Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

A Correlation Study to Comprehend the SAR-CoV-2 Viral Load, Antiviral Antibody Titer, and Severity of COVID-19 Symptoms Post-infection Amongst the Vaccinated Population in Kamrup District of As sam, Northeast India

Author(s): Aparup Patra, Asis Bala, Mojibur R. Khan and Ashis K. Mukherjee*

Volume 24, Issue 12, 2024

Published on: 12 January, 2024

Page: [1414 - 1421] Pages: 8

DOI: 10.2174/0118715303281124231213110004

Price: $65

Abstract

Background: As per the recommendation of the United States Food and Drug Administration, more research is needed to determine the antibody titer against COVID-19 vaccination.

Objective: The study aimed to understand the relationship between the antibody titer to the demographics, infection severity, and cycle threshold (CT) values of confirmed COVID-19 patients.

Methods: Initially, we obtained consent from 185 populations and included sixty RT-PCRpositive COVID-19 patients from Kamrup District in the Northeast State of Assam, India. The vaccination status was recorded and tested for the level of serum immunoglobulin (IgG). The CT values, gender, and clinical symptoms-based scoring (CSBS) correlated with their IgG value.

Results: Around 48% of participants gained an antibody titer more than the threshold value and showed CT values between 18-25. Moreover, the maximum distributed score above the average was found between the CT values 18-25.

Conclusion: The IgG titer value differs significantly amongst the vaccinated population, which may depend upon their genetic and demographic variability.

Graphical Abstract

[1]
Abbasi, J. The flawed science of antibody testing for SARS-CoV-2 immunity. JAMA, 2021, 326(18), 1781-1782.
[http://dx.doi.org/10.1001/jama.2021.18919] [PMID: 34673883]
[2]
FDA In Brief: FDA advises against use of SARS-CoV-2 antibody test results to evaluate immunity or protection from COVID-19, including after vaccination. Available from: https://www.fda.gov/news-events/press-announcements/fda-brief-fda-advises-against-use-sars-cov-2-antibody-test-results-evaluate-immunity-or-protection
[3]
Chvatal-Medina, M.; Mendez-Cortina, Y.; Patiño, P.J.; Velilla, P.A.; Rugeles, M.T. Antibody responses in COVID-19: A review. Front. Immunol., 2021, 12, 633184.
[http://dx.doi.org/10.3389/fimmu.2021.633184] [PMID: 33936045]
[4]
Earle, K.A.; Ambrosino, D.M.; Fiore-Gartland, A.; Goldblatt, D.; Gilbert, P.B.; Siber, G.R.; Dull, P.; Plotkin, S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine, 2021, 39(32), 4423-4428.
[http://dx.doi.org/10.1016/j.vaccine.2021.05.063] [PMID: 34210573]
[5]
Xiao, A.T.; Gao, C.; Zhang, S. Profile of specific antibodies to SARS-CoV-2: The first report. J. Infect., 2020, 81(1), 147-178.
[http://dx.doi.org/10.1016/j.jinf.2020.03.012] [PMID: 32209385]
[6]
Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; Qian, S.; Hong, C.; Wang, F.; Liu, Y.; Wang, Z.; He, Q.; Li, Z.; He, B.; Zhang, T.; Fu, Y.; Ge, S.; Liu, L.; Zhang, J.; Xia, N.; Zhang, Z. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin. Infect. Dis., 2020, 71(16), 2027-2034.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[7]
Wajnberg, A.; Mansour, M.; Leven, E.; Bouvier, N.M.; Patel, G.; Firpo-Betancourt, A.; Mendu, R.; Jhang, J.; Arinsburg, S.; Gitman, M.; Houldsworth, J.; Sordillo, E.; Paniz-Mondolfi, A.; Baine, I.; Simon, V.; Aberg, J.; Krammer, F.; Reich, D.; Cordon-Cardo, C. Humoral response and PCR positivity in patients with COVID-19 in the New York City region, USA: An observational study. Lancet Microbe, 2020, 1(7), e283-e289.
[http://dx.doi.org/10.1016/S2666-5247(20)30120-8] [PMID: 33015652]
[8]
Liu, J.; Guo, J.; Xu, Q.; Cai, G.; Chen, D.; Shen, Y. Detection of IgG antibody during the follow-up in patients with COVID-19 infection. Crit. Care, 2020, 24(1), 448.
[http://dx.doi.org/10.1186/s13054-020-03138-4] [PMID: 32690058]
[9]
Hou, H.; Wang, T.; Zhang, B.; Luo, Y.; Mao, L.; Wang, F.; Wu, S.; Sun, Z. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin. Transl. Immunology, 2020, 9(5), e1136.
[http://dx.doi.org/10.1002/cti2.1136] [PMID: 32382418]
[10]
Shrotri, M.; Fragaszy, E.; Nguyen, V.; Navaratnam, A.M.D.; Geismar, C.; Beale, S.; Kovar, J.; Byrne, T.E.; Fong, W.L.E.; Patel, P.; Aryee, A.; Braithwaite, I.; Johnson, A.M.; Rodger, A.; Hayward, A.C.; Aldridge, R.W. Spike-antibody responses to COVID-19 vaccination by demographic and clinical factors in a prospective community cohort study. Nat. Commun., 2022, 13(1), 5780.
[http://dx.doi.org/10.1038/s41467-022-33550-z] [PMID: 36184633]
[11]
Hussain, A.; Rafeeq, H.; Asif, H.M.; Shabbir, S.; Bilal, M.; Mulla, S.I.; Franco, M.; Iqbal, H.M.N. Current scenario of COVID-19 vaccinations and immune response along with antibody titer in vaccinated inhabitants of different countries. Int. Immunopharmacol., 2021, 99, 108050.
[http://dx.doi.org/10.1016/j.intimp.2021.108050] [PMID: 34426120]
[12]
Suthar, M.S.; Zimmerman, M.G.; Kauffman, R.C.; Mantus, G.; Linderman, S.L.; Hudson, W.H.; Vanderheiden, A.; Nyhoff, L.; Davis, C.W.; Adekunle, O.; Affer, M.; Sherman, M.; Reynolds, S.; Verkerke, H.P.; Alter, D.N.; Guarner, J.; Bryksin, J.; Horwath, M.C.; Arthur, C.M.; Saakadze, N.; Smith, G.H.; Edupuganti, S.; Scherer, E.M.; Hellmeister, K.; Cheng, A.; Morales, J.A.; Neish, A.S.; Stowell, S.R.; Frank, F.; Ortlund, E.; Anderson, E.J.; Menachery, V.D.; Rouphael, N.; Mehta, A.K.; Stephens, D.S.; Ahmed, R.; Roback, J.D.; Wrammert, J. Rapid generation of neutralizing antibody responses in COVID-19 patients. Cell Rep. Med., 2020, 1(3), 100040.
[http://dx.doi.org/10.1016/j.xcrm.2020.100040] [PMID: 32835303]
[13]
Worldometer. COVID-19 coronavirus pandemic USA. Available from: https://www.worldometers.info/coronavirus/
[14]
Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; Flanigan, T.; Michelow, I.C. Predictors of COVID ‐19 severity: A literature review. Rev. Med. Virol., 2021, 31(1), 1-10.
[http://dx.doi.org/10.1002/rmv.2146] [PMID: 32845042]
[15]
Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; Rollin, P.E.; Dowell, S.F.; Ling, A.E.; Humphrey, C.D.; Shieh, W.J.; Guarner, J.; Paddock, C.D.; Rota, P.; Fields, B.; DeRisi, J.; Yang, J.Y.; Cox, N.; Hughes, J.M.; LeDuc, J.W.; Bellini, W.J.; Anderson, L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1953-1966.
[http://dx.doi.org/10.1056/NEJMoa030781] [PMID: 12690092]
[16]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[17]
Lai, C.C.; Shih, T.P.; Ko, W.C.; Tang, H.J.; Hsueh, P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents, 2020, 55(3), 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[18]
Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Sci. Total Environ., 2020, 730, 138996.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138996] [PMID: 32371230]
[19]
Cossarizza, A.; De Biasi, S.; Guaraldi, G.; Girardis, M.; Mussini, C.; Group, M.C.W. SARS‐CoV‐2, the virus that causes COVID‐19: Cytometry and the new challenge for global health. Cytometry A, 2020, 97(4), 340-343.
[http://dx.doi.org/10.1002/cyto.a.24002] [PMID: 32187834]
[20]
Zhang, J.; Litvinova, M.; Wang, W.; Wang, Y.; Deng, X.; Chen, X.; Li, M.; Zheng, W.; Yi, L.; Chen, X.; Wu, Q.; Liang, Y.; Wang, X.; Yang, J.; Sun, K.; Longini, I.M., Jr; Halloran, M.E.; Wu, P.; Cowling, B.J.; Merler, S.; Viboud, C.; Vespignani, A.; Ajelli, M.; Yu, H. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside Hubei province, China: A descriptive and modelling study. Lancet Infect. Dis., 2020, 20(7), 793-802.
[http://dx.doi.org/10.1016/S1473-3099(20)30230-9] [PMID: 32247326]
[21]
Yamin, M. Counting the cost of COVID-19. Int. J. Law Inf. Technol., 2020, 12(2), 311-317.
[http://dx.doi.org/10.1007/s41870-020-00466-0] [PMID: 32412538]
[22]
Marson, F.A.L. COVID-19 – 6 million cases worldwide and an overview of the diagnosis in Brazil: A tragedy to be announced. Diagn. Microbiol. Infect. Dis., 2020, 98(2), 115113.
[http://dx.doi.org/10.1016/j.diagmicrobio.2020.115113] [PMID: 32682217]
[23]
Ioannidis, J.P.A. Global perspective of COVID‐19 epidemiology for a full‐cycle pandemic. Eur. J. Clin. Invest., 2020, 50(12), e13423.
[http://dx.doi.org/10.1111/eci.13423] [PMID: 33026101]
[24]
Ferrara, F.; Rausei, S. Reply to: “A multifaceted virus. Nonreducible and strangulated effects of COVID-19”. J. Trauma Acute Care Surg., 2021, 91(1), e34-e35.
[http://dx.doi.org/10.1097/TA.0000000000003220] [PMID: 33797483]
[25]
Mulita, F.; Vailas, M.; Tchabashvili, L.; Liolis, E.; Iliopoulos, F.; Drakos, N.; Maroulis, I. The impact of the COVID-19 outbreak on emergency surgery: A Greek emergency department experience. Prz. Gastroenterol., 2021, 16(1), 95.
[http://dx.doi.org/10.5114/pg.2021.104739] [PMID: 33986894]
[26]
Parchani, A.; Vidhya, K.; Panda, P.K.; Rawat, V.S.; Bahurupi, Y.; Kalita, D.; Kumar, H.; Dr, N. Fear, anxiety, stress, and depression of novel coronavirus (COVID-19) pandemic among patients and their healthcare workers–A descriptive study. Psychol. Res. Behav. Manag., 2021, 14, 1737-1746.
[http://dx.doi.org/10.2147/PRBM.S324233] [PMID: 34712065]
[27]
Rausei, S.; Ferrara, F.; Zurleni, T.; Frattini, F.; Chiara, O.; Pietrabissa, A.; Sarro, G. Dramatic decrease of surgical emergencies during COVID-19 outbreak. J. Trauma Acute Care Surg., 2020, 89(6), 1085-1091.
[http://dx.doi.org/10.1097/TA.0000000000002923] [PMID: 32890343]
[28]
D’Urbano, F.; Fabbri, N.; Radica, M.K.; Rossin, E.; Carcoforo, P. Emergency surgery in COVID-19 outbreak: Has anything changed? Single center experience. World J. Clin. Cases, 2020, 8(17), 3691-3696.
[http://dx.doi.org/10.12998/wjcc.v8.i17.3691] [PMID: 32953845]
[29]
Jamil, M.; Bhattacharya, P.K.; Barman, B.; Topno, N.; Barman, H.; Nongpiur, V.N.; War, G.; Hynniewta, Y.; Saikia, B.; Naku, N. Clinical and demographic profile of COVID-19 patients: A tertiary level hospital-based study from Northeast India. Cureus, 2021, 13(10), e18881.
[http://dx.doi.org/10.7759/cureus.18881] [PMID: 34820212]
[30]
Jain, V.K.; Iyengar, K.; Vaish, A.; Vaishya, R. Differential mortality in COVID-19 patients from India and western countries. Diabetes Metab. Syndr., 2020, 14(5), 1037-1041.
[http://dx.doi.org/10.1016/j.dsx.2020.06.067] [PMID: 32640415]
[31]
Samaddar, A.; Gadepalli, R.; Nag, V.L.; Misra, S. The enigma of low COVID-19 fatality rate in India. Front. Genet., 2020, 11, 854.
[http://dx.doi.org/10.3389/fgene.2020.00854] [PMID: 32849833]
[32]
Jakhmola, S.; Baral, B.; Jha, H.C. A comparative analysis of COVID-19 outbreak on age groups and both the sexes of population from India and other countries. J. Infect. Dev. Ctries., 2021, 15(3), 333-341.
[http://dx.doi.org/10.3855/jidc.13698] [PMID: 33839706]
[33]
Bala, A.; Sengupta, A.; Matsabisa, M.G.; Chabalala, H.P. COVID-19: Pathophysiology; mechanism of transmission and possible molecular drug target for management. Curr. Mol. Pharmacol., 2021, 14(4), 509-519.
[http://dx.doi.org/10.2174/1874467213999200831104324] [PMID: 32867666]
[34]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[35]
Du, P.; Li, D.; Wang, A.; Shen, S.; Ma, Z.; Li, X. A systematic review and meta-analysis of risk factors associated with severity and death in COVID-19 patients. Can. J. Infect. Dis. Med. Microbiol., 2021, 2021, 6660930.
[36]
Kaeuffer, C.; Le Hyaric, C.; Fabacher, T.; Mootien, J.; Dervieux, B.; Ruch, Y.; Hugerot, A.; Zhu, Y.J.; Pointurier, V.; Clere-Jehl, R.; Greigert, V.; Kassegne, L.; Lefebvre, N.; Gallais, F.; Meyer, N.; Hansmann, Y.; Hinschberger, O.; Danion, F. Clinical characteristics and risk factors associated with severe COVID-19: Prospective analysis of 1,045 hospitalised cases in North-Eastern France, March 2020. Euro Surveill., 2020, 25(48), 2000895.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.48.2000895] [PMID: 33272355]
[37]
Clay, S.L.; Woodson, M.J.; Mazurek, K.; Antonio, B. Racial disparities and COVID-19: exploring the relationship between race/ethnicity, personal factors, health access/affordability, and conditions associated with an increased severity of COVID-19. Race Soc. Probl., 2021, 13(4), 279-291.
[http://dx.doi.org/10.1007/s12552-021-09320-9] [PMID: 33613785]
[38]
Lippi, G.; Henry, B.M. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur. J. Intern. Med., 2020, 75, 107-108.
[http://dx.doi.org/10.1016/j.ejim.2020.03.014] [PMID: 32192856]
[39]
Gao, Y.; Ding, M.; Dong, X.; Zhang, J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.; Fu, W.; Li, W.; Liang, H.; Cao, Y.; Yan, Q.; Cao, C.; Gao, H.; Brüggen, M.C.; van de Veen, W.; Sokolowska, M.; Akdis, M.; Akdis, C.A. Risk factors for severe and critically ill COVID‐19 patients: A review. Allergy, 2021, 76(2), 428-455.
[http://dx.doi.org/10.1111/all.14657] [PMID: 33185910]
[40]
Devi, M.J.; Gaffar, S.; Hartati, Y.W. A review post-vaccination SARS-CoV-2 serological test: Method and antibody titer response. Anal. Biochem., 2022, 658, 114902.
[http://dx.doi.org/10.1016/j.ab.2022.114902] [PMID: 36122603]
[41]
Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody tests in detecting SARS-CoV-2 infection: A meta-analysis. Diagnostics, 2020, 10(5), 319.
[http://dx.doi.org/10.3390/diagnostics10050319] [PMID: 32438677]
[42]
Mulita, F.; Sotiropoulou, M.; Vailas, M. A multifaceted virus. Non-reducible and strangulated effects of COVID-19. J. Trauma Acute Care Surg., 2021, 91(1), e34.
[http://dx.doi.org/10.1097/TA.0000000000003219] [PMID: 33797481]
[43]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[44]
Long, Q.X.; Liu, B.Z.; Deng, H.J.; Wu, G.C.; Deng, K.; Chen, Y.K.; Liao, P.; Qiu, J.F.; Lin, Y.; Cai, X.F.; Wang, D.Q.; Hu, Y.; Ren, J.H.; Tang, N.; Xu, Y.Y.; Yu, L.H.; Mo, Z.; Gong, F.; Zhang, X.L.; Tian, W.G.; Hu, L.; Zhang, X.X.; Xiang, J.L.; Du, H.X.; Liu, H.W.; Lang, C.H.; Luo, X.H.; Wu, S.B.; Cui, X.P.; Zhou, Z.; Zhu, M.M.; Wang, J.; Xue, C.J.; Li, X.F.; Wang, L.; Li, Z.J.; Wang, K.; Niu, C.C.; Yang, Q.J.; Tang, X.J.; Zhang, Y.; Liu, X.M.; Li, J.J.; Zhang, D.C.; Zhang, F.; Liu, P.; Yuan, J.; Li, Q.; Hu, J.L.; Chen, J.; Huang, A.L. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med., 2020, 26(6), 845-848.
[http://dx.doi.org/10.1038/s41591-020-0897-1] [PMID: 32350462]
[45]
Sette, A.; Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, 184(4), 861-880.
[http://dx.doi.org/10.1016/j.cell.2021.01.007] [PMID: 33497610]
[46]
Jacofsky, D.; Jacofsky, E.M.; Jacofsky, M. Understanding antibody testing for COVID-19. J. Arthroplasty, 2020, 35(7), S74-S81.
[http://dx.doi.org/10.1016/j.arth.2020.04.055] [PMID: 32389405]
[47]
Janeway, C.J.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease; Garland Science: New York, 2001.
[48]
Clemente-Suárez, V.J.; Hormeño-Holgado, A.; Jiménez, M.; Benitez-Agudelo, J.C.; Navarro-Jiménez, E.; Perez-Palencia, N.; Maestre-Serrano, R.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Dynamics of population immunity due to the herd effect in the COVID-19 pandemic. Vaccines, 2020, 8(2), 236.
[http://dx.doi.org/10.3390/vaccines8020236] [PMID: 32438622]
[49]
Mallah, S.I.; Ghorab, O.K.; Al-Salmi, S.; Abdellatif, O.S.; Tharmaratnam, T.; Iskandar, M.A.; Sefen, J.A.N.; Sidhu, P.; Atallah, B.; El-Lababidi, R.; Al-Qahtani, M. COVID-19: Breaking down a global health crisis. Ann. Clin. Microbiol. Antimicrob., 2021, 20(1), 35.
[http://dx.doi.org/10.1186/s12941-021-00438-7] [PMID: 34006330]
[50]
Dash, G.C.; Subhadra, S.; Turuk, J.; Parai, D.; Rath, S.; Sabat, J.; Rout, U.K.; Kanungo, S.; Choudhary, H.R.; Nanda, R.R.; Pattnaik, M.; Pati, S.; Bhattacharya, D. Breakthrough SARS-CoV‐2 infections among BBV‐152 (COVAXIN®) and AZD1222 (COVISHIELDTM) recipients: Report from the eastern state of India. J. Med. Virol., 2022, 94(3), 1201-1205.
[http://dx.doi.org/10.1002/jmv.27382] [PMID: 34622961]
[51]
Cadegiani, F.A.; Zimerman, R.A.; Campello de Souza, B.; McCoy, J.; Pereira e Costa, R.A.; Gustavo Wambier, C.; Goren, A. The AndroCoV clinical scoring for COVID-19 diagnosis: A prompt, feasible, costless, and highly sensitive diagnostic tool for COVID-19 based on a 1757-patient cohort. Cureus, 2021, 13(1), e12565.
[http://dx.doi.org/10.7759/cureus.12565] [PMID: 33437562]
[52]
Zhang, Z.L.; Hou, Y.L.; Li, D.T.; Li, F.Z. Diagnostic efficacy of anti‐SARS‐CoV‐2 IgG/IgM test for COVID‐19: A meta‐analysis. J. Med. Virol., 2021, 93(1), 366-374.
[http://dx.doi.org/10.1002/jmv.26211] [PMID: 32568413]
[53]
Zhang, C.; Qin, L.; Li, K.; Wang, Q.; Zhao, Y.; Xu, B.; Liang, L.; Dai, Y.; Feng, Y.; Sun, J.; Li, X.; Hu, Z.; Xiang, H.; Dong, T.; Jin, R.; Zhang, Y. A novel scoring system for prediction of disease severity in COVID-19. Front. Cell. Infect. Microbiol., 2020, 10, 318.
[http://dx.doi.org/10.3389/fcimb.2020.00318] [PMID: 32582575]
[54]
Singh, A.K.; Phatak, S.R.; Singh, R.; Bhattacharjee, K.; Singh, N.K.; Gupta, A.; Sharma, A. Humoral antibody kinetics with ChAdOx1-nCOV (Covishield™) and BBV-152 (Covaxin™) vaccine among Indian Healthcare workers: A 6-month longitudinal cross-sectional Coronavirus Vaccine-induced antibody titre (COVAT) study. Diabetes Metab. Syndr., 2022, 16(2), 102424.
[http://dx.doi.org/10.1016/j.dsx.2022.102424] [PMID: 35150961]
[55]
Shrivastava, S.; Palkar, S.; Shah, J.; Rane, P.; Lalwani, S.; Mishra, A.C.; Arankalle, V.A. Early and high SARS-CoV-2 neutralizing antibodies are associated with severity in COVID-19 patients from India. Am. J. Trop. Med. Hyg., 2021, 105(2), 401-406.
[http://dx.doi.org/10.4269/ajtmh.21-0014] [PMID: 34138748]
[56]
Deshpande, G.R.; Sapkal, G.N.; Tilekar, B.N.; Yadav, P.D.; Gurav, Y.; Gaikwad, S.; Kaushal, H.; Deshpande, K.S.; Kaduskar, O.; Sarkale, P.; Baradkar, S.; Suryawanshi, A.; Lakra, R.; Sugunan, A.P.; Balakrishnan, A.; Abraham, P.; Salve, P. Neutralizing antibody responses to SARS-CoV-2 in COVID-19 patients. Indian J. Med. Res., 2020, 152(1 & 2), 82-87.
[PMID: 32859866]
[57]
Doke, P.; Gothankar, J.S.; Doke, P.P.; Kulkarni, M.M.; Khalate, K.K.; Shrivastava, S.; Patil, J.R.; Arankalle, V.A. Time dependent decline of neutralizing antibody titers in COVID-19 patients from Pune, India and evidence of reinfection. Microbes Infect., 2022, 24(4), 104979.
[http://dx.doi.org/10.1016/j.micinf.2022.104979] [PMID: 35452812]
[58]
Singh, A.K.; Phatak, S.R.; Singh, R.; Bhattacharjee, K.; Singh, N.K.; Gupta, A.; Sharma, A. Antibody response after first and second-dose of ChAdOx1-nCOV (CovishieldTM®) and BBV-152 (CovaxinTM®) among health care workers in India: The final results of cross-sectional coronavirus vaccine-induced antibody titre (COVAT) study. Vaccine, 2021, 39(44), 6492-6509.
[http://dx.doi.org/10.1016/j.vaccine.2021.09.055] [PMID: 34600747]
[59]
Cha, M.J.; Chung, M.J.; Kim, K.; Lee, K.S.; Kim, T.J.; Kim, T.S. Clinical implication of radiographic scores in acute Middle East respiratory syndrome coronavirus pneumonia: Report from a single tertiary-referral center of South Korea. Eur. J. Radiol., 2018, 107, 196-202.
[http://dx.doi.org/10.1016/j.ejrad.2018.09.008] [PMID: 30292266]
[60]
Hosseini, A.; Hashemi, V.; Shomali, N.; Asghari, F.; Gharibi, T.; Akbari, M.; Gholizadeh, S.; Jafari, A. Innate and adaptive immune responses against coronavirus. Biomed. Pharmacother., 2020, 132, 110859.
[http://dx.doi.org/10.1016/j.biopha.2020.110859] [PMID: 33120236]
[61]
Koyama, S.; Ishii, K.J.; Coban, C.; Akira, S. Innate immune response to viral infection. Cytokine, 2008, 43(3), 336-341.
[http://dx.doi.org/10.1016/j.cyto.2008.07.009] [PMID: 18694646]
[62]
Dempsey, P.W.; Vaidya, S.A.; Cheng, G. The Art of War: Innate and adaptive immune responses. Cell. Mol. Life Sci., 2003, 60(12), 2604-2621.
[http://dx.doi.org/10.1007/s00018-003-3180-y] [PMID: 14685686]
[63]
Heim, M.H.; Thimme, R. Innate and adaptive immune responses in HCV infections. J. Hepatol., 2014, 61(1)(Suppl.), S14-S25.
[http://dx.doi.org/10.1016/j.jhep.2014.06.035] [PMID: 25443342]
[64]
Zuniga, E.I.; Macal, M.; Lewis, G.M.; Harker, J.A. Innate and adaptive immune regulation during chronic viral infections. Annu. Rev. Virol., 2015, 2(1), 573-597.
[http://dx.doi.org/10.1146/annurev-virology-100114-055226] [PMID: 26958929]
[65]
Park, J.H.; Cha, M.J.; Choi, H.; Kim, M.C.; Chung, J.W.; Lee, K.S.; Jeong, D.G.; Baek, M.S.; Kim, W.Y.; Lim, Y.; Yoon, S.W.; Choi, S.H. Relationship between SARS-CoV-2 antibody titer and the severity of COVID-19. J. Microbiol. Immunol. Infect., 2022, 55(6), 1094-1100.
[http://dx.doi.org/10.1016/j.jmii.2022.04.005] [PMID: 35570185]
[66]
Thimme, R.; Bukh, J.; Spangenberg, H.C.; Wieland, S.; Pemberton, J.; Steiger, C.; Govindarajan, S.; Purcell, R.H.; Chisari, F.V. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc. Natl. Acad. Sci., 2002, 99(24), 15661-15668.
[http://dx.doi.org/10.1073/pnas.202608299] [PMID: 12441397]
[67]
The host immune response in respiratory virus infection: Balancing virus clearance and immunopathology. In: Seminars in immunopathology; Newton, A.H.; Cardani, A.; Braciale, T.J., Eds.; Springer, 2016.
[68]
Nicasio, M.; Sautto, G.; Clementi, N.; Diotti, R.A.; Criscuolo, E.; Castelli, M.; Solforosi, L.; Clementi, M.; Burioni, R. Neutralization interfering antibodies: A “novel” example of humoral immune dysfunction facilitating viral escape? Viruses, 2012, 4(9), 1731-1752.
[http://dx.doi.org/10.3390/v4091731] [PMID: 23170181]
[69]
Cashman, S.B.; Marsden, B.D.; Dustin, L.B. The humoral immune response to HCV: understanding is key to vaccine development. Front. Immunol., 2014, 5, 550.
[http://dx.doi.org/10.3389/fimmu.2014.00550] [PMID: 25426115]
[70]
Chen, W. Promise and challenges in the development of COVID-19 vaccines. Hum. Vaccin. Immunother., 2020, 16(11), 2604-2608.
[http://dx.doi.org/10.1080/21645515.2020.1787067] [PMID: 32703069]
[71]
Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol., 2021, 21(2), 83-100.
[http://dx.doi.org/10.1038/s41577-020-00479-7] [PMID: 33353987]
[72]
Li, K.; Huang, B.; Wu, M.; Zhong, A.; Li, L.; Cai, Y.; Wang, Z.; Wu, L.; Zhu, M.; Li, J.; Wang, Z.; Wu, W.; Li, W.; Bosco, B.; Gan, Z.; Qiao, Q.; Wu, J.; Wang, Q.; Wang, S.; Xia, X. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat. Commun., 2020, 11(1), 6044.
[http://dx.doi.org/10.1038/s41467-020-19943-y] [PMID: 33247152]
[73]
Wu, J.; Liang, B.; Chen, C.; Wang, H.; Fang, Y.; Shen, S.; Yang, X.; Wang, B.; Chen, L.; Chen, Q.; Wu, Y.; Liu, J.; Yang, X.; Li, W.; Zhu, B.; Zhou, W.; Wang, H.; Li, S.; Lu, S.; Liu, D.; Li, H.; Krawczyk, A.; Lu, M.; Yang, D.; Deng, F.; Dittmer, U.; Trilling, M.; Zheng, X. SARS-CoV-2 infection induces sustained humoral immune responses in convalescent patients following symptomatic COVID-19. Nat. Commun., 2021, 12(1), 1813.
[http://dx.doi.org/10.1038/s41467-021-22034-1] [PMID: 33753738]
[74]
Fröberg, J.; Gillard, J.; Philipsen, R.; Lanke, K.; Rust, J.; van Tuijl, D.; Teelen, K.; Bousema, T.; Simonetti, E.; van der Gaast-de Jongh, C.E.; Bos, M.; van Kuppeveld, F.J.; Bosch, B.J.; Nabuurs-Franssen, M.; van der Geest-Blankert, N.; van Daal, C.; Huynen, M.A.; de Jonge, M.I.; Diavatopoulos, D.A. SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms. Nat. Commun., 2021, 12(1), 5621.
[http://dx.doi.org/10.1038/s41467-021-25949-x] [PMID: 34556667]
[75]
Post, N.; Eddy, D.; Huntley, C.; van Schalkwyk, M.C.I.; Shrotri, M.; Leeman, D.; Rigby, S.; Williams, S.V.; Bermingham, W.H.; Kellam, P.; Maher, J.; Shields, A.M.; Amirthalingam, G.; Peacock, S.J.; Ismail, S.A. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS One, 2020, 15(12), e0244126.
[http://dx.doi.org/10.1371/journal.pone.0244126] [PMID: 33382764]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy