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation. Biotechnol. Bioeng., 2016, 113(7), 1468-1480.
[http://dx.doi.org/10.1002/bit.25924] [PMID: 26724786]
[64]
Hu, S.C.S.; Lan, C.C.E. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing. J. Dermatol. Sci., 2016, 84(2), 121-127.
[http://dx.doi.org/10.1016/j.jdermsci.2016.07.008] [PMID: 27461757]
[65]
Wang, X.T.; McKeever, C.C.; Vonu, P.; Patterson, C.; Liu, P.Y. Dynamic histological events and molecular changes in excisional wound healing of diabetic DB/DB mice. J. Surg. Res., 2019, 238, 186-197.
[http://dx.doi.org/10.1016/j.jss.2019.01.048] [PMID: 30771688]
[66]
O’Brien, T.D. Impaired dermal microvascular reactivity and implications for diabetic wound formation and healing: An evidence review. J. Wound Care, 2020, 29(S9), S21-S28.
[http://dx.doi.org/10.12968/jowc.2020.29.Sup9.S21]
[67]
Jingjuan, X.; Shaojuan, H.; Danli, F. Effect of hypertonic glucose on wound healing of pressure sore. Pub. Med. For. Mag., 2022, 26(08), 118-120.
[68]
Kössi, J.; Peltonen, J.; Ekfors, T.; Niinikoski, J.; Laato, M. Effects of hexose sugars: Glucose, fructose, galactose and mannose on wound healing in the rat. Eur. Surg. Res., 1999, 31(1), 74-82.
[http://dx.doi.org/10.1159/000008623] [PMID: 10072613]
[69]
de la Motte, C.A.; Hascall, V.C.; Calabro, A.; Yen-Lieberman, B.; Strong, S.A. Mononuclear leukocytes preferentially bind via CD44 to hyaluronan on human intestinal mucosal smooth muscle cells after virus infection or treatment with poly(I.C). J. Biol. Chem., 1999, 274(43), 30747-30755.
[http://dx.doi.org/10.1074/jbc.274.43.30747] [PMID: 10521464]
[70]
Pienimäki, J.P.; Rilla, K.; Fülöp, C.; Sironen, R.K.; Karvinen, S.; Pasonen, S.; Lammi, M.J.; Tammi, R.; Hascall, V.C.; Tammi, M.I. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J. Biol. Chem., 2001, 276(23), 20428-20435.
[http://dx.doi.org/10.1074/jbc.M007601200] [PMID: 11262389]
[71]
Karvinen, S.; Pasonen-Seppänen, S.; Hyttinen, J.M.T.; Pienimäki, J.P.; Törrönen, K.; Jokela, T.A.; Tammi, M.I.; Tammi, R. Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthases 2 and 3. J. Biol. Chem., 2003, 278(49), 49495-49504.
[http://dx.doi.org/10.1074/jbc.M310445200] [PMID: 14506240]
[72]
Pasonen-Seppänen, S.; Karvinen, S.; Törrönen, K.; Hyttinen, J.M.T.; Jokela, T.; Lammi, M.J.; Tammi, M.I.; Tammi, R. EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: Correlations with epidermal proliferation and differentiation. J. Invest. Dermatol., 2003, 120(6), 1038-1044.
[http://dx.doi.org/10.1046/j.1523-1747.2003.12249.x] [PMID: 12787132]
[73]
Jokela, T.A.; Kuokkanen, J.; Kärnä, R.; Pasonen-Seppänen, S.; Rilla, K.; Kössi, J.; Laato, M.; Tammi, R.H.; Tammi, M.I. Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan‐dependent monocyte binding. Wound Repair Regen., 2013, 21(2), 247-255.
[http://dx.doi.org/10.1111/wrr.12022] [PMID: 23464634]
[74]
Gandini, R.; Reichenbach, T.; Tan, T.C.; Divne, C. Structural basis for dolichylphosphate mannose biosynthesis. Nat. Commun., 2017, 8(1), 120.
[http://dx.doi.org/10.1038/s41467-017-00187-2] [PMID: 28743912]
[75]
Westphal, V.; Kjaergaard, S.; Davis, J.A.; Peterson, S.M.; Skovby, F.; Freeze, H.H. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation. Mol. Genet. Metab., 2001, 73(1), 77-85.
[http://dx.doi.org/10.1006/mgme.2001.3161] [PMID: 11350186]
[76]
Koehler, K.; Malik, M.; Mahmood, S.; Gießelmann, S.; Beetz, C.; Hennings, J.C.; Huebner, A.K.; Grahn, A.; Reunert, J.; Nürnberg, G.; Thiele, H.; Altmüller, J.; Nürnberg, P.; Mumtaz, R.; Babovic-Vuksanovic, D.; Basel-Vanagaite, L.; Borck, G.; Brämswig, J.; Mühlenberg, R.; Sarda, P.; Sikiric, A.; Anyane-Yeboa, K.; Zeharia, A.; Ahmad, A.; Coubes, C.; Wada, Y.; Marquardt, T.; Vanderschaeghe, D.; Van Schaftingen, E.; Kurth, I.; Huebner, A.; Hübner, C.A. Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction. Am. J. Hum. Genet., 2013, 93(4), 727-734.
[http://dx.doi.org/10.1016/j.ajhg.2013.08.002] [PMID: 24035193]
[77]
Shrimal, S.; Ng, B.G.; Losfeld, M.E.; Gilmore, R.; Freeze, H.H. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation. Hum. Mol. Genet., 2013, 22(22), 4638-4645.
[http://dx.doi.org/10.1093/hmg/ddt312] [PMID: 23842455]
[78]
Lefeber, D.J.; Schönberger, J.; Morava, E.; Guillard, M.; Huyben, K.M.; Verrijp, K.; Grafakou, O.; Evangeliou, A.; Preijers, F.W.; Manta, P.; Yildiz, J.; Grünewald, S.; Spilioti, M.; van den Elzen, C.; Klein, D.; Hess, D.; Ashida, H.; Hofsteenge, J.; Maeda, Y.; van den Heuvel, L.; Lammens, M.; Lehle, L.; Wevers, R.A. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet., 2009, 85(1), 76-86.
[http://dx.doi.org/10.1016/j.ajhg.2009.06.006] [PMID: 19576565]
[79]
Niehues, R.; Hasilik, M.; Alton, G.; Körner, C.; Schiebe-Sukumar, M.; Koch, H.G.; Zimmer, K.P.; Wu, R.; Harms, E.; Reiter, K.; von Figura, K.; Freeze, H.H.; Harms, H.K.; Marquardt, T. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy. J. Clin. Invest., 1998, 101(7), 1414-1420.
[http://dx.doi.org/10.1172/JCI2350] [PMID: 9525984]
[80]
Freeze, H.H. Genetic defects in the human glycome. Nat. Rev. Genet., 2006, 7(7), 537-551.
[http://dx.doi.org/10.1038/nrg1894] [PMID: 16755287]
[81]
Huseynova, L.S. Genetic heterogeneity of hereditary metabolic disease phenylketonuria. Adv. Biol. Res Eart. Sci., 2021, 6(2), 174-183.
[82]
Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications. Gastroenterology, 2012, 142(4), 711-725.e6.
[http://dx.doi.org/10.1053/j.gastro.2012.02.003] [PMID: 22326434]
[83]
Sunny, N.E.; Bril, F.; Cusi, K. Mitochondrial adaptation in nonalcoholic fatty liver disease: Novel mechanisms and treatment strategies. Trends Endocrinol. Metab., 2017, 28(4), 250-260.
[http://dx.doi.org/10.1016/j.tem.2016.11.006] [PMID: 27986466]
[84]
Zhou, X.; Zheng, Y.; Sun, W.; Zhang, Z.; Liu, J.; Yang, W.; Yuan, W.; Yi, Y.; Wang, J.; Liu, J. D‐mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF‐2α‐dependent manner. Cell Prolif., 2021, 54(11), e13134.
[http://dx.doi.org/10.1111/cpr.13134] [PMID: 34561933]
[85]
Lin, Z.; Miao, J.; Zhang, T.; He, M.; Zhou, X.; Zhang, H.; Gao, Y.; Bai, L. d-Mannose suppresses osteoarthritis development in vivo and delays IL-1β-induced degeneration in vitro by enhancing autophagy activated via the AMPK pathway. Biomed. Pharmacother., 2021, 135, 111199.
[http://dx.doi.org/10.1016/j.biopha.2020.111199] [PMID: 33401221]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy