Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Current Status of Hedgehog Signaling Inhibitors

Author(s): Xiaotang Wang, Tian Wang, Xiaona Song, Jiping Gao, Guoqiang Xu, Yunhui Ma and Guohua Song*

Volume 24, Issue 3, 2024

Published on: 15 January, 2024

Page: [243 - 258] Pages: 16

DOI: 10.2174/0115680266280850231221074340

Price: $65

Abstract

The Hedgehog (Hh) signaling pathway plays a crucial role in diverse biological processes such as cell differentiation, proliferation, senescence, tumorigenesis, malignant transformation, and drug resistance. Aberrant Hh signaling, resulting from mutations and excessive activation, can contribute to the development of various diseases during different stages of biogenesis and development. Moreover, it has been linked to unfavorable outcomes in several human cancers, including basal cell carcinoma (BCC), multiple myeloma (MM), melanoma, and breast cancer. Hence, the presence of mutations and excessive activation of the Hh pathway presents obstacles and constraints in the realm of cancer treatment. Extant research has demonstrated that small molecule inhibitors are regarded as the most effective therapeutic approaches for targeting the Hh pathway in contrast to traditional chemotherapy and radiotherapy. Consequently, this review focuses on the present repertoire of small molecule inhibitors that target various components of the Hh pathway, including Hh ligands, Ptch receptors, Smo transmembrane proteins, and Gli nuclear transcription factors. This study provides a comprehensive analysis of small molecules' structural and functional aspects in the preclinical and clinical management of cancer. Additionally, it elucidates the obstacles encountered in targeting the Hh pathway for human cancer therapy and proposes potential therapeutic approaches.

« Previous
Graphical Abstract

[1]
Deo, S.V.S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 Report on Global Cancer Burden: Challenges and Opportunities for Surgical Oncologists. Ann. Surg. Oncol., 2022, 29(11), 6497-6500.
[http://dx.doi.org/10.1245/s10434-022-12151-6] [PMID: 35838905]
[2]
Pich, O.; Bailey, C.; Watkins, T.B.K.; Zaccaria, S.; Jamal-Hanjani, M.; Swanton, C. The translational challenges of precision oncology. Cancer Cell, 2022, 40(5), 458-478.
[http://dx.doi.org/10.1016/j.ccell.2022.04.002] [PMID: 35487215]
[3]
Advani, D.; Sharma, S.; Kumari, S.; Ambasta, R.K.; Kumar, P. Precision oncology, signaling, and anticancer agents in cancer therapeutics. Anticancer. Agents Med. Chem., 2022, 22(3), 433-468.
[http://dx.doi.org/10.2174/1871520621666210308101029] [PMID: 33687887]
[4]
Álvarez-Salafranca, M.; García-García, M.; Montes-Torres, A.; Rivera-Fuertes, I.; López-Giménez, M.T.; Ara, M. SUFU associated gorlin syndrome: Expanding the spectrum between classic nevoid basal cell carcinoma syndrome and multiple hereditary infundibulocystic basal cell carcinoma. Australas. J. Dermatol., 2023, 64(2), 249-254.
[http://dx.doi.org/10.1111/ajd.14014] [PMID: 36825822]
[5]
Zito, P.M.; Nassereddin, A.; Scharf, R. Vismodegib. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2023; p. 30020732.
[6]
Gao, M.; Kong, Y.; Yang, G.; Gao, L.; Shi, J. Multiple myeloma cancer stem cells. Oncotarget, 2016, 7(23), 35466-35477.
[http://dx.doi.org/10.18632/oncotarget.8154] [PMID: 27007154]
[7]
Pietrobono, S.; Stecca, B. Combined targeting of HEDGEHOG signaling and BRD4 as a novel therapeutic option against melanoma. Oncotarget, 2023, 14(1), 526-527.
[http://dx.doi.org/10.18632/oncotarget.28441] [PMID: 37235835]
[8]
Riobo-Del Galdo, N.; Lara Montero, Á.; Wertheimer, E. Role of hedgehog signaling in breast cancer: Pathogenesis and therapeutics. Cells, 2019, 8(4), 375.
[http://dx.doi.org/10.3390/cells8040375] [PMID: 31027259]
[9]
Skoda, A.M.; Simovic, D.; Karin, V.; Kardum, V.; Vranic, S.; Serman, L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn. J. Basic Med. Sci., 2018, 18(1), 8-20.
[http://dx.doi.org/10.17305/bjbms.2018.2756] [PMID: 29274272]
[10]
Zeng, X.; Ju, D. Hedgehog signaling pathway and autophagy in cancer. Int. J. Mol. Sci., 2018, 19(8), 2279.
[http://dx.doi.org/10.3390/ijms19082279] [PMID: 30081498]
[11]
Banaszek, N.; Kurpiewska, D.; Kozak, K.; Rutkowski, P.; Sobczuk, P. Hedgehog pathway in sarcoma: From preclinical mechanism to clinical application. J. Cancer Res. Clin. Oncol., 2023, 149(19), 17635-17649.
[http://dx.doi.org/10.1007/s00432-023-05441-3] [PMID: 37815662]
[12]
Cierpikowski, P.; Leszczyszyn, A.; Bar, J. The role of hedgehog signaling pathway in head and neck squamous cell carcinoma. Cells, 2023, 12(16), 2083.
[http://dx.doi.org/10.3390/cells12162083] [PMID: 37626893]
[13]
Lemos, T.; Merchant, A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front. Oncol., 2022, 12, 960943.
[http://dx.doi.org/10.3389/fonc.2022.960943] [PMID: 36091167]
[14]
Wang, H.; Lai, Q.; Wang, D.; Pei, J.; Tian, B.; Gao, Y.; Gao, Z.; Xu, X. Hedgehog signaling regulates the development and treatment of glioblastoma (Review). Oncol. Lett., 2022, 24(3), 294.
[http://dx.doi.org/10.3892/ol.2022.13414] [PMID: 35949611]
[15]
Jain, R.; Dubey, S.K.; Singhvi, G. The Hedgehog pathway and its inhibitors: Emerging therapeutic approaches for basal cell carcinoma. Drug Discov. Today, 2022, 27(4), 1176-1183.
[http://dx.doi.org/10.1016/j.drudis.2021.12.005] [PMID: 34896624]
[16]
Suchors, C.; Kim, J. Canonical hedgehog pathway and noncanonical GLI transcription factor activation in cancer. Cells, 2022, 11(16), 2523.
[http://dx.doi.org/10.3390/cells11162523] [PMID: 36010600]
[17]
Qu, M.; He, Q.; Luo, J.; Shen, T.; Gao, R.; Xu, Y.; Xu, C.; Barkat, M.Q.; Zeng, L.H.; Wu, X. Sonic hedgehog signaling: Alternative splicing and pathogenic role in medulloblastoma. Genes Dis., 2023, 10(5), 2013-2028.
[http://dx.doi.org/10.1016/j.gendis.2022.10.014] [PMID: 37492706]
[18]
Doheny, D.; Manore, S.G.; Wong, G.L.; Lo, H.W. Hedgehog signaling and truncated GLI1 in cancer. Cells, 2020, 9(9), 2114.
[http://dx.doi.org/10.3390/cells9092114] [PMID: 32957513]
[19]
Anvarian, Z.; Mykytyn, K.; Mukhopadhyay, S.; Pedersen, L.B.; Christensen, S.T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol., 2019, 15(4), 199-219.
[http://dx.doi.org/10.1038/s41581-019-0116-9] [PMID: 30733609]
[20]
Akhshi, T.; Shannon, R.; Trimble, W.S. The complex web of canonical and non‐canonical Hedgehog signaling. BioEssays, 2022, 44(3), 2100183.
[http://dx.doi.org/10.1002/bies.202100183] [PMID: 35001404]
[21]
Sigafoos, A.N.; Paradise, B.D.; Fernandez-Zapico, M.E. Hedgehog/GLI signaling pathway: Transduction, regulation, and implications for disease. Cancers, 2021, 13(14), 3410.
[http://dx.doi.org/10.3390/cancers13143410] [PMID: 34298625]
[22]
Niida, Y.; Togi, S.; Ura, H. Molecular bases of human malformation syndromes involving the SHH pathway: GLIA/R balance and cardinal phenotypes. Int. J. Mol. Sci., 2021, 22(23), 13060.
[http://dx.doi.org/10.3390/ijms222313060] [PMID: 34884862]
[23]
Fernandes-Silva, H.; Correia-Pinto, J.; Moura, R. Canonical sonic hedgehog signaling in early lung development. J. Dev. Biol., 2017, 5(1), 3.
[http://dx.doi.org/10.3390/jdb5010003] [PMID: 29615561]
[24]
Chang, Y.; Chen, H.; Duan, J.; Wu, W.; Le, F.; Mou, F. The inhibitory effect and safety of GANT61 on HeLa cells in nude mice. Exp. Mol. Pathol., 2020, 113, 104352.
[http://dx.doi.org/10.1016/j.yexmp.2019.104352] [PMID: 31809711]
[25]
Blotta, S.; Jakubikova, J.; Calimeri, T.; Roccaro, A.M.; Amodio, N.; Azab, A.K.; Foresta, U.; Mitsiades, C.S.; Rossi, M.; Todoerti, K.; Molica, S.; Morabito, F.; Neri, A.; Tagliaferri, P.; Tassone, P.; Anderson, K.C.; Munshi, N.C. Canonical and noncanonical Hedgehog pathway in the pathogenesis of multiple myeloma. Blood, 2012, 120(25), 5002-5013.
[http://dx.doi.org/10.1182/blood-2011-07-368142] [PMID: 22821765]
[26]
Hamilton, A.M.; Balashova, O.A.; Borodinsky, L.N. Non-canonical hedgehog signaling regulates spinal cord and muscle regeneration in Xenopus laevis larvae. eLife, 2021, 10, e61804.
[http://dx.doi.org/10.7554/eLife.61804] [PMID: 33955353]
[27]
Rajurkar, M.; De Jesus-Monge, W.E.; Driscoll, D.R.; Appleman, V.A.; Huang, H.; Cotton, J.L.; Klimstra, D.S.; Zhu, L.J.; Simin, K.; Xu, L.; McMahon, A.P.; Lewis, B.C.; Mao, J. The activity of Gli transcription factors is essential for Kras-induced pancreatic tumorigenesis. Proc. Natl. Acad. Sci. USA, 2012, 109(17), E1038-E1047.
[http://dx.doi.org/10.1073/pnas.1114168109] [PMID: 22493246]
[28]
Zbinden, M.; Duquet, A.; Lorente-Trigos, A.; Ngwabyt, S.N.; Borges, I.; Ruiz i Altaba, A. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J., 2010, 29(15), 2659-2674.
[http://dx.doi.org/10.1038/emboj.2010.137] [PMID: 20581802]
[29]
Stecca, B.; Ruiz i Altaba, A.A. GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J., 2009, 28(6), 663-676.
[http://dx.doi.org/10.1038/emboj.2009.16] [PMID: 19214186]
[30]
Nicolas, M.; Wolfer, A.; Raj, K.; Kummer, J.A.; Mill, P.; van Noort, M.; Hui, C.; Clevers, H.; Dotto, G.P.; Radtke, F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet., 2003, 33(3), 416-421.
[http://dx.doi.org/10.1038/ng1099] [PMID: 12590261]
[31]
Dennler, S.; André, J.; Verrecchia, F.; Mauviel, A. Cloning of the human GLI2 Promoter: Transcriptional activation by transforming growth factor-beta via SMAD3/beta-catenin cooperation. J. Biol. Chem., 2009, 284(46), 31523-31531.
[http://dx.doi.org/10.1074/jbc.M109.059964] [PMID: 19797115]
[32]
Stecca, B.; Mas, C.; Clement, V.; Zbinden, M.; Correa, R.; Piguet, V.; Beermann, F.; Ruiz i Altaba, A. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. USA, 2007, 104(14), 5895-5900.
[http://dx.doi.org/10.1073/pnas.0700776104] [PMID: 17392427]
[33]
Robbins, D.J.; Fei, D.L.; Riobo, N.A. The Hedgehog signal transduction network. Sci. Signal., 2012, 5(246), re6.
[http://dx.doi.org/10.1126/scisignal.2002906] [PMID: 23074268]
[34]
Choy, S.W.; Cheng, S.H. Hedgehog signaling. Vitam. Horm., 2012, 88, 1-23.
[http://dx.doi.org/10.1016/B978-0-12-394622-5.00001-8] [PMID: 22391297]
[35]
Marigo, V.; Roberts, D.J.; Lee, S.M.K.; Tsukurov, O.; Levi, T.; Gastier, J.M.; Epstein, D.J.; Gilbert, D.J.; Copeland, N.G.; Seidman, C.E.; Jenkins, N.A.; Seidman, J.G.; Mcmahon, A.P.; Tabin, C. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics, 1995, 28(1), 44-51.
[http://dx.doi.org/10.1006/geno.1995.1104] [PMID: 7590746]
[36]
Resh, M.D. Palmitoylation of Hedgehog proteins by Hedgehog acyltransferase: Roles in signalling and disease. Open Biol., 2021, 11(3), 200414.
[http://dx.doi.org/10.1098/rsob.200414] [PMID: 33653085]
[37]
Petrova, E.; Matevossian, A.; Resh, M.D. Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma. Oncogene, 2015, 34(2), 263-268.
[http://dx.doi.org/10.1038/onc.2013.575] [PMID: 24469057]
[38]
Matevossian, A.; Resh, M.D. Hedgehog Acyltransferase as a target in estrogen receptor positive, HER2 amplified, and tamoxifen resistant breast cancer cells. Mol. Cancer, 2015, 14(1), 72.
[http://dx.doi.org/10.1186/s12943-015-0345-x] [PMID: 25889650]
[39]
Maun, H.R.; Wen, X.; Lingel, A.; de Sauvage, F.J.; Lazarus, R.A.; Scales, S.J.; Hymowitz, S.G. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J. Biol. Chem., 2010, 285(34), 26570-26580.
[http://dx.doi.org/10.1074/jbc.M110.112284] [PMID: 20504762]
[40]
Chang, Q.; Foltz, W.D.; Chaudary, N.; Hill, R.P.; Hedley, D.W. Tumor–stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. Int. J. Cancer, 2013, 133(1), 225-234.
[http://dx.doi.org/10.1002/ijc.28006] [PMID: 23280784]
[41]
Chaudary, N.; Pintilie, M.; Hedley, D.; Hill, R.P.; Milosevic, M.; Mackay, H. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts. Br. J. Cancer, 2017, 116(1), 50-57.
[http://dx.doi.org/10.1038/bjc.2016.383] [PMID: 27875522]
[42]
Zhang, J.; Fan, J.; Zeng, X.; Nie, M.; Luan, J.; Wang, Y.; Ju, D.; Yin, K. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment. Acta Pharm. Sin. B, 2021, 11(3), 609-620.
[http://dx.doi.org/10.1016/j.apsb.2020.10.022] [PMID: 33777671]
[43]
Hu, A.; Song, B.L. The interplay of patched, smoothened and cholesterol in hedgehog signaling. Curr. Opin. Cell Biol., 2019, 61, 31-38.
[http://dx.doi.org/10.1016/j.ceb.2019.06.008] [PMID: 31369952]
[44]
Binder, M.; Chmielarz, P.; Mckinnon, P.J.; Biggs, L.C.; Thesleff, I.; Balic, A. Functionally distinctive ptch receptors establish multimodal hedgehog signaling in the tooth epithelial stem cell niche. Stem Cells, 2019, 37(9), 1238-1248.
[http://dx.doi.org/10.1002/stem.3042] [PMID: 31145830]
[45]
Wu, H.; He, P.; Xie, D.; Wang, J.; Wan, C. Long-noncoding RNA ANCR activates the hedgehog signaling pathway to promote basal cell carcinoma progression by binding to PTCH. Clin. Cosmet. Investig. Dermatol., 2022, 15, 955-965.
[http://dx.doi.org/10.2147/CCID.S345371] [PMID: 35642174]
[46]
Hitzenberger, M.; Schuster, D.; Hofer, T.S. The binding mode of the sonic hedgehog inhibitor robotnikinin, a combined docking and QM/MM MD study. Front Chem., 2017, 5, 76.
[http://dx.doi.org/10.3389/fchem.2017.00076] [PMID: 29109946]
[47]
Bi, X.; Han, X.; Zhang, F.; He, M.; Zhang, Y.; Zhi, X.Y.; Zhao, H. Triparanol suppresses human tumor growth in vitro and in vivo. Biochem. Biophys. Res. Commun., 2012, 425(3), 613-618.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.136] [PMID: 22877755]
[48]
Chai, J.Y.; Sugumar, V.; Alshawsh, M.A.; Wong, W.F.; Arya, A.; Chong, P.P.; Looi, C.Y. The role of smoothened-dependent and -independent hedgehog signaling pathway in tumorigenesis. Biomedicines, 2021, 9(9), 1188.
[http://dx.doi.org/10.3390/biomedicines9091188] [PMID: 34572373]
[49]
Jeng, K.S.; Sheen, I.S.; Leu, C.M.; Tseng, P.H.; Chang, C.F. The role of smoothened in cancer. Int. J. Mol. Sci., 2020, 21(18), 6863.
[http://dx.doi.org/10.3390/ijms21186863] [PMID: 32962123]
[50]
Wu, X.; Xiao, S.; Zhang, M.; Yang, L.; Zhong, J.; Li, B.; Li, F.; Xia, X.; Li, X.; Zhou, H.; Liu, D.; Huang, N.; Yang, X.; Xiao, F.; Zhang, N. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol., 2021, 22(1), 33.
[http://dx.doi.org/10.1186/s13059-020-02250-6] [PMID: 33446260]
[51]
Espinosa-Bustos, C.; Mella, J.; Soto-Delgado, J.; Salas, C.O. State of the art of Smo antagonists for cancer therapy: Advances in the target receptor and new ligand structures. Future Med. Chem., 2019, 11(6), 617-638.
[http://dx.doi.org/10.4155/fmc-2018-0497] [PMID: 30912670]
[52]
Tiet, T.D.; Hopyan, S.; Nadesan, P.; Gokgoz, N.; Poon, R.; Lin, A.C.; Yan, T.; Andrulis, I.L.; Alman, B.A.; Wunder, J.S. Constitutive hedgehog signaling in chondrosarcoma up-regulates tumor cell proliferation. Am. J. Pathol., 2006, 168(1), 321-330.
[http://dx.doi.org/10.2353/ajpath.2006.050001] [PMID: 16400033]
[53]
Von Hoff, D.D.; LoRusso, P.M.; Rudin, C.M.; Reddy, J.C.; Yauch, R.L.; Tibes, R.; Weiss, G.J.; Borad, M.J.; Hann, C.L.; Brahmer, J.R.; Mackey, H.M.; Lum, B.L.; Darbonne, W.C.; Marsters, J.C., Jr; de Sauvage, F.J.; Low, J.A. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med., 2009, 361(12), 1164-1172.
[http://dx.doi.org/10.1056/NEJMoa0905360] [PMID: 19726763]
[54]
Robinson, G.W.; Orr, B.A.; Wu, G.; Gururangan, S.; Lin, T.; Qaddoumi, I.; Packer, R.J.; Goldman, S.; Prados, M.D.; Desjardins, A.; Chintagumpala, M.; Takebe, N.; Kaste, S.C.; Rusch, M.; Allen, S.J.; Onar-Thomas, A.; Stewart, C.F.; Fouladi, M.; Boyett, J.M.; Gilbertson, R.J.; Curran, T.; Ellison, D.W.; Gajjar, A. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog–subgroup medulloblastoma: Results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J. Clin. Oncol., 2015, 33(24), 2646-2654.
[http://dx.doi.org/10.1200/JCO.2014.60.1591] [PMID: 26169613]
[55]
McCleary-Wheeler, A.L.; Carr, R.M.; Palmer, S.R.; Smyrk, T.C.; Allred, J.B.; Almada, L.L.; Tolosa, E.J.; Lamberti, M.J.; Marks, D.L.; Borad, M.J.; Molina, J.R.; Qi, Y.; Lingle, W.L.; Grothey, A.; Pitot, H.C.; Jatoi, A.; Northfelt, D.W.; Bryce, A.H.; McWilliams, R.R.; Okuno, S.H.; Haluska, P.; Kim, G.P.; Colon-Otero, G.; Lowe, V.J.; Callstrom, M.R.; Ma, W.W.; Bekaii-Saab, T.; Hung, M.C.; Erlichman, C.; Fernandez-Zapico, M.E. Phase 1 trial of Vismodegib and Erlotinib combination in metastatic pancreatic cancer. Pancreatology, 2020, 20(1), 101-109.
[http://dx.doi.org/10.1016/j.pan.2019.11.011] [PMID: 31787526]
[56]
Dummer, R.; Ascierto, P.A.; Basset-Seguin, N.; Dréno, B.; Garbe, C.; Gutzmer, R.; Hauschild, A.; Krattinger, R.; Lear, J.T.; Malvehy, J.; Schadendorf, D.; Grob, J.J. Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: A joint expert opinion. J. Eur. Acad. Dermatol. Venereol., 2020, 34(9), 1944-1956.
[http://dx.doi.org/10.1111/jdv.16230] [PMID: 31990414]
[57]
Wahid, M.; Jawed, A.; Dar, S.A.; Mandal, R.K.; Haque, S. Differential pharmacology and clinical utility of sonidegib in advanced basal cell carcinoma. OncoTargets Ther., 2017, 10, 515-520.
[http://dx.doi.org/10.2147/OTT.S97713] [PMID: 28182134]
[58]
Stathis, A.; Hess, D.; von Moos, R.; Homicsko, K.; Griguolo, G.; Joerger, M.; Mark, M.; Ackermann, C.J.; Allegrini, S.; Catapano, C.V.; Xyrafas, A.; Enoiu, M.; Berardi, S.; Gargiulo, P.; Sessa, C. Phase I trial of the oral smoothened inhibitor sonidegib in combination with paclitaxel in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(6), 766-772.
[http://dx.doi.org/10.1007/s10637-017-0454-z] [PMID: 28317088]
[59]
Kieran, M.W.; Chisholm, J.; Casanova, M.; Brandes, A.A.; Aerts, I.; Bouffet, E.; Bailey, S.; Leary, S.; MacDonald, T.J.; Mechinaud, F.; Cohen, K.J.; Riccardi, R.; Mason, W.; Hargrave, D.; Kalambakas, S.; Deshpande, P.; Tai, F.; Hurh, E.; Geoerger, B.; Phase, I. Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro-oncol., 2017, 19(11), 1542-1552.
[http://dx.doi.org/10.1093/neuonc/nox109] [PMID: 28605510]
[60]
Ruiz-Borrego, M.; Jimenez, B.; Antolín, S.; García-Saenz, J.A.; Corral, J.; Jerez, Y.; Trigo, J.; Urruticoechea, A.; Colom, H.; Gonzalo, N.; Muñoz, C.; Benito, S.; Caballero, R.; Bezares, S.; Carrasco, E.; Rojo, F.; Martín, M. A phase Ib study of sonidegib (LDE225), an oral small molecule inhibitor of smoothened or Hedgehog pathway, in combination with docetaxel in triple negative advanced breast cancer patients: GEICAM/2012–12 (EDALINE) study. Invest. New Drugs, 2019, 37(1), 98-108.
[http://dx.doi.org/10.1007/s10637-018-0614-9] [PMID: 29948356]
[61]
Hoy, S.M. Glasdegib: First global approval. Drugs, 2019, 79(2), 207-213.
[http://dx.doi.org/10.1007/s40265-018-1047-7] [PMID: 30666593]
[62]
Ma, H.; Li, H.Q.; Zhang, X. Cyclopamine, a naturally occurring alkaloid, and its analogues may find wide applications in cancer therapy. Curr. Top. Med. Chem., 2013, 13(17), 2208-2215.
[http://dx.doi.org/10.2174/15680266113139990153] [PMID: 23978132]
[63]
Na, Y.J.; Lee, D.H.; Kim, J.L.; Kim, B.R.; Park, S.H.; Jo, M.J.; Jeong, S.; Kim, H.J.; Lee, S.; Jeong, Y.A.; Oh, S.C. Cyclopamine sensitizes TRAIL-resistant gastric cancer cells to TRAIL-induced apoptosis via endoplasmic reticulum stress-mediated increase of death receptor 5 and survivin degradation. Int. J. Biochem. Cell Biol., 2017, 89, 147-156.
[http://dx.doi.org/10.1016/j.biocel.2017.06.010] [PMID: 28624529]
[64]
Zhao, J.; Wu, C.; Abbruzzese, J.; Hwang, R.F.; Li, C. Cyclopamine-loaded core-cross-linked polymeric micelles enhance radiation response in pancreatic cancer and pancreatic stellate cells. Mol. Pharm., 2015, 12(6), 2093-2100.
[http://dx.doi.org/10.1021/mp500875f] [PMID: 25936695]
[65]
Cosio, T.; Di Prete, M.; Di Raimondo, C.; Garofalo, V.; Lozzi, F.; Lanna, C.; Dika, E.; Orlandi, A.; Rapanotti, M.C.; Bianchi, L.; Campione, E. Patidegib in dermatology: A current review. Int. J. Mol. Sci., 2021, 22(19), 10725.
[http://dx.doi.org/10.3390/ijms221910725] [PMID: 34639065]
[66]
Ip, K.H.K.; McKerrow, K. Itraconazole in the treatment of basal cell carcinoma: A case‐based review of the literature. Australas. J. Dermatol., 2021, 62(3), 394-397.
[http://dx.doi.org/10.1111/ajd.13655] [PMID: 34160825]
[67]
Kelly, R.J.; Ansari, A.M.; Miyashita, T.; Zahurak, M.; Lay, F.; Ahmed, A.K.; Born, L.J.; Pezhouh, M.K.; Salimian, K.J.; Ng, C.; Matsangos, A.E.; Stricker-Krongrad, A.H.; Mukaisho, K.; Marti, G.P.; Chung, C.H.; Canto, M.I.; Rudek, M.A.; Meltzer, S.J.; Harmon, J.W. Targeting the hedgehog pathway using itraconazole to prevent progression of barrett’s esophagus to invasive esophageal adenocarcinoma. Ann. Surg., 2021, 273(6), e206-e213.
[http://dx.doi.org/10.1097/SLA.0000000000003455] [PMID: 31290765]
[68]
Xie, P.; Lefrançois, P. Efficacy, safety, and comparison of sonic hedgehog inhibitors in basal cell carcinomas: A systematic review and meta-analysis. J. Am. Acad. Dermatol., 2018, 79(6), 1089-1100.e17.
[http://dx.doi.org/10.1016/j.jaad.2018.07.004] [PMID: 30003981]
[69]
Dormoy, V.; Béraud, C.; Lindner, V.; Coquard, C.; Barthelmebs, M.; Brasse, D.; Jacqmin, D.; Lang, H.; Massfelder, T. Vitamin D3 triggers antitumor activity through targeting hedgehog signaling in human renal cell carcinoma. Carcinogenesis, 2012, 33(11), 2084-2093.
[http://dx.doi.org/10.1093/carcin/bgs255] [PMID: 22843547]
[70]
Ueno, H.; Kondo, S.; Yoshikawa, S.; Inoue, K.; Andre, V.; Tajimi, M.; Murakami, H. A phase I and pharmacokinetic study of taladegib, a Smoothened inhibitor, in Japanese patients with advanced solid tumors. Invest. New Drugs, 2018, 36(4), 647-656.
[http://dx.doi.org/10.1007/s10637-017-0544-y] [PMID: 29453627]
[71]
Bendell, J.; Andre, V.; Ho, A.; Kudchadkar, R.; Migden, M.; Infante, J.; Tiu, R.V.; Pitou, C.; Tucker, T.; Brail, L.; Von Hoff, D.; Phase, I. Phase I study of LY2940680, a smo antagonist, in patients with advanced cancer including treatment-naïve and previously treated basal cell carcinoma. Clin. Cancer Res., 2018, 24(9), 2082-2091.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0723] [PMID: 29483143]
[72]
Peukert, S.; He, F.; Dai, M.; Zhang, R.; Sun, Y.; Miller-Moslin, K.; McEwan, M.; Lagu, B.; Wang, K.; Yusuff, N.; Bourret, A.; Ramamurthy, A.; Maniara, W.; Amaral, A.; Vattay, A.; Wang, A.; Guo, R.; Yuan, J.; Green, J.; Williams, J.; Buonamici, S.; Kelleher, J.F., III; Dorsch, M. Discovery of NVP-LEQ506, a second-generation inhibitor of smoothened. ChemMedChem, 2013, 8(8), 1261-1265.
[http://dx.doi.org/10.1002/cmdc.201300217] [PMID: 23821351]
[73]
Riedlinger, D.; Bahra, M.; Boas-Knoop, S.; Lippert, S.; Bradtmöller, M.; Guse, K.; Seehofer, D.; Bova, R.; Sauer, I.M.; Neuhaus, P.; Koch, A.; Kamphues, C. Hedgehog pathway as a potential treatment target in human cholangiocarcinoma. J. Hepatobiliary Pancreat. Sci., 2014, 21(8), 607-615.
[http://dx.doi.org/10.1002/jhbp.107] [PMID: 24733827]
[74]
Justilien, V.; Fields, A.P. Molecular pathways: Novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin. Cancer Res., 2015, 21(3), 505-513.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0507] [PMID: 25646180]
[75]
Nguyen, J.; Saffari, P.S.; Pollack, A.S.; Vennam, S.; Gong, X.; West, R.B.; Pollack, J.R. New ameloblastoma cell lines enable preclinical study of targeted therapies. J. Dent. Res., 2022, 101(12), 1517-1525.
[http://dx.doi.org/10.1177/00220345221100773] [PMID: 35689405]
[76]
Williams, J.A.; Guicherit, O.M.; Zaharian, B.I.; Xu, Y.; Chai, L.; Wichterle, H.; Kon, C.; Gatchalian, C.; Porter, J.A.; Rubin, L.L.; Wang, F.Y. Identification of a small molecule inhibitor of the hedgehog signaling pathway: Effects on basal cell carcinoma-like lesions. Proc. Natl. Acad. Sci., 2003, 100(8), 4616-4621.
[http://dx.doi.org/10.1073/pnas.0732813100] [PMID: 12679522]
[77]
Rohner, A.; Spilker, M.E.; Lam, J.L.; Pascual, B.; Bartkowski, D.; Li, Q.J.; Yang, A.H.; Stevens, G.; Xu, M.; Wells, P.A.; Planken, S.; Nair, S.; Sun, S. Effective targeting of Hedgehog signaling in a medulloblastoma model with PF-5274857, a potent and selective Smoothened antagonist that penetrates the blood-brain barrier. Mol. Cancer Ther., 2012, 11(1), 57-65.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0691] [PMID: 22084163]
[78]
Filocamo, G.; Brunetti, M.; Colaceci, F.; Sasso, R.; Tanori, M.; Pasquali, E.; Alfonsi, R.; Mancuso, M.; Saran, A.; Lahm, A.; Di Marcotullio, L.; Steinkühler, C.; Pazzaglia, S. MK-4101, a potent inhibitor of the hedgehog pathway, is highly active against medulloblastoma and basal cell carcinoma. Mol. Cancer Ther., 2016, 15(6), 1177-1189.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0371] [PMID: 26960983]
[79]
Dixit, D.; Ghildiyal, R.; Anto, N.P.; Ghosh, S.; Sharma, V.; Sen, E. Guggulsterone sensitizes glioblastoma cells to Sonic hedgehog inhibitor SANT-1 induced apoptosis in a Ras/NFκB dependent manner. Cancer Lett., 2013, 336(2), 347-358.
[http://dx.doi.org/10.1016/j.canlet.2013.03.025] [PMID: 23548480]
[80]
Luo, J.; Wang, J.; Yang, J.; Huang, W.; Liu, J.; Tan, W.; Xin, H. Saikosaponin B1 and saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the hedgehog signaling pathway. J. Nat. Med., 2022, 76(3), 584-593.
[http://dx.doi.org/10.1007/s11418-022-01603-8] [PMID: 35171398]
[81]
Lei, W.; Huo, Z. Jervine inhibits non-small cell lung cancer (NSCLC) progression by suppressing Hedgehog and AKT signaling via triggering autophagy-regulated apoptosis. Biochem. Biophys. Res. Commun., 2020, 533(3), 397-403.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.023] [PMID: 32972750]
[82]
Chen, J.; Wen, B.; Wang, Y.; Wu, S.; Zhang, X.; Gu, Y.; Wang, Z.; Wang, J.; Zhang, W.; Yong, J. Jervine exhibits anticancer effects on nasopharyngeal carcinoma through promoting autophagic apoptosis via the blockage of Hedgehog signaling. Biomed. Pharmacother., 2020, 132, 110898.
[http://dx.doi.org/10.1016/j.biopha.2020.110898] [PMID: 33113432]
[83]
Hoch, L.; Faure, H.; Roudaut, H.; Schoenfelder, A.; Mann, A.; Girard, N.; Bihannic, L.; Ayrault, O.; Petricci, E.; Taddei, M.; Rognan, D.; Ruat, M. MRT‐92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. FASEB J., 2015, 29(5), 1817-1829.
[http://dx.doi.org/10.1096/fj.14-267849] [PMID: 25636740]
[84]
Zhou, M.; Jiang, J. Gli phosphorylation code in hedgehog signal transduction. Front. Cell Dev. Biol., 2022, 10, 846927.
[http://dx.doi.org/10.3389/fcell.2022.846927] [PMID: 35186941]
[85]
Niewiadomski, P. Niedziółka, S.M.; Markiewicz, Ł.; Uśpieński, T.; Baran, B.; Chojnowska, K. Gli proteins: Regulation in development and cancer. Cells, 2019, 8(2), 147.
[http://dx.doi.org/10.3390/cells8020147] [PMID: 30754706]
[86]
Grund-Gröschke, S.; Stockmaier, G.; Aberger, F. Hedgehog/GLI signaling in tumor immunity - new therapeutic opportunities and clinical implications. Cell Commun. Signal., 2019, 17(1), 172.
[http://dx.doi.org/10.1186/s12964-019-0459-7] [PMID: 31878932]
[87]
Lex, R.K.; Zhou, W.; Ji, Z.; Falkenstein, K.N.; Schuler, K.E.; Windsor, K.E.; Kim, J.D.; Ji, H.; Vokes, S.A. GLI transcriptional repression is inert prior to Hedgehog pathway activation. Nat. Commun., 2022, 13(1), 808.
[http://dx.doi.org/10.1038/s41467-022-28485-4] [PMID: 35145123]
[88]
Chin, L.; Kumana, C.R.; Kwong, Y.L.; Gill, H. The development and clinical applications of oral arsenic trioxide for acute promyelocytic leukaemia and other diseases. Pharmaceutics, 2022, 14(9), 1945.
[http://dx.doi.org/10.3390/pharmaceutics14091945] [PMID: 36145693]
[89]
Boehme, K.A.; Zaborski, J.J.; Riester, R.; Schweiss, S.K.; Hopp, U.; Traub, F.; Kluba, T.; Handgretinger, R.; Schleicher, S.B. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma. Int. J. Oncol., 2016, 48(2), 801-812.
[http://dx.doi.org/10.3892/ijo.2015.3293] [PMID: 26676886]
[90]
Peng, X.; Xiong, X.; Li, Y.; Feng, C.; Liu, H.; Wu, P.; Li, C.; Weng, W. Encouraging early outcomes of treatment with arsenic trioxide combined with chemotherapy for alveolar rhabdomyosarcoma in children: 4 case reports. Front. Oncol., 2021, 11, 751623.
[http://dx.doi.org/10.3389/fonc.2021.751623] [PMID: 34778066]
[91]
Nogueira, R.L.R.; de Araújo, T.B.S.; Valverde, L.F.; Silva, V.A.O.; Cavalcante, B.R.R.; Rossi, E.A.; Allahdadi, K.J.; dos Reis, M.G.; Pereira, T.A.; Coletta, R.D.; Bezerra, D.P.; de Freitas Souza, B.S.; Dias, R.B.; Rocha, C.A.G. Arsenic trioxide triggers apoptosis of metastatic oral squamous cells carcinoma with concomitant downregulation of GLI1 in hedgehog signaling. Biomedicines, 2022, 10(12), 3293.
[http://dx.doi.org/10.3390/biomedicines10123293] [PMID: 36552049]
[92]
Zhang, R.; Tan, Y.; Yong, C.; Jiao, Y.; Tang, X.; Wang, D. Pirfenidone ameliorates early pulmonary fibrosis in LPS-induced acute respiratory distress syndrome by inhibiting endothelial-to-mesenchymal transition via the Hedgehog signaling pathway. Int. Immunopharmacol., 2022, 109, 108805.
[http://dx.doi.org/10.1016/j.intimp.2022.108805] [PMID: 35504205]
[93]
Roldán-Marín, R.; Toussaint-Caire, S. Imiquimod 5% as adjuvant therapy for incompletely excised infiltrative nodular basal cell carcinoma and dermoscopy to monitor treatment response. Dermatol. Ther., 2015, 5(4), 265-272.
[http://dx.doi.org/10.1007/s13555-015-0088-z] [PMID: 26538104]
[94]
Zhang, Z.; Zhang, R.; Hao, C.; Pei, X.; Li, J.; Wang, L. GANT61 and valproic acid synergistically inhibited multiple myeloma cell proliferation via hedgehog signaling pathway. Med. Sci. Monit., 2020, 26, e920541.
[http://dx.doi.org/10.12659/MSM.920541] [PMID: 32054823]
[95]
Koike, Y.; Ohta, Y.; Saitoh, W.; Yamashita, T.; Kanomata, N.; Moriya, T.; Kurebayashi, J. Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer, 2017, 24(5), 683-693.
[http://dx.doi.org/10.1007/s12282-017-0757-0] [PMID: 28144905]
[96]
Zubčić, V.; Rinčić, N.; Kurtović, M.; Trnski, D.; Musani, V.; Ozretić, P.; Levanat, S.; Leović, D.; Sabol, M. GANT61 and lithium chloride inhibit the growth of head and neck cancer cell lines through the regulation of GLI3 processing by GSK3β. Int. J. Mol. Sci., 2020, 21(17), 6410.
[http://dx.doi.org/10.3390/ijms21176410] [PMID: 32899202]
[97]
Gao, H.; Wang, W.; Li, Q. GANT61 suppresses cell survival, invasion and epithelial-mesenchymal transition through inactivating AKT/mTOR and JAK/STAT3 pathways in anaplastic thyroid carcinoma. Cancer Biol. Ther., 2022, 23(1), 369-377.
[http://dx.doi.org/10.1080/15384047.2022.2051158] [PMID: 35491899]
[98]
Zhu, P.; Wang, L.; Xu, P.; Tan, Q.; Wang, Y.; Feng, G.; Yuan, L. GANT61 elevates chemosensitivity to cisplatin through regulating the Hedgehog, AMPK and cAMP pathways in ovarian cancer. Future Med. Chem., 2022, 14(7), 479-500.
[http://dx.doi.org/10.4155/fmc-2021-0310] [PMID: 35322690]
[99]
Hou, X.; Chen, X.; Zhang, P.; Fan, Y.; Ma, A.; Pang, T.; Song, Z.; Jin, Y.; Hao, W.; Liu, F.; Wang, W.; Wang, Y. Inhibition of hedgehog signaling by GANT58 induces apoptosis and shows synergistic antitumor activity with AKT inhibitor in acute T cell leukemia cells. Biochimie, 2014, 101, 50-59.
[http://dx.doi.org/10.1016/j.biochi.2013.12.019] [PMID: 24394624]
[100]
Sharma, A.; De, R.; Javed, S.; Srinivasan, R.; Pal, A.; Bhattacharyya, S. Sonic hedgehog pathway activation regulates cervical cancer stem cell characteristics during epithelial to mesenchymal transition. J. Cell. Physiol., 2019, 234(9), 15726-15741.
[http://dx.doi.org/10.1002/jcp.28231] [PMID: 30714153]
[101]
Li, B.; Fei, D.L.; Flaveny, C.A.; Dahmane, N.; Baubet, V.; Wang, Z.; Bai, F.; Pei, X.H.; Rodriguez-Blanco, J.; Hang, B.; Orton, D.; Han, L.; Wang, B.; Capobianco, A.J.; Lee, E.; Robbins, D.J. Pyrvinium attenuates Hedgehog signaling downstream of smoothened. Cancer Res., 2014, 74(17), 4811-4821.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0317] [PMID: 24994715]
[102]
Urla, C.; Stagno, M.J.; Fuchs, J.; Warmann, S.W.; Schmid, E. Anticancer bioactivity of zerumbone on pediatric rhabdomyosarcoma cells. J. Cancer Res. Clin. Oncol., 2023, 149(7), 3313-3323.
[http://dx.doi.org/10.1007/s00432-022-04237-1] [PMID: 35931788]
[103]
Zhu, L.; Ni, C.; Dong, B.; Zhang, Y.; Shi, Y.; Niu, H.; Li, C. A novel hedgehog inhibitor iG2 suppresses tumorigenesis by impairing self‐renewal in human bladder cancer. Cancer Med., 2016, 5(9), 2579-2586.
[http://dx.doi.org/10.1002/cam4.802] [PMID: 27465044]
[104]
Yang, Y.; Nguyen, T.T.; Pereira, I.; Hur, J.S.; Kim, H. Lichen secondary metabolite physciosporin decreases the stemness potential of colorectal cancer cells. Biomolecules, 2019, 9(12), 797.
[http://dx.doi.org/10.3390/biom9120797] [PMID: 31795147]
[105]
Taş, İ Han, J.; Park, S.Y.; Yang, Y.; Zhou, R.; Gamage, C.D.B.; Van Nguyen, T.; Lee, J.Y.; Choi, Y.J.; Yu, Y.H.; Moon, K.S.; Kim, K.K.; Ha, H.H.; Kim, S.K.; Hur, J.S.; Kim, H. Physciosporin suppresses the proliferation, motility and tumourigenesis of colorectal cancer cells. Phytomedicine, 2019, 56, 10-20.
[http://dx.doi.org/10.1016/j.phymed.2018.09.219] [PMID: 30668330]
[106]
Jeng, K.S.; Jeng, C.J.; Sheen, I.S.; Wu, S.H.; Lu, S.J.; Wang, C.H.; Chang, C.F. Glioma-associated oncogene homolog inhibitors have the potential of suppressing cancer stem cells of breast cancer. Int. J. Mol. Sci., 2018, 19(5), 1375.
[http://dx.doi.org/10.3390/ijms19051375] [PMID: 29734730]
[107]
Infante, P.; Mori, M.; Alfonsi, R.; Ghirga, F.; Aiello, F.; Toscano, S.; Ingallina, C.; Siler, M.; Cucchi, D.; Po, A.; Miele, E.; D’Amico, D.; Canettieri, G.; De Smaele, E.; Ferretti, E.; Screpanti, I.; Uccello Barretta, G.; Botta, M.; Botta, B.; Gulino, A.; Di Marcotullio, L. Gli1/DNA interaction is a druggable target for Hedgehog‐dependent tumors. EMBO J., 2015, 34(2), 200-217.
[http://dx.doi.org/10.15252/embj.201489213] [PMID: 25476449]
[108]
Infante, P.; Malfanti, A.; Quaglio, D.; Balducci, S.; De Martin, S.; Bufalieri, F.; Mastrotto, F.; Basili, I.; Garofalo, M.; Lospinoso Severini, L.; Mori, M.; Manni, I.; Moretti, M.; Nicoletti, C.; Piaggio, G.; Caliceti, P.; Botta, B.; Ghirga, F.; Salmaso, S.; Di Marcotullio, L.; Glabrescione, B. Glabrescione B delivery by self-assembling micelles efficiently inhibits tumor growth in preclinical models of Hedgehog-dependent medulloblastoma. Cancer Lett., 2021, 499, 220-231.
[http://dx.doi.org/10.1016/j.canlet.2020.11.028] [PMID: 33249196]
[109]
Hosoya, T.; Arai, M.A.; Koyano, T.; Kowithayakorn, T.; Ishibashi, M. Naturally occurring small-molecule inhibitors of hedgehog/GLI-mediated transcription. ChemBioChem, 2008, 9(7), 1082-1092.
[http://dx.doi.org/10.1002/cbic.200700511] [PMID: 18357592]
[110]
Zhu, X.; Ye, S.; Yu, D.; Zhang, Y.; Li, J.; Zhang, M.; Leng, Y.; Yang, T.; Luo, J.; Chen, X.; Zhang, H.; Kong, L.; Physalin, B. Physalin B attenuates liver fibrosis via suppressing LAP2α-HDAC1‐mediated deacetylation of the transcription factor GLI1 and hepatic stellate cell activation. Br. J. Pharmacol., 2021, 178(17), 3428-3447.
[http://dx.doi.org/10.1111/bph.15490] [PMID: 33864382]
[111]
Pinto, L.A.; Meira, C.S.; Villarreal, C.F.; Vannier-Santos, M.A.; de Souza, C.V.C.; Ribeiro, I.M.; Tomassini, T.C.B.; Galvão-Castro, B.; Soares, M.B.P.; Grassi, M.F.R. Physalin F, a secosteroid from Physalis angulata L., has immunosuppressive activity in peripheral blood mononuclear cells from patients with HTLV1-associated myelopathy. Biomed. Pharmacother., 2016, 79, 129-134.
[http://dx.doi.org/10.1016/j.biopha.2016.01.041] [PMID: 27044821]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy