Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

How Different Are the Influences of Mediterranean and Japanese Diets on the Gut Microbiome?

Author(s): Dafni Moriki, Despoina Koumpagioti, Maria Pilar Francino, José Ángel Rufián-Henares, Michalis Kalogiannis, Kostas N. Priftis* and Konstantinos Douros

Volume 24, Issue 15, 2024

Published on: 15 January, 2024

Page: [1733 - 1745] Pages: 13

DOI: 10.2174/0118715303261069231124092259

Price: $65

Abstract

The gut microbiome is a complex ecosystem, mainly composed of bacteria, that performs essential functions for the host. Its composition is determined by many factors; however, diet has emerged as a key regulator. Both the Mediterranean (MD) and Japanese (JD) diets have been associated with significant health benefits and are therefore considered healthy dietary patterns. Both are plant-based diets and although they have much in common, they also have important differences mainly related to total calorie intake and the consumption of specific foods and beverages. Thus, it has been hypothesized that they exert their beneficial properties through different nutrients and bioactive compounds that interact with gut microbes and induce specific changes on gut metabolic pathways. In this review, we present current data on the effects of the MD and JD on the gut microbiome. Furthermore, we aim to examine whether there are differences or shared effects on the gut microbiome of people who adhere to these dietary patterns.

[1]
Shively, C.A.; Appt, S.E.; Vitolins, M.Z.; Uberseder, B.; Michalson, K.T.; Silverstein-Metzler, M.G.; Register, T.C. Mediterranean versus western diet effects on caloric intake, obesity, metabolism, and hepatosteatosis in nonhuman primates. Obesity, 2019, 27(5), 777-784.
[http://dx.doi.org/10.1002/oby.22436] [PMID: 31012294]
[2]
Rizzello, F.; Spisni, E.; Giovanardi, E.; Imbesi, V.; Salice, M.; Alvisi, P.; Valerii, M.C.; Gionchetti, P. Implications of the westernized diet in the onset and progression of IBD. Nutrients, 2019, 11(5), 1033.
[http://dx.doi.org/10.3390/nu11051033] [PMID: 31072001]
[3]
Nagao, M.; Asai, A.; Sugihara, H.; Oikawa, S. Fat intake and the development of type 2 diabetes [Review]. Endocr. J., 2015, 62(7), 561-572.
[http://dx.doi.org/10.1507/endocrj.EJ15-0055] [PMID: 25924665]
[4]
Nestel, P.J.; Mori, T.A. Dietary patterns, dietary nutrients and cardiovascular disease. Rev. Cardiovasc. Med., 2022, 23(1), 1.
[http://dx.doi.org/10.31083/j.rcm2301017] [PMID: 35092209]
[5]
Myles, I.A. Fast food fever: Reviewing the impacts of the western diet on immunity. Nutr. J., 2014, 13(1), 61.
[http://dx.doi.org/10.1186/1475-2891-13-61] [PMID: 24939238]
[6]
Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of mediterranean diet on chronic non-communicable diseases and longevity. Nutrients, 2021, 13(6), 2028.
[http://dx.doi.org/10.3390/nu13062028] [PMID: 34204683]
[7]
Abe, S.; Zhang, S.; Tomata, Y.; Tsuduki, T.; Sugawara, Y.; Tsuji, I. Japanese diet and survival time: The ohsaki cohort 1994 study. Clin. Nutr., 2020, 39(1), 298-303.
[http://dx.doi.org/10.1016/j.clnu.2019.02.010] [PMID: 30846323]
[8]
Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med., 2003, 348(26), 2599-2608.
[http://dx.doi.org/10.1056/NEJMoa025039] [PMID: 12826634]
[9]
Trichopoulou, A.; Lagiou, P. Healthy traditional mediterranean diet: An expression of culture, history, and lifestyle. Nutrition Reviews, 2023, 55(11), 383-389.
[http://dx.doi.org/10.1111/j.1753-4887.1997.tb01578.x]
[10]
Tokudome, S.; Ichikawa, Y.; Okuyama, H.; Tokudome, Y.; Goto, C.; Imaeda, N.; Kuriki, K.; Suzuki, S.; Shibata, K.; Jiang, J.; Wang, J.; Takeda, E. The Mediterranean vs the Japanese diet. Eur. J. Clin. Nutr., 2004, 58(9), 1323.
[http://dx.doi.org/10.1038/sj.ejcn.1601970] [PMID: 15054411]
[11]
Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol., 2021, 42, 101869.
[http://dx.doi.org/10.1016/j.redox.2021.101869] [PMID: 33541846]
[12]
Douros, K.; Thanopoulou, M.I.; Boutopoulou, B.; Papadopoulou, A.; Papadimitriou, A.; Fretzayas, A.; Priftis, K.N. Adherence to the Mediterranean diet and inflammatory markers in children with asthma. Allergol. Immunopathol., 2019, 47(3), 209-213.
[http://dx.doi.org/10.1016/j.aller.2018.04.007] [PMID: 29980401]
[13]
Coe, C.L.; Miyamoto, Y.; Love, G.D.; Karasawa, M.; Kawakami, N.; Kitayama, S.; Ryff, C.D. Cultural and life style practices associated with low inflammatory physiology in Japanese adults. Brain Behav. Immun., 2020, 90, 385-392.
[http://dx.doi.org/10.1016/j.bbi.2020.08.008] [PMID: 32805392]
[14]
Koloverou, E.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Georgousopoulou, E.N.; Grekas, A.; Christou, A.; Chatzigeorgiou, M.; Skoumas, I.; Tousoulis, D.; Stefanadis, C. Adherence to Mediterranean diet and 10‐year incidence (2002–2012) of diabetes: Correlations with inflammatory and oxidative stress biomarkers in the ATTICA cohort study. Diabetes Metab. Res. Rev., 2016, 32(1), 73-81.
[http://dx.doi.org/10.1002/dmrr.2672] [PMID: 26104243]
[15]
Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci., 2019, 76(3), 473-493.
[http://dx.doi.org/10.1007/s00018-018-2943-4] [PMID: 30317530]
[16]
Jeffery, I.; O’Toole, P. Diet-microbiota interactions and their implications for healthy living. Nutrients, 2013, 5(1), 234-252.
[http://dx.doi.org/10.3390/nu5010234] [PMID: 23344252]
[17]
Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[18]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[19]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[20]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Weissenbach, J.; Ehrlich, S.D.; Bork, P.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[21]
Moriki, D.; Francino, M.P.; Koumpagioti, D.; Boutopoulou, B.; Rufián-Henares, J.Á.; Priftis, K.N.; Douros, K. The role of the gut microbiome in cow’s milk allergy: A clinical approach. Nutrients, 2022, 14(21), 4537.
[http://dx.doi.org/10.3390/nu14214537] [PMID: 36364799]
[22]
Aagaard, K.; Ma, J.; Antony, K.M.; Ganu, R.; Petrosino, J.; Versalovic, J. The placenta harbors a unique microbiome. Sci. Transl. Med., 2014, 6(237), 237ra65.
[http://dx.doi.org/10.1126/scitranslmed.3008599] [PMID: 24848255]
[23]
Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.D.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J-P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol., 2009, 9(1), 123.
[http://dx.doi.org/10.1186/1471-2180-9-123] [PMID: 19508720]
[24]
Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; Khan, M.T.; Zhang, J.; Li, J.; Xiao, L.; Al-Aama, J.; Zhang, D.; Lee, Y.S.; Kotowska, D.; Colding, C.; Tremaroli, V.; Yin, Y.; Bergman, S.; Xu, X.; Madsen, L.; Kristiansen, K.; Dahlgren, J.; Wang, J. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 2015, 17(5), 690-703.
[http://dx.doi.org/10.1016/j.chom.2015.04.004] [PMID: 25974306]
[25]
Man, S.M.; Kaakoush, N.O.; Mitchell, H.M. The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol., 2011, 8(3), 152-168.
[http://dx.doi.org/10.1038/nrgastro.2011.3] [PMID: 21304476]
[26]
Larsen, N.; Vogensen, F.K.; van den Berg, F.W.J.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010, 5(2), e9085.
[http://dx.doi.org/10.1371/journal.pone.0009085] [PMID: 20140211]
[27]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[28]
Knights, D.; Ward, T.L.; McKinlay, C.E.; Miller, H.; Gonzalez, A.; McDonald, D.; Knight, R. Rethinking “Enterotypes”. Cell Host Microbe, 2014, 16(4), 433-437.
[http://dx.doi.org/10.1016/j.chom.2014.09.013] [PMID: 25299329]
[29]
Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science, 2005, 307(5717), 1915-1920.
[http://dx.doi.org/10.1126/science.1104816] [PMID: 15790844]
[30]
Thorburn, A.N.; Macia, L.; Mackay, C.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity, 2014, 40(6), 833-842.
[http://dx.doi.org/10.1016/j.immuni.2014.05.014] [PMID: 24950203]
[31]
Vipperla, K.; O’Keefe, S.J. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr. Clin. Pract., 2012, 27(5), 624-635.
[http://dx.doi.org/10.1177/0884533612452012] [PMID: 22868282]
[32]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]
[33]
Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol., 2014, 12(10), 661-672.
[http://dx.doi.org/10.1038/nrmicro3344] [PMID: 25198138]
[34]
Ni, Y.F.; Wang, J.; Yan, X.L.; Tian, F.; Zhao, J.B.; Wang, Y.J.; Jiang, T. Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respir. Res., 2010, 11(1), 33.
[http://dx.doi.org/10.1186/1465-9921-11-33] [PMID: 20302656]
[35]
Säemann, M.D.; Böhmig, G.A.; Österreicher, C.H.; Burtscher, H.; Parolini, O.; Diakos, C.; Stöckl, J.; Hörl, W.H.; Zlabinger, G.J. Anti‐inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL‐12 and up‐regulation of IL‐10 production. FASEB J., 2000, 14(15), 2380-2382.
[http://dx.doi.org/10.1096/fj.00-0359fje] [PMID: 11024006]
[36]
Segain, J-P.; Raingeard de la Blétière, D.; Bourreille, A.; Leray, V.; Gervois, N.; Rosales, C.; Ferrier, L.; Bonnet, C.; Blottière, H.M.; Galmiche, J.P. Butyrate inhibits inflammatory responses through NFkappa B inhibition: Implications for Crohn’s disease. Gut, 2000, 47(3), 397-403.
[http://dx.doi.org/10.1136/gut.47.3.397] [PMID: 10940278]
[37]
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455.
[http://dx.doi.org/10.1038/nature12726] [PMID: 24226773]
[38]
Gupta, N.; Martin, P.M.; Prasad, P.D.; Ganapathy, V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci., 2006, 78(21), 2419-2425.
[http://dx.doi.org/10.1016/j.lfs.2005.10.028] [PMID: 16375929]
[39]
Wakabayashi, K.; Saito, H.; Kaneko, F.; Nakamoto, N.; Tada, S.; Hibi, T. Gene expression associated with the decrease in malignant phenotype of human liver cancer cells following stimulation with a histone deacetylase inhibitor. Int. J. Oncol., 2005, 26(1), 233-239.
[http://dx.doi.org/10.3892/ijo.26.1.233] [PMID: 15586245]
[40]
Tan, J.; McKenzie, C.; Potamitis, M.; Thorburn, A.N.; Mackay, C.R.; Macia, L. The role of short-chain fatty acids in health and disease. Adv. Immunol., 2014, 121, 91-119.
[http://dx.doi.org/10.1016/B978-0-12-800100-4.00003-9] [PMID: 24388214]
[41]
Balda, M.S.; Matter, K. Tight junctions at a glance. J. Cell Sci., 2008, 121(22), 3677-3682.
[http://dx.doi.org/10.1242/jcs.023887] [PMID: 18987354]
[42]
Lee, Y.K.; Mazmanian, S.K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 2010, 330(6012), 1768-1773.
[http://dx.doi.org/10.1126/science.1195568] [PMID: 21205662]
[43]
Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1), 121-141.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[44]
Noverr, M.C.; Huffnagle, G.B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol., 2004, 12(12), 562-568.
[http://dx.doi.org/10.1016/j.tim.2004.10.008] [PMID: 15539116]
[45]
Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res., 2020, 30(6), 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[46]
Hooper, L.V.; Midtvedt, T.; Gordon, J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr., 2002, 22(1), 283-307.
[http://dx.doi.org/10.1146/annurev.nutr.22.011602.092259] [PMID: 12055347]
[47]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[48]
Allesina, S.; Tang, S. Stability criteria for complex ecosystems. Nature, 2012, 483(7388), 205-208.
[http://dx.doi.org/10.1038/nature10832] [PMID: 22343894]
[49]
Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis., 2015, 26, 26191.
[http://dx.doi.org/10.3402/mehd.v26.26191] [PMID: 25651997]
[50]
Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(10), 577-589.
[http://dx.doi.org/10.1038/nrgastro.2012.156] [PMID: 22945443]
[51]
Zhang, X.; Gérard, P. Diet-gut microbiota interactions on cardiovascular disease. Comput. Struct. Biotechnol. J., 2022, 20, 1528-1540.
[http://dx.doi.org/10.1016/j.csbj.2022.03.028] [PMID: 35422966]
[52]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[53]
Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; Sinha, R.; Gilroy, E.; Gupta, K.; Baldassano, R.; Nessel, L.; Li, H.; Bushman, F.D.; Lewis, J.D. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011, 334(6052), 105-108.
[http://dx.doi.org/10.1126/science.1208344] [PMID: 21885731]
[54]
de La Serre, C.B.; Ellis, C.L.; Lee, J.; Hartman, A.L.; Rutledge, J.C.; Raybould, H.E. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(2), G440-G448.
[http://dx.doi.org/10.1152/ajpgi.00098.2010] [PMID: 20508158]
[55]
Fragiadakis, G.K.; Wastyk, H.C.; Robinson, J.L.; Sonnenburg, E.D.; Sonnenburg, J.L.; Gardner, C.D. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. The Amer. J. Clin. Nutri, 2023, 111(6), 1127-1136.
[http://dx.doi.org/10.1093/ajcn/nqaa046]
[56]
De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14691-14696.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[57]
Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; Heath, A.C.; Warner, B.; Reeder, J.; Kuczynski, J.; Caporaso, J.G.; Lozupone, C.A.; Lauber, C.; Clemente, J.C.; Knights, D.; Knight, R.; Gordon, J.I. Human gut microbiome viewed across age and geography. Nature, 2012, 486(7402), 222-227.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[58]
Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; Gougis, S.; Rizkalla, S.; Batto, J.M.; Renault, P.; Doré, J.; Zucker, J.D.; Clément, K.; Ehrlich, S.D.; Blottière, H.; Leclerc, M.; Juste, C.; de Wouters, T.; Lepage, P.; Fouqueray, C.; Basdevant, A.; Henegar, C.; Godard, C.; Fondacci, M.; Rohia, A.; Hajduch, F.; Weissenbach, J.; Pelletier, E.; Le Paslier, D.; Gauchi, J-P.; Gibrat, J-F.; Loux, V.; Carré, W.; Maguin, E.; van de Guchte, M.; Jamet, A.; Boumezbeur, F.; Layec, S. Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500(7464), 585-588.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[59]
Beam, A.; Clinger, E.; Hao, L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients, 2021, 13(8), 2795.
[http://dx.doi.org/10.3390/nu13082795] [PMID: 34444955]
[60]
Janeiro, M.; Ramírez, M.; Milagro, F.; Martínez, J.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential biomarker or new therapeutic target. Nutrients, 2018, 10(10), 1398.
[http://dx.doi.org/10.3390/nu10101398] [PMID: 30275434]
[61]
Minihane, A.M.; Vinoy, S.; Russell, W.R.; Baka, A.; Roche, H.M.; Tuohy, K.M.; Teeling, J.L.; Blaak, E.E.; Fenech, M.; Vauzour, D.; McArdle, H.J.; Kremer, B.H.A.; Sterkman, L.; Vafeiadou, K.; Benedetti, M.M.; Williams, C.M.; Calder, P.C. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br. J. Nutr., 2015, 114(7), 999-1012.
[http://dx.doi.org/10.1017/S0007114515002093] [PMID: 26228057]
[62]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.W.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[63]
Suzuki, K.; Susaki, E.A.; Nagaoka, I. Lipopolysaccharides and cellular senescence: Involvement in atherosclerosis. Int. J. Mol. Sci., 2022, 23(19), 11148.
[http://dx.doi.org/10.3390/ijms231911148] [PMID: 36232471]
[64]
Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr., 1995, 61(6)(Suppl.), 1402S-1406S.
[http://dx.doi.org/10.1093/ajcn/61.6.1402S] [PMID: 7754995]
[65]
Keys, A. Mediterranean diet and public health: Personal reflections. Am. J. Clin. Nutr., 1995, 61(6)(Suppl.), 1321S-1323S.
[http://dx.doi.org/10.1093/ajcn/61.6.1321S] [PMID: 7754982]
[66]
Rosato, V.; Temple, N.J.; La Vecchia, C.; Castellan, G.; Tavani, A.; Guercio, V. Mediterranean diet and cardiovascular disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr., 2019, 58(1), 173-191.
[http://dx.doi.org/10.1007/s00394-017-1582-0] [PMID: 29177567]
[67]
Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients, 2017, 9(10), 1063.
[http://dx.doi.org/10.3390/nu9101063] [PMID: 28954418]
[68]
Esposito, K.; Maiorino, M.I.; Bellastella, G.; Chiodini, P.; Panagiotakos, D.; Giugliano, D. A journey into a Mediterranean diet and type 2 diabetes: A systematic review with meta-analyses. BMJ Open, 2015, 5(8), e008222.
[http://dx.doi.org/10.1136/bmjopen-2015-008222] [PMID: 26260349]
[69]
Petersson, S.D.; Philippou, E. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Adv. Nutr., 2016, 7(5), 889-904.
[http://dx.doi.org/10.3945/an.116.012138] [PMID: 27633105]
[70]
Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The impact of the Mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Adv. Nutr., 2017, 8(4), 571-586.
[http://dx.doi.org/10.3945/an.117.015495] [PMID: 28710144]
[71]
Koumpagioti, D.; Boutopoulou, B.; Moriki, D.; Priftis, K.N.; Douros, K. Does adherence to the mediterranean diet have a protective effect against asthma and allergies in children? a systematic review. Nutrients, 2022, 14(8), 1618.
[http://dx.doi.org/10.3390/nu14081618] [PMID: 35458180]
[72]
Serra-Majem, L.; Ngo de la Cruz, J.; Ribas, L.; Tur, J.A. Olive oil and the Mediterranean diet: Beyond the rhetoric. Eur. J. Clin. Nutr., 2003, 57(S1)(Suppl. 1), S2-S7.
[http://dx.doi.org/10.1038/sj.ejcn.1601801] [PMID: 12947443]
[73]
Slavin, J. Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 2013, 5(4), 1417-1435.
[http://dx.doi.org/10.3390/nu5041417] [PMID: 23609775]
[74]
Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; Young, V.B.; Henrissat, B.; Wilmes, P.; Stappenbeck, T.S.; Núñez, G.; Martens, E.C. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 2016, 167(5), 1339-1353.e21.
[http://dx.doi.org/10.1016/j.cell.2016.10.043] [PMID: 27863247]
[75]
Visioli, F.; Galli, C. The role of antioxidants in the mediterranean diet. Lipids, 2001, 36(S1)(Suppl.), S49-S52.
[http://dx.doi.org/10.1007/s11745-001-0682-z] [PMID: 11837993]
[76]
Di Renzo, L.; Cioccoloni, G.; Sinibaldi Salimei, P.; Ceravolo, I.; De Lorenzo, A.; Gratteri, S. Alcoholic beverage and meal choices for the prevention of noncommunicable diseases: A randomized nutrigenomic trial. Oxid. Med. Cell. Longev., 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/5461436] [PMID: 30050655]
[77]
Deiana, M.; Serra, G.; Corona, G. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food Funct., 2018, 9(8), 4085-4099.
[http://dx.doi.org/10.1039/C8FO00354H] [PMID: 30083682]
[78]
Luisi, M.L.E.; Lucarini, L.; Biffi, B.; Rafanelli, E.; Pietramellara, G.; Durante, M.; Vidali, S.; Provensi, G.; Madiai, S.; Gheri, C.F.; Masini, E.; Ceccherini, M.T. Effect of mediterranean diet enriched in high quality extra virgin olive oil on oxidative stress, inflammation and gut microbiota in obese and normal weight adult subjects. Front. Pharmacol., 2019, 10, 1366.
[http://dx.doi.org/10.3389/fphar.2019.01366] [PMID: 31803056]
[79]
Martín-Peláez, S.; Castañer, O.; Solà, R.; Motilva, M.; Castell, M.; Pérez-Cano, F.; Fitó, M. Influence of phenol-enriched olive oils on human intestinal immune function. Nutrients, 2016, 8(4), 213.
[http://dx.doi.org/10.3390/nu8040213] [PMID: 27077879]
[80]
De Lorenzo, A.; Bernardini, S.; Gualtieri, P.; Cabibbo, A.; Perrone, M.A.; Giambini, I.; Di Renzo, L. Mediterranean meal versus Western meal effects on postprandial ox-LDL, oxidative and inflammatory gene expression in healthy subjects: A randomized controlled trial for nutrigenomic approach in cardiometabolic risk. Acta Diabetol., 2017, 54(2), 141-149.
[http://dx.doi.org/10.1007/s00592-016-0917-2] [PMID: 27709360]
[81]
Nageswari, K.; Banerjee, R.; Menon, V.P. Effect of saturated, ω-3 and ω-6 polyunsaturated fatty acids on myocardial infarction. J. Nutr. Biochem., 1999, 10(6), 338-344.
[http://dx.doi.org/10.1016/S0955-2863(99)00007-8] [PMID: 15539308]
[82]
Yamagishi, K.; Iso, H.; Date, C.; Fukui, M.; Wakai, K.; Kikuchi, S.; Inaba, Y.; Tanabe, N.; Tamakoshi, A. Fish, omega-3 polyunsaturated fatty acids, and mortality from cardiovascular diseases in a nationwide community-based cohort of Japanese men and women the JACC (Japan Collaborative Cohort Study for Evaluation of Cancer Risk) Study. J. Am. Coll. Cardiol., 2008, 52(12), 988-996.
[http://dx.doi.org/10.1016/j.jacc.2008.06.018] [PMID: 18786479]
[83]
Zhu, L.; Sha, L.; Li, K.; Wang, Z.; Wang, T.; Li, Y.; Liu, P.; Dong, X.; Dong, Y.; Zhang, X.; Wang, H. Dietary flaxseed oil rich in omega-3 suppresses severity of type 2 diabetes mellitus via anti-inflammation and modulating gut microbiota in rats. Lipids Health Dis., 2020, 19(1), 20.
[http://dx.doi.org/10.1186/s12944-019-1167-4] [PMID: 32028957]
[84]
Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr. Rev., 2018, 76(Suppl. 1), 4-15.
[http://dx.doi.org/10.1093/nutrit/nuy056] [PMID: 30452699]
[85]
Babio, N.; Becerra-Tomás, N.; Martínez-González, M.Á.; Corella, D.; Estruch, R.; Ros, E.; Sayón-Orea, C.; Fitó, M.; Serra-Majem, L.; Arós, F.; Lamuela-Raventós, R.M.; Lapetra, J.; Gómez-Gracia, E.; Fiol, M.; Díaz-López, A.; Sorlí, J.V.; Martínez, J.A.; Salas-Salvadó, J. Consumption of yogurt, low-fat milk, and other low-fat dairy products is associated with lower risk of metabolic syndrome incidence in an elderly mediterranean population. J. Nutr., 2015, 145(10), 2308-2316.
[http://dx.doi.org/10.3945/jn.115.214593] [PMID: 26290009]
[86]
Sluijs, I.; Forouhi, N.G.; Beulens, J.W.J.; van der Schouw, Y.T.; Agnoli, C.; Arriola, L.; Balkau, B.; Barricarte, A.; Boeing, H.; Bueno-de-Mesquita, H.B.; Clavel-Chapelon, F.; Crowe, F.L.; de Lauzon-Guillain, B.; Drogan, D.; Franks, P.W.; Gavrila, D.; Gonzalez, C.; Halkjær, J.; Kaaks, R.; Moskal, A.; Nilsson, P.; Overvad, K.; Palli, D.; Panico, S.; Quirós, J.R.; Ricceri, F.; Rinaldi, S.; Rolandsson, O.; Sacerdote, C.; Sánchez, M.J.; Slimani, N.; Spijkerman, A.M.W.; Teucher, B.; Tjonneland, A.; Tormo, M.J.; Tumino, R.; van der A, D.L.; Sharp, S.J.; Langenberg, C.; Feskens, E.J.M.; Riboli, E.; Wareham, N.J. The amount and type of dairy product intake and incident type 2 diabetes: results from the EPIC-InterAct Study. Am. J. Clin. Nutr., 2012, 96(2), 382-390.
[http://dx.doi.org/10.3945/ajcn.111.021907] [PMID: 22760573]
[87]
Pala, V.; Sieri, S.; Berrino, F.; Vineis, P.; Sacerdote, C.; Palli, D.; Masala, G.; Panico, S.; Mattiello, A.; Tumino, R.; Giurdanella, M.C.; Agnoli, C.; Grioni, S.; Krogh, V. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer, 2011, 129(11), 2712-2719.
[http://dx.doi.org/10.1002/ijc.26193] [PMID: 21607947]
[88]
Praagman, J.; Dalmeijer, G.W.; van der Schouw, Y.T.; Soedamah-Muthu, S.S.; Monique Verschuren, W.M.; Bas Bueno-de-Mesquita, H.; Geleijnse, J.M.; Beulens, J.W.J. The relationship between fermented food intake and mortality risk in the european prospective investigation into cancer and nutrition-netherlands cohort. Br. J. Nutr., 2015, 113(3), 498-506.
[http://dx.doi.org/10.1017/S0007114514003766] [PMID: 25599866]
[89]
De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; Turroni, S.; Cocolin, L.; Brigidi, P.; Neviani, E.; Gobbetti, M.; O’Toole, P.W.; Ercolini, D. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65(11), 1812-1821.
[http://dx.doi.org/10.1136/gutjnl-2015-309957] [PMID: 26416813]
[90]
Stock, J. Gut microbiota: An environmental risk factor for cardiovascular disease. Atherosclerosis, 2013, 229(2), 440-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.05.019] [PMID: 23880200]
[91]
Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med., 2013, 368(17), 1575-1584.
[http://dx.doi.org/10.1056/NEJMoa1109400] [PMID: 23614584]
[92]
Pastori, D.; Carnevale, R.; Nocella, C.; Novo, M.; Santulli, M.; Cammisotto, V.; Menichelli, D.; Pignatelli, P.; Violi, F. Gut‐derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to mediterranean diet. J. Am. Heart Assoc., 2017, 6(6), e005784.
[http://dx.doi.org/10.1161/JAHA.117.005784] [PMID: 28584074]
[93]
Mitsou, E.K.; Kakali, A.; Antonopoulou, S.; Mountzouris, K.C.; Yannakoulia, M.; Panagiotakos, D.B.; Kyriacou, A. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br. J. Nutr., 2017, 117(12), 1645-1655.
[http://dx.doi.org/10.1017/S0007114517001593] [PMID: 28789729]
[94]
Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr., 2015, 54(3), 325-341.
[http://dx.doi.org/10.1007/s00394-015-0852-y] [PMID: 25672526]
[95]
Gao, X.; Jia, R.; Xie, L.; Kuang, L.; Feng, L.; Wan, C. Obesity in school-aged children and its correlation with Gut E. coli and Bifidobacteria: A case–control study. BMC Pediatr., 2015, 15(1), 64.
[http://dx.doi.org/10.1186/s12887-015-0384-x] [PMID: 26024884]
[96]
Garcia-Mantrana, I.; Selma-Royo, M.; Alcantara, C.; Collado, M.C. Shifts on Gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Front. Microbiol., 2018, 9, 890.
[http://dx.doi.org/10.3389/fmicb.2018.00890] [PMID: 29867803]
[97]
Gutiérrez-Díaz, I.; Fernández-Navarro, T.; Sánchez, B.; Margolles, A.; González, S. Mediterranean diet and faecal microbiota: A transversal study. Food Funct., 2016, 7(5), 2347-2356.
[http://dx.doi.org/10.1039/C6FO00105J] [PMID: 27137178]
[98]
Gutiérrez-Díaz, I.; Fernández-Navarro, T.; Salazar, N.; Bartolomé, B.; Moreno-Arribas, M.V.; de Andres-Galiana, E.J.; Fernández-Martínez, J.L.; de los Reyes-Gavilán, C.G.; Gueimonde, M.; González, S. Adherence to a mediterranean diet influences the fecal metabolic profile of microbial-derived phenolics in a spanish cohort of middle-age and older people. J. Agric. Food Chem., 2017, 65(3), 586-595.
[http://dx.doi.org/10.1021/acs.jafc.6b04408] [PMID: 28029051]
[99]
Graf, D.; Di Cagno, R.; Fåk, F.; Flint, H.J.; Nyman, M.; Saarela, M.; Watzl, B. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis., 2015, 26, 26164.
[http://dx.doi.org/10.3402/mehd.v26.26164] [PMID: 25656825]
[100]
Petakh, P.; Oksenych, V.; Kamyshnyi, A. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin. Biomed. Pharmacother., 2023, 163, 114892.
[http://dx.doi.org/10.1016/j.biopha.2023.114892] [PMID: 37196542]
[101]
Houtman, T.A.; Eckermann, H.A.; Smidt, H.; de Weerth, C. Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci. Rep., 2022, 12(1), 3140.
[http://dx.doi.org/10.1038/s41598-022-07176-6] [PMID: 35210542]
[102]
Meslier, V.; Laiola, M.; Roager, H.M.; De Filippis, F.; Roume, H.; Quinquis, B.; Giacco, R.; Mennella, I.; Ferracane, R.; Pons, N.; Pasolli, E.; Rivellese, A.; Dragsted, L.O.; Vitaglione, P.; Ehrlich, S.D.; Ercolini, D. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut, 2020, 69(7), 1258-1268.
[http://dx.doi.org/10.1136/gutjnl-2019-320438] [PMID: 32075887]
[103]
Singh, R.; Chandrashekharappa, S.; Bodduluri, S.R.; Baby, B.V.; Hegde, B.; Kotla, N.G.; Hiwale, A.A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M.; Langille, M.G.I.; Douglas, G.M.; Cheng, X.; Rouchka, E.C.; Waigel, S.J.; Dryden, G.W.; Alatassi, H.; Zhang, H.G.; Haribabu, B.; Vemula, P.K.; Jala, V.R. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun., 2019, 10(1), 89.
[http://dx.doi.org/10.1038/s41467-018-07859-7] [PMID: 30626868]
[104]
Selma, M.V.; González-Sarrías, A.; Salas-Salvadó, J.; Andrés-Lacueva, C.; Alasalvar, C.; Örem, A.; Tomás-Barberán, F.A.; Espín, J.C. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clin. Nutr., 2018, 37(3), 897-905.
[http://dx.doi.org/10.1016/j.clnu.2017.03.012] [PMID: 28347564]
[105]
De Filippis, F.; Pasolli, E.; Tett, A.; Tarallo, S.; Naccarati, A.; De Angelis, M.; Neviani, E.; Cocolin, L.; Gobbetti, M.; Segata, N.; Ercolini, D. Distinct genetic and functional traits of human intestinal Prevotella copri strains are associated with different habitual diets. Cell Host Microbe, 2019, 25(3), 444-453.e3.
[http://dx.doi.org/10.1016/j.chom.2019.01.004] [PMID: 30799264]
[106]
Haro, C.; Garcia-Carpintero, S.; Alcala-Diaz, J.F.; Gomez-Delgado, F.; Delgado-Lista, J.; Perez-Martinez, P.; Rangel Zuñiga, O.A.; Quintana-Navarro, G.M.; Landa, B.B.; Clemente, J.C.; Lopez-Miranda, J.; Camargo, A.; Perez-Jimenez, F. The gut microbial community in metabolic syndrome patients is modified by diet. J. Nutr. Biochem., 2016, 27, 27-31.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.011] [PMID: 26376027]
[107]
Haro, C.; Montes-Borrego, M.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; Gómez-Delgado, F.; Pérez-Martínez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Tinahones, F.J.; Landa, B.B.; López-Miranda, J.; Camargo, A.; Pérez-Jiménez, F. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J. Clin. Endocrinol. Metab., 2016, 101(1), 233-242.
[http://dx.doi.org/10.1210/jc.2015-3351] [PMID: 26505825]
[108]
Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498(7452), 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[109]
Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; Peng, Y.; Zhang, D.; Jie, Z.; Wu, W.; Qin, Y.; Xue, W.; Li, J.; Han, L.; Lu, D.; Wu, P.; Dai, Y.; Sun, X.; Li, Z.; Tang, A.; Zhong, S.; Li, X.; Chen, W.; Xu, R.; Wang, M.; Feng, Q.; Gong, M.; Yu, J.; Zhang, Y.; Zhang, M.; Hansen, T.; Sanchez, G.; Raes, J.; Falony, G.; Okuda, S.; Almeida, M.; LeChatelier, E.; Renault, P.; Pons, N.; Batto, J.M.; Zhang, Z.; Chen, H.; Yang, R.; Zheng, W.; Li, S.; Yang, H.; Wang, J.; Ehrlich, S.D.; Nielsen, R.; Pedersen, O.; Kristiansen, K.; Wang, J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418), 55-60.
[http://dx.doi.org/10.1038/nature11450] [PMID: 23023125]
[110]
Hatziioanou, D.; Mayer, M.J.; Duncan, S.H.; Flint, H.J.; Narbad, A. A representative of the dominant human colonic Firmicutes, Roseburia faecis M72/1, forms a novel bacteriocin-like substance. Anaerobe, 2013, 23, 5-8.
[http://dx.doi.org/10.1016/j.anaerobe.2013.07.006] [PMID: 23916720]
[111]
Marlow, G.; Ellett, S.; Ferguson, I.R.; Zhu, S.; Karunasinghe, N.; Jesuthasan, A.C.; Han, D.Y.; Fraser, A.G.; Ferguson, L.R. Transcriptomics to study the effect of a Mediterranean-inspired diet on inflammation in Crohn’s disease patients. Hum. Genomics, 2013, 7(1), 24.
[http://dx.doi.org/10.1186/1479-7364-7-24] [PMID: 24283712]
[112]
Kimble, R.; Gouinguenet, P.; Ashor, A.; Stewart, C.; Deighton, K.; Matu, J.; Griffiths, A.; Malcomson, F.C.; Joel, A.; Houghton, D.; Stevenson, E.; Minihane, A.M.; Siervo, M.; Shannon, O.M.; Mathers, J.C. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit. Rev. Food Sci. Nutr., 2023, 63(27), 8698-8719.
[http://dx.doi.org/10.1080/10408398.2022.2057416] [PMID: 35361035]
[113]
Okada, E.; Nakamura, K.; Ukawa, S.; Wakai, K.; Date, C.; Iso, H.; Tamakoshi, A. The Japanese food score and risk of all-cause, CVD and cancer mortality: The Japan Collaborative Cohort Study. Br. J. Nutr., 2018, 120(4), 464-471.
[http://dx.doi.org/10.1017/S000711451800154X] [PMID: 29923480]
[114]
Shimazu, T.; Kuriyama, S.; Hozawa, A.; Ohmori, K.; Sato, Y.; Nakaya, N.; Nishino, Y.; Tsubono, Y.; Tsuji, I. Dietary patterns and cardiovascular disease mortality in Japan: A prospective cohort study. Intern. J. Epidem., 2023, 36(3), 600-609.
[http://dx.doi.org/10.1093/ije/dym005]
[115]
[116]
Suzuki, N.; Goto, Y.; Ota, H.; Kito, K.; Mano, F.; Joo, E.; Ikeda, K.; Inagaki, N.; Nakayama, T. Characteristics of the japanese diet described in epidemiologic publications: A qualitative systematic review. J. Nutr. Sci. Vitaminol., 2018, 64(2), 129-137.
[http://dx.doi.org/10.3177/jnsv.64.129] [PMID: 29710030]
[117]
Cheng, I.C.; Shang, H.F.; Lin, T.F.; Wang, T.H.; Lin, H.S.; Lin, S.H. Effect of fermented soy milk on the intestinal bacterial ecosystem. World J. Gastroenterol., 2005, 11(8), 1225-1227.
[http://dx.doi.org/10.3748/wjg.v11.i8.1225] [PMID: 15754410]
[118]
Shannon, E.; Conlon, M.; Hayes, M. Seaweed components as potential modulators of the gut microbiota. Mar. Drugs, 2021, 19(7), 358.
[http://dx.doi.org/10.3390/md19070358] [PMID: 34201794]
[119]
Wang, L.; Shu, X.O.; Cai, H.; Yang, Y.; Xu, W.; Wu, J.; Cai, Q.; Zheng, W.; Yu, D. Tea consumption and gut microbiome in older chinese adults. J. Nutr., 2023, 153(1), 293-300.
[http://dx.doi.org/10.1016/j.tjnut.2022.12.002] [PMID: 36913464]
[120]
Asano, M.; Nakano, F.; Nakatsukasa, E.; Tsuduki, T. The 1975 type Japanese diet improves the gut microbial flora and inhibits visceral fat accumulation in mice. Biosci. Biotechnol. Biochem., 2020, 84(7), 1475-1485.
[http://dx.doi.org/10.1080/09168451.2020.1747973] [PMID: 32255390]
[121]
Schweiger, M.; Schreiber, R.; Haemmerle, G.; Lass, A.; Fledelius, C.; Jacobsen, P.; Tornqvist, H.; Zechner, R.; Zimmermann, R. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem., 2006, 281(52), 40236-40241.
[http://dx.doi.org/10.1074/jbc.M608048200] [PMID: 17074755]
[122]
Sugawara, S.; Kushida, M.; Iwagaki, Y.; Asano, M.; Yamamoto, K.; Tomata, Y.; Tsuji, I.; Tsuduki, T. The 1975 type japanese diet improves lipid metabolic parameters in younger adults: A randomized controlled trial. J. Oleo Sci., 2018, 67(5), 599-607.
[http://dx.doi.org/10.5650/jos.ess17259] [PMID: 29710042]
[123]
Kushida, M.; Sugawara, S.; Asano, M.; Yamamoto, K.; Fukuda, S.; Tsuduki, T. Effects of the 1975 Japanese diet on the gut microbiota in younger adults. J. Nutr. Biochem., 2019, 64, 121-127.
[http://dx.doi.org/10.1016/j.jnutbio.2018.10.011] [PMID: 30502656]
[124]
Seura, T.; Fukuwatari, T. Japanese diet score is associated with gut microbiota composition in young japanese adults. J. Nutr. Sci. Vitaminol., 2019, 65(5), 414-420.
[http://dx.doi.org/10.3177/jnsv.65.414] [PMID: 31666478]
[125]
Nam, Y.D.; Jung, M.J.; Roh, S.W.; Kim, M.S.; Bae, J.W. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One, 2011, 6(7), e22109.
[http://dx.doi.org/10.1371/journal.pone.0022109] [PMID: 21829445]
[126]
Larsen, J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 2017, 151(4), 363-374.
[http://dx.doi.org/10.1111/imm.12760] [PMID: 28542929]
[127]
Hosomi, K.; Saito, M.; Park, J.; Murakami, H.; Shibata, N.; Ando, M.; Nagatake, T.; Konishi, K.; Ohno, H.; Tanisawa, K.; Mohsen, A.; Chen, Y.A.; Kawashima, H.; Natsume-Kitatani, Y.; Oka, Y.; Shimizu, H.; Furuta, M.; Tojima, Y.; Sawane, K.; Saika, A.; Kondo, S.; Yonejima, Y.; Takeyama, H.; Matsutani, A.; Mizuguchi, K.; Miyachi, M.; Kunisawa, J. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat. Commun., 2022, 13(1), 4477.
[http://dx.doi.org/10.1038/s41467-022-32015-7] [PMID: 35982037]
[128]
Nishijima, S.; Suda, W.; Oshima, K.; Kim, S.W.; Hirose, Y.; Morita, H.; Hattori, M. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res., 2016, 23(2), 125-133.
[http://dx.doi.org/10.1093/dnares/dsw002] [PMID: 26951067]
[129]
Hehemann, J.H.; Correc, G.; Barbeyron, T.; Helbert, W.; Czjzek, M.; Michel, G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature, 2010, 464(7290), 908-912.
[http://dx.doi.org/10.1038/nature08937] [PMID: 20376150]
[130]
Agnoli, C.; Krogh, V.; Grioni, S.; Sieri, S.; Palli, D.; Masala, G.; Sacerdote, C.; Vineis, P.; Tumino, R.; Frasca, G.; Pala, V.; Berrino, F.; Chiodini, P.; Mattiello, A.; Panico, S. A priori-defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort. J. Nutr., 2011, 141(8), 1552-1558.
[http://dx.doi.org/10.3945/jn.111.140061] [PMID: 21628636]
[131]
Pastori, D.; Carnevale, R.; Bartimoccia, S.; Nocella, C.; Tanzilli, G.; Cangemi, R.; Vicario, T.; Catena, M.; Violi, F.; Pignatelli, P. Does mediterranean diet reduce cardiovascular events and oxidative stress in atrial fibrillation? Antioxid. Redox Signal., 2015, 23(8), 682-687.
[http://dx.doi.org/10.1089/ars.2015.6326] [PMID: 25825798]
[132]
Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis., 2006, 16(8), 559-568.
[http://dx.doi.org/10.1016/j.numecd.2005.08.006] [PMID: 17126772]
[133]
Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ros, E.; Covas, M.I.; Fiol, M.; Wärnberg, J.; Arós, F.; Ruíz-Gutiérrez, V.; Lamuela-Raventós, R.M.; Lapetra, J.; Muñoz, M.A.; Martínez, J.A.; Sáez, G.; Serra-Majem, L.; Pintó, X.; Mitjavila, M.T.; Tur, J.A.; Portillo, M.P.; Estruch, R. Cohort Profile: Design and methods of the predimed study. Int. J. Epidemiol., 2012, 41(2), 377-385.
[http://dx.doi.org/10.1093/ije/dyq250] [PMID: 21172932]
[134]
Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ, 1995, 311(7018), 1457-1460.
[http://dx.doi.org/10.1136/bmj.311.7018.1457] [PMID: 8520331]
[135]
Tomata, Y.; Zhang, S.; Kaiho, Y.; Tanji, F.; Sugawara, Y.; Tsuji, I. Nutritional characteristics of the Japanese diet: A cross-sectional study of the correlation between Japanese Diet Index and nutrient intake among community-based elderly Japanese. Nutrition, 2019, 57, 115-121.
[http://dx.doi.org/10.1016/j.nut.2018.06.011] [PMID: 30157468]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy