Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Relevance of Conventional Herbal Remedies in the Prevention and Treatment of Malignant Tumors: Looking Toward the Future

In Press, (this is not the final "Version of Record"). Available online 15 January, 2024
Author(s): Priyanka Bajpai* and Phool Chandra
Published on: 15 January, 2024

DOI: 10.2174/0115733947266657231114075805

Price: $95

Abstract

Background: The second most prevalent cause of fatalities globally is malignant tumors. The avoidance and therapy of cancer proliferation still have many prospects for betterment despite enormous advancements. Chemotherapy can occasionally have a lot of unfavorable adverse reactions. Novel agents from botanicals, especially the use of cancer therapeutic ingredients, may decrease negative consequences.

Methods: There are currently several products from plants used for fighting cancer. However, numerous plant chemicals have not yet been examined in people but show extremely encouraging invitro anti-cancer properties. Further research is required to determine whether these plant chemicals are beneficial in treating human cancers.

Results: The present work has focused on the various traditional herbal remedies and the phytochemicals that exhibited promising anticancer impact. The desirable activity may be due to novel agents isolated from plant sources.

Conclusions: The present investigations address natural ingredients for cancer treatment and chemoprevention that are now being used in clinical settings and/or are undergoing clinical studies. Potential research concentrating on naturally anticancer drugs can create an entirely novel avenue in the fight against cancer that could significantly boost the chance of survival for cancer patients.

[1]
Preventing chronic diseases: A vital investment, in WHO press. Geneva: WHO Global report 2005.
[2]
Prakash O, Usmani S, Gupta A, Singh R, Singh N, Ved A. Bioactive natural polyphenols as apoptosis inducer: New strategies to combat cancer. Curr Bioact Compd 2018; 14.
[http://dx.doi.org/10.2174/1573407214666181030122046]
[3]
Prakash O, Usmani S, Singh R, Mahapatra DK, Gupta A. Cancer chemotherapy by novel bio-active natural products: Looking towards the future. Curr Cancer Ther Rev 2019; 15(1): 37-49.
[http://dx.doi.org/10.2174/1573394714666180321151315]
[4]
White RO, Beech BM, Miller S. Health care disparities and diabetes care: Practical considerations for primary care providers. Clin Diabetes 2009; 27(3): 105-12.
[http://dx.doi.org/10.2337/diaclin.27.3.105] [PMID: 21289869]
[5]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[6]
Prakash O, Singh R, Singh N, et al. Anticancer potential of naringenin, biosynthesis, molecular target, and structural perspectives. Mini Rev Med Chem 2022; 22(5): 758-69.
[http://dx.doi.org/10.2174/1389557521666210913112733] [PMID: 34517796]
[7]
Xing QQ, Li JM, Chen ZJ, et al. Global burden of common cancers attributable to metabolic risks from 1990 to 2019. Med 2023; 4(3): 168-181.e3.
[http://dx.doi.org/10.1016/j.medj.2023.02.002] [PMID: 36868237]
[8]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[9]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[10]
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the definition of cancer. Mol Cancer Res 2023; 21(11): 1142-7.
[http://dx.doi.org/10.1158/1541-7786.MCR-23-0411] [PMID: 37409952]
[11]
Nguyen SM, Pham AT, Nguyen LM, et al. Chemotherapy-induced toxicities and their associations with clinical and non-clinical factors among breast cancer patients in vietnam. Curr Oncol 2022; 29(11): 8269-84.
[http://dx.doi.org/10.3390/curroncol29110653] [PMID: 36354713]
[12]
Alter P, Herzum M, Soufi M, Schaefer J, Maisch B. Cardiotoxicity of 5-Fluorouracil. Cardiovasc Hematol Agents Med Chem 2006; 4(1): 1-5.
[http://dx.doi.org/10.2174/187152506775268785] [PMID: 16529545]
[13]
Rastogi N, Chag M, Ayyagari S. Myocardial ischemia after 5-fluorouracil chemotherapy. Int J Cardiol 1993; 42(3): 285-7.
[http://dx.doi.org/10.1016/0167-5273(93)90061-K] [PMID: 8138338]
[14]
Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways. Pharmacogenet Genomics 2011; 21(7): 440-6.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[15]
Dadson K, Thavendiranathan P, Hauck L, et al. Statins protect against early stages of doxorubicin-induced cardiotoxicity through the regulation of akt signaling and SERCA2. CJC Open 2022; 4(12): 1043-52.
[http://dx.doi.org/10.1016/j.cjco.2022.08.006] [PMID: 36562012]
[16]
Kilickap S, Akgul E, Aksoy S, Aytemir K, Barista I. Doxorubicin-induced second degree and complete atrioventricular block. Europace 2005; 7(3): 227-30.
[http://dx.doi.org/10.1016/j.eupc.2004.12.012] [PMID: 15878560]
[17]
Yemm KE, Alwan LM, Malik AB, Salazar LG. Renal toxicity with liposomal doxorubicin in metastatic breast cancer. J Oncol Pharm Pract 2019; 25(7): 1738-42.
[http://dx.doi.org/10.1177/1078155218798157] [PMID: 30170515]
[18]
Celik Samanci T, Gökcimen A, Kilic Eren M, Gürses KM, Pilevneli H, Kuyucu Y. Effects of bone marrow‐derived mesenchymal stem cells on doxorubicin‐induced liver injury in rats. J Biochem Mol Toxicol 2022; 36(4): e22985.
[http://dx.doi.org/10.1002/jbt.22985] [PMID: 35225400]
[19]
Laprise-Lachance M, Lemieux P, Grégoire JP. Risk of pulmonary toxicity of bleomycin and filgrastim. J Oncol Pharm Pract 2019; 25(7): 1638-44.
[http://dx.doi.org/10.1177/1078155218804293] [PMID: 30319063]
[20]
Ramasamy K, Thakkar DN, Adithan S, Selvarajan S, Dubashi B. Frequency and risk factors of bleomycin-induced pulmonary toxicity in South Indian patients with germ-cell tumors. J Cancer Res Ther 2021; 17(2): 443-9.
[http://dx.doi.org/10.4103/jcrt.JCRT_348_19] [PMID: 34121690]
[21]
Yonezawa R, Yamamoto S, Takenaka M, et al. TRPM2 channels in alveolar epithelial cells mediate bleomycin-induced lung inflammation. Free Radic Biol Med 2016; 90: 101-13.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.11.021] [PMID: 26600069]
[22]
Pretorius M, Steenkamp I, Spies L, Van der Linde G. Bleomycin-induced skin toxicity: A case of flagellate dermatitis. Dermatol Online J 2021; 27(8)
[http://dx.doi.org/10.5070/D327854721] [PMID: 34755969]
[23]
Senthilkumar S, Yogeeta SK, Subashini R, Devaki T. Attenuation of cyclophosphamide induced toxicity by squalene in experimental rats. Chem Biol Interact 2006; 160(3): 252-60.
[http://dx.doi.org/10.1016/j.cbi.2006.02.004] [PMID: 16554041]
[24]
Loscalzo J. Molecular interaction networks and drug development: Novel approach to drug target identification and drug repositioning. FASEB J 2023; 37(1): e22660.
[http://dx.doi.org/10.1096/fj.202201683R] [PMID: 36468661]
[25]
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5): 210-29.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[26]
Narayan C, Kumar A. Antineoplastic and immunomodulatory effect of polyphenolic components of Achyranthes aspera (PCA) extract on urethane induced lung cancer in vivo. Mol Biol Rep 2014; 41(1): 179-91.
[http://dx.doi.org/10.1007/s11033-013-2850-6] [PMID: 24190493]
[27]
Mondal A, Banerjee S, Bose S, et al. Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2022; 175: 105837.
[http://dx.doi.org/10.1016/j.phrs.2021.105837] [PMID: 34450316]
[28]
Ajaya Kumar R, Sridevi K, Vijaya Kumar N, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol 2004; 92(2-3): 291-5.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
[29]
Ilango S, Sahoo DK, Paital B, et al. A review on annona muricata and its anticancer activity. Cancers 2022; 14(18): 4539.
[http://dx.doi.org/10.3390/cancers14184539] [PMID: 36139697]
[30]
Kviecinski MR, Benelli P, Felipe KB, et al. SFE from Bidens pilosa Linné to obtain extracts rich in cytotoxic polyacetylenes with antitumor activity. J Supercrit Fluids 2011; 56(3): 243-8.
[http://dx.doi.org/10.1016/j.supflu.2010.12.011]
[31]
Cheng G, Zhang Y, Zhang X, et al. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, functions by inducing apoptosis in human glioblastoma U87MG cells. Bioorg Med Chem Lett 2006; 16(17): 4575-80.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.020] [PMID: 16784856]
[32]
Kwon NY, Sung SH, Sung HK, Park JK. Anticancer activity of bee venom components against breast cancer. Toxins 2022; 14(7): 460.
[http://dx.doi.org/10.3390/toxins14070460] [PMID: 35878198]
[33]
Romano B, Borrelli F, Pagano E, Cascio MG, Pertwee RG, Izzo AA. Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine 2014; 21(5): 631-9.
[http://dx.doi.org/10.1016/j.phymed.2013.11.006] [PMID: 24373545]
[34]
Tian QE, Li HD, Yan M, Cai HL, Tan QY, Zhang WY. Astragalus polysaccharides can regulate cytokine and P-glycoprotein expression in H22 tumor-bearing mice. World J Gastroenterol 2012; 18(47): 7079-86.
[http://dx.doi.org/10.3748/wjg.v18.i47.7079] [PMID: 23323011]
[35]
Darwiche N, El-Sabban M, Gali-Muhtasib H, et al. Purified salograviolide a isolated from centaurea ainetensis causes growth inhibition and apoptosis in neoplastic epidermal cells. Int J Oncol 2008; 32(4): 841-9.
[http://dx.doi.org/10.3892/ijo.32.4.841] [PMID: 18360711]
[36]
Wang Y, Ren N, Rankin GO, et al. Anti-proliferative effect and cell cycle arrest induced by saponins extracted from tea (Camellia sinensis) flower in human ovarian cancer cells. J Funct Foods 2017; 37: 310-21.
[http://dx.doi.org/10.1016/j.jff.2017.08.001] [PMID: 32719725]
[37]
Matić IZ, Ergün S, Đorđić Crnogorac M, et al. Cytotoxic activities of Hypericum perforatum L. extracts against 2D and 3D cancer cell models. Cytotechnology 2021; 73(3): 373-89.
[http://dx.doi.org/10.1007/s10616-021-00464-5] [PMID: 34149173]
[38]
Tundis R, Loizzo MR, Bonesi M, Peruzzi L, Efferth T. Daphne striata Tratt. and D. mezereum L.: a study of anti-proliferative activity towards human cancer cells and antioxidant properties. Nat Prod Res 2019; 33(12): 1809-12.
[http://dx.doi.org/10.1080/14786419.2018.1437432] [PMID: 29431466]
[39]
Usmani S, Prakash O, Gupta A, et al. Bioactive extracts of ziziphus mauritiana induces apoptosis in A549 human lung epithelial carcinoma cells through the generation of reactive oxygen species. Curr Cancer Ther Rev 2022; 18(1): 57-68.
[http://dx.doi.org/10.2174/1573394717666210805115802]
[40]
Vimalraj S, Ashokkumar T, Saravanan S. Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties. Biomed Pharmacother 2018; 105: 440-8.
[http://dx.doi.org/10.1016/j.biopha.2018.05.151] [PMID: 29879628]
[41]
Regassa H, Sourirajan A, Kumar V, Pandey S, Kumar D, Dev K. A review of medicinal plants of the himalayas with anti-proliferative activity for the treatment of various cancers. Cancers 2022; 14(16): 3898.
[http://dx.doi.org/10.3390/cancers14163898] [PMID: 36010892]
[42]
Kumar DRN, George VC, Suresh PK, Kumar RA. Cytotoxicity, apoptosis induction and anti-metastatic potential of Oroxylum indicum in human breast cancer cells. Asian Pac J Cancer Prev 2012; 13(6): 2729-34.
[http://dx.doi.org/10.7314/APJCP.2012.13.6.2729] [PMID: 22938449]
[43]
Wang X, Gao A, Jiao Y, Zhao Y, Yang X. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int J Biol Macromol 2018; 108: 625-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.006] [PMID: 29233711]
[44]
Tayarani-Najaran Z, Eghbali-Feriz S, Taleghani A, et al. Anti-melanogenesis and anti-tyrosinase properties of Pistacia atlantica subsp. mutica extracts on B16F10 murine melanoma cells. Res Pharm Sci 2018; 13(6): 533-45.
[http://dx.doi.org/10.4103/1735-5362.245965] [PMID: 30607151]
[45]
Soni D, Grover A. “Picrosides” from Picrorhiza kurroa as potential anti-carcinogenic agents. Biomed Pharmacother 2019; 109: 1680-7.
[http://dx.doi.org/10.1016/j.biopha.2018.11.048] [PMID: 30551422]
[46]
Kumar S, Singh R, Dutta D, et al. In vitro anticancer activity of methanolic extract of justicia adhatoda leaves with special emphasis on human breast cancer cell line. Molecules 2022; 27(23): 8222.
[http://dx.doi.org/10.3390/molecules27238222] [PMID: 36500313]
[47]
Brandon-Warner E, Eheim AL, Foureau DM, Walling TL, Schrum LW, McKillop IH. Silibinin (Milk Thistle) potentiates ethanol-dependent hepatocellular carcinoma progression in male mice. Cancer Lett 2012; 326(1): 88-95.
[http://dx.doi.org/10.1016/j.canlet.2012.07.028] [PMID: 22863537]
[48]
Li YL, Gan GP, Zhang HZ, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol 2007; 113(1): 115-24.
[http://dx.doi.org/10.1016/j.jep.2007.05.016] [PMID: 17606345]
[49]
Setty Balakrishnan A, Nathan AA, Kumar M, Ramamoorthy S, Ramia Mothilal SK. Withania somnifera targets interleukin-8 and cyclooxygenase-2 in human prostate cancer progression. Prostate Int 2017; 5(2): 75-83.
[http://dx.doi.org/10.1016/j.prnil.2017.03.002] [PMID: 28593171]
[50]
Pathak K, Pathak MP, Saikia R, et al. Cancer chemotherapy via natural bioactive compounds. Curr Drug Discov Technol 2022; 19(4): e310322202888.
[http://dx.doi.org/10.2174/1570163819666220331095744] [PMID: 35362385]
[51]
Koo HN, Hong SH, Song BK, Kim CH, Yoo YH, Kim HM. Taraxacum officinale induces cytotoxicity through TNF-α and IL-1α secretion in Hep G2 cells. Life Sci 2004; 74(9): 1149-57.
[http://dx.doi.org/10.1016/j.lfs.2003.07.030] [PMID: 14687655]
[52]
Ravi Shankara BE, Dhananjaya BL, Ramachandra YL, et al. Evaluating the anticancer potential of ethanolic gall extract of Terminalia chebula (Gaertn.) Retz. (combretaceae). Pharmacognosy Res 2016; 8(3): 209-12.
[http://dx.doi.org/10.4103/0974-8490.182919] [PMID: 27365992]
[53]
Park GH, Park JH, Song HM, et al. Anti-cancer activity of Ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells. BMC Complement Altern Med 2014; 14(1): 408.
[http://dx.doi.org/10.1186/1472-6882-14-408] [PMID: 25338635]
[54]
Johnson W, Tchounwou P, Yedjou C. Therapeutic mechanisms of vernonia amygdalina delile in the treatment of prostate cancer. Molecules 2017; 22(10): 1594.
[http://dx.doi.org/10.3390/molecules22101594] [PMID: 28937624]
[55]
Allsopp P, Possemiers S, Campbell D, Oyarzábal IS, Gill C, Rowland I. An exploratory study into the putative prebiotic activity of fructans isolated from Agave angustifolia and the associated anticancer activity. Anaerobe 2013; 22: 38-44.
[http://dx.doi.org/10.1016/j.anaerobe.2013.05.006] [PMID: 23714623]
[56]
Kim TY, Koh KS, Ju JM, et al. Proteomics analysis of antitumor activity of agrimonia pilosa ledeb. in human oral squamous cell carcinoma cells. Curr Issues Mol Biol 2022; 44(8): 3324-34.
[http://dx.doi.org/10.3390/cimb44080229] [PMID: 35892715]
[57]
Jeong M, Kim HM, Ahn JH, Lee KT, Jang DS, Choi JH. 9-Hydroxycanthin-6-one isolated from stem bark of Ailanthus altissima induces ovarian cancer cell apoptosis and inhibits the activation of tumor-associated macrophages. Chem Biol Interact 2018; 280: 99-108.
[http://dx.doi.org/10.1016/j.cbi.2017.12.011] [PMID: 29225138]
[58]
Baradwaj RG, Rao MV, Senthil Kumar T. Novel purification of 1‘S-1’-Acetoxychavicol acetate from Alpinia galanga and its cytotoxic plus antiproliferative activity in colorectal adenocarcinoma cell line SW480. Biomed Pharmacother 2017; 91: 485-93.
[http://dx.doi.org/10.1016/j.biopha.2017.04.114] [PMID: 28477464]
[59]
Numata M, Yamamoto A, Moribayashi A, Yamada H. Antitumor components isolated from the Chinese herbal medicine Coix lachryma-jobi. Planta Med 1994; 60(4): 356-9.
[http://dx.doi.org/10.1055/s-2006-959500] [PMID: 7938271]
[60]
Chang SH, Bae JH, Hong DP, et al. Dryopteris crassirhizoma has anti-cancer effects through both extrinsic and intrinsic apoptotic pathways and G0/G1 phase arrest in human prostate cancer cells. J Ethnopharmacol 2010; 130(2): 248-54.
[http://dx.doi.org/10.1016/j.jep.2010.04.038] [PMID: 20438825]
[61]
Ko WG, Kang TH, Lee SJ, et al. Polymethoxyflavonoids from Vitex rotundifolia inhibit proliferation by inducing apoptosis in human myeloid leukemia cells. Food Chem Toxicol 2000; 38(10): 861-5.
[http://dx.doi.org/10.1016/S0278-6915(00)00079-X] [PMID: 11039319]
[62]
Al-Menhali A, Al-Rumaihi A, Al-Mohammed H, et al. Thymus vulgaris (thyme) inhibits proliferation, adhesion, migration, and invasion of human colorectal cancer cells. J Med Food 2015; 18(1): 54-9.
[http://dx.doi.org/10.1089/jmf.2013.3121] [PMID: 25379783]
[63]
Loonat A, Chandran R, Pellow J, Abrahamse H. Photodynamic effects of thuja occidentalis on lung cancer cells. Front Pharmacol 2022; 13: 928135.
[http://dx.doi.org/10.3389/fphar.2022.928135] [PMID: 35910365]
[64]
Ebrahimzadeh MA, Hashemi Z, Mohammadyan M, Fakhar M, Mortazavi-Derazkola S. In vitro cytotoxicity against human cancer cell lines (MCF-7 and AGS), antileishmanial and antibacterial activities of green synthesized silver nanoparticles using Scrophularia striata extract. Surf Interfaces 2021; 23: 100963.
[http://dx.doi.org/10.1016/j.surfin.2021.100963]
[65]
Huang YW, Chuang CY, Hsieh YS, et al. Rubus idaeus extract suppresses migration and invasion of human oral cancer by inhibiting MMP-2 through modulation of the Erk1/2 signaling pathway. Environ Toxicol 2017; 32(3): 1037-46.
[http://dx.doi.org/10.1002/tox.22302] [PMID: 27322511]
[66]
Shenouda NS, Sakla MS, Newton LG, et al. Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo. Endocr J 2007; 31(1): 72-81.
[http://dx.doi.org/10.1007/s12020-007-0014-y] [PMID: 17709901]
[67]
Tandrasasmita OM, Lee JS, Baek SH, Tjandrawinata RR. Induction of cellular apoptosis in human breast cancer by DLBS1425, a Phaleria macrocarpa compound extract, via down-regulation of PI3-kinase/AKT pathway. Cancer Biol Ther 2010; 10(8): 814-23.
[http://dx.doi.org/10.4161/cbt.10.8.13085] [PMID: 20703095]
[68]
Pennisi R, Ben Amor I, Gargouri B, et al. Analysis of antioxidant and antiviral effects of olive (Olea europaea L.) leaf extracts and pure compound using cancer cell model. Biomolecules 2023; 13(2): 238.
[http://dx.doi.org/10.3390/biom13020238] [PMID: 36830607]
[69]
Park C, Lee WS, Han MH, et al. LONICERA JAPONICA Thunb. Induces caspase‐dependent apoptosis through death receptors and suppression of AKT in U937 human leukemic cells. Phytother Res 2018; 32(3): 504-13.
[http://dx.doi.org/10.1002/ptr.5996] [PMID: 29193390]
[70]
Ramkumar R, Balasubramani G, Raja RK, et al. Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. Artif Cells Nanomed Biotechnol 2017; 45(4): 748-57.
[http://dx.doi.org/10.1080/21691401.2016.1276923] [PMID: 28064507]
[71]
Chang IS, Sy LK, Cao B, et al. Shotgun proteomics and quantitative pathway analysis of the mechanisms of action of dehydroeffusol, a bioactive phytochemical with anticancer activity from juncus effusus. J Proteome Res 2018; 17(7): 2470-9.
[http://dx.doi.org/10.1021/acs.jproteome.8b00227] [PMID: 29812950]
[72]
Abdellatif AAH, Alsharidah M. Evaluation of the anticancer activity of Origanum Marjoram as a safe natural drink for daily use. Drug Dev Ind Pharm 2023; 13: 1-8.
[http://dx.doi.org/10.1080/03639045.2023.2257796] [PMID: 37688795]
[73]
Juaid N, Amin A, Abdalla A, et al. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int J Mol Sci 2021; 22(19): 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[74]
Salem AA, Lotfy M, Amin A, Ghattas MA. Characterization of human serum albumin’s interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques. Biochem Biophys Rep 2021; 25: 100901.
[http://dx.doi.org/10.1016/j.bbrep.2019.100670] [PMID: 31535038]
[75]
Abdalla Y, Abdalla A, Hamza AA, Amin A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front Pharmacol 2022; 12: 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[76]
Nelson DR, Hrout AA, Alzahmi AS, Chaiboonchoe A, Amin A, Salehi-Ashtiani K. Molecular mechanisms behind safranal’s toxicity to HepG2 cells from dual omics. Antioxidants 2022; 11(6): 1125.
[http://dx.doi.org/10.3390/antiox11061125] [PMID: 35740022]
[77]
Abdalla A, Murali C, Amin A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In Vitro and ex vivo insights. Front Oncol 2022; 11(11): 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[78]
Lozon L, Saleh E, Menon V, Ramadan WS, Amin A, El-Awady R. Effect of safranal on the response of cancer cells to topoisomerase I inhibitors: Does sequence matter? Front Pharmacol 2022; 13: 938471.
[http://dx.doi.org/10.3389/fphar.2022.938471] [PMID: 36120345]
[79]
Ibrahim S, Baig B, Hisaindee S, et al. Development and evaluation of crocetin-functionalized pegylated magnetite nanoparticles for hepatocellular carcinoma. Molecules 2023; 28(7): 2882.
[http://dx.doi.org/10.3390/molecules28072882] [PMID: 37049645]
[80]
Awad B, Hamza AA, Al-Maktoum A, Al-Salam S, Amin A. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma. Cancers 2023; 15(16): 4063.
[http://dx.doi.org/10.3390/cancers15164063] [PMID: 37627094]
[81]
Salmerón-Manzano E, Garrido-Cardenas JA, Manzano-Agugliaro F. Worldwide research trends on medicinal plants. Int J Environ Res Public Health 2020; 17(10): 3376.
[http://dx.doi.org/10.3390/ijerph17103376] [PMID: 32408690]
[82]
Desai A, Qazi G, Ganju R, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab 2008; 9(7): 581-91.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[83]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[84]
Narayanankutty A, Sidhic J, George S. Traditional medicinal plants usage in cancer therapy and chemoprevention: A review of preclinical and clinical studies. Curr Nutr Food Sci 2023; 19.
[http://dx.doi.org/10.2174/1573401319666230816141305]
[85]
Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: Evidence from clinical studies. Avicenna J Phytomed 2015; 5(2): 84-97.
[PMID: 25949949]
[86]
Sancilio S, Di Staso S, Sebastiani S, et al. Curcuma longa is able to induce apoptotic cell death of pterygium-derived human keratinocytes. BioMed Res Int 2017; 2017: 1-9.
[http://dx.doi.org/10.1155/2017/2956597] [PMID: 29392130]
[87]
Suantawee T, Thilavech T, Cheng H, Adisakwattana S. Cyanidin attenuates methylglyoxal-induced oxidative stress and apoptosis in INS-1 pancreatic β-cells by increasing glyoxalase-1 activity. Nutrients 2020; 12(5): 1319.
[http://dx.doi.org/10.3390/nu12051319] [PMID: 32384625]
[88]
Kedhari Sundaram M, Raina R, Afroze N, et al. Quercetin modulates signaling pathways and induces apoptosis in cervical cancer cells. Biosci Rep 2019; 39(8): BSR20190720.
[http://dx.doi.org/10.1042/BSR20190720] [PMID: 31366565]
[89]
Liu Q, Hodge J, Wang J, et al. Emodin reduces breast cancer lung metastasis by suppressing macrophage-induced breast cancer cell epithelial-mesenchymal transition and cancer stem cell formation. Theranostics 2020; 10(18): 8365-81.
[http://dx.doi.org/10.7150/thno.45395] [PMID: 32724475]
[90]
Khozooei S, Lettau K, Barletta F, et al. Fisetin induces DNA double-strand break and interferes with the repair of radiation-induced damage to radiosensitize triple negative breast cancer cells. J Exp Clin Cancer Res 2022; 41(1): 256.
[http://dx.doi.org/10.1186/s13046-022-02442-x] [PMID: 35989353]
[91]
Khan S, Nayak D, Khurana A, Manchanda RK, Tandon C, Tandon S. In vitro assessment of homeopathic potencies of hydrastis canadensis on hormone-dependent and independent breast cancer. Homeopathy 2020; 109(4): 198-206.
[http://dx.doi.org/10.1055/s-0040-1709668] [PMID: 32610349]
[92]
Geromichalos GD, Papadopoulos T, Sahpazidou D, Sinakos Z. Safranal, a Crocus sativus L constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study. Food Chem Toxicol 2014; 74: 45-50.
[http://dx.doi.org/10.1016/j.fct.2014.09.001] [PMID: 25239662]
[93]
Chen SS, Gu Y, Lu F, et al. Antiangiogenic effect of crocin on breast cancer cell MDA-MB-231. J Thorac Dis 2019; 11(11): 4464-73.
[http://dx.doi.org/10.21037/jtd.2019.11.18] [PMID: 31903234]
[94]
Li S, Shen XY, Ouyang T, Qu Y, Luo T, Wang HQ. Synergistic anticancer effect of combined crocetin and cisplatin on KYSE-150 cells via p53/p21 pathway. Cancer Cell Int 2017; 17(1): 98.
[http://dx.doi.org/10.1186/s12935-017-0468-9] [PMID: 29093644]
[95]
Shoyama Y, Fujimoto K, Ohta T, et al. Suppression of polyps formation by saffron extract in Adenomatous polyposis coli Min/+ mice. Pharmacognosy Res 2019; 11(1): 98-101.
[http://dx.doi.org/10.4103/pr.pr_152_18]
[96]
Amerizadeh F, Rezaei N, Rahmani F, et al. Crocin synergistically enhances the antiproliferative activity of 5‐flurouracil through Wnt/PI3K pathway in a mouse model of colitis‐associated colorectal cancer. J Cell Biochem 2018; 119(12): 10250-61.
[http://dx.doi.org/10.1002/jcb.27367] [PMID: 30129057]
[97]
Arzi L, Farahi A, Jafarzadeh N, Riazi G, Sadeghizadeh M, Hoshyar R. Inhibitory effect of crocin on metastasis of triple-negative breast cancer by interfering with wnt/β-catenin pathway in murine model. DNA Cell Biol 2018; 37(12): 1068-75.
[http://dx.doi.org/10.1089/dna.2018.4351] [PMID: 30351203]
[98]
Akbarpoor V, Karimabad MN, Mahmoodi M, Mirzaei MR. The saffron effects on expression pattern of critical self-renewal genes in adenocarcinoma tumor cell line (AGS). Gene Rep 2020; 19: 100629.
[http://dx.doi.org/10.1016/j.genrep.2020.100629]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy