Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Synergistic Antibacterial Effect of ZnO Nanoparticles and Antibiotics against Multidrug-Resistant Biofilm Bacteria

In Press, (this is not the final "Version of Record"). Available online 12 January, 2024
Author(s): Majed M. Masadeh*, Noor M. Bany-Ali, Mai S. Khanfar, Karem H. Alzoubi, Majd M. Masadeh and Enaam M. Al Momany
Published on: 12 January, 2024

DOI: 10.2174/0115672018279213240110045557

Price: $95

Abstract

Background: The misuse of antibiotics leads to a global increase in antibiotic resistance. Therefore, it is imperative to search for alternative compounds to conventional antibiotics. ZnO nanoparticles (Zn NP) are one of these alternatives because they are an effective option to overcome biofilm bacterial cells and a novel way to overcome multidrug resistance in bacteria. The current research study aims to characterize the efficacy of ZnO nanoparticles alone and in combination with other antibacterial drugs against bacterial biofilms.

Methods: ZnO NPs were prepared by co-precipitation method, and their anti-biofilm and antibacterial activities alone or combined with four types of broad-spectrum antibacterial (Norfloxacin, Colistin, Doxycycline, and Ampicillin) were evaluated against E. coli and S. aureus bacterial strains. Finally, the cytotoxicity and the hemolytic activity were evaluated.

Results: ZnO NPs were prepared, and results showed that their size was around 10 nm with a spherical shape and a zeta potential of -21.9. In addition, ZnO NPs were found to have a strong antibacterial effect against Gram-positive and Gram-negative microorganisms, with a minimum inhibitory concentration (MIC) of 62.5 and 125 μg/mL, respectively. Additionally, they could eradicate biofilmforming microorganisms at a concentration of 125 μg/m. ZnO NPs were found to be non-toxic to erythrocyte cells. Still, some toxicity was observed for Vero cells at effective concentration ranges needed to inhibit bacterial growth and eradicate biofilm-forming organisms. When combined with different antibacterial, ZnO NP demonstrated synergistic and additive effects with colistin, and the MIC and MBEC of the combination decreased significantly to 0.976 μg/mL against planktonic and biofilm strains of MDR Gram-positive bacteria, resulting in significantly reduced toxicity.

Conclusion: The findings of this study encourage the development of alternative therapies with high efficacy and low toxicity. ZnO nanoparticles have demonstrated promising results in overcoming multi-drug resistant bacteria and biofilms, and their combination with colistin has shown a significant reduction in toxicity. Further studies are needed to investigate the potential of ZnO nanoparticles as a viable alternative to conventional antibiotics.

[1]
Allahverdiyev, A.M.; Kon, K.V.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti Infect. Ther., 2011, 9(11), 1035-1052.
[http://dx.doi.org/10.1586/eri.11.121] [PMID: 22029522]
[2]
Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health, 2014, 2, 145.
[http://dx.doi.org/10.3389/fpubh.2014.00145] [PMID: 25279369]
[3]
Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control, 2017, 6(1), 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[4]
Kora, AJ; Rastogi, L Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg. Chem. Appl., 2013, 2013, 871097.
[http://dx.doi.org/10.1155/2013/871097]
[5]
Sharma, N.; Jandaik, S.; Kumar, S. Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. An. Acad. Bras. Cienc., 2016, 88(3 suppl), 1689-1698.
[http://dx.doi.org/10.1590/0001-3765201620150713] [PMID: 27737336]
[6]
Sack, R.B.; Rahman, M.; Yunus, M.; Khan, E.H. Antimicrobial resistance in organisms causing diarrheal disease. Clin. Infect. Dis., 1997, 24(Suppl. 1), S102-S105.
[http://dx.doi.org/10.1093/clinids/24.Supplement_1.S102] [PMID: 8994788]
[7]
Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”. Front. Microbiol., 2018, 9, 1441.
[http://dx.doi.org/10.3389/fmicb.2018.01441] [PMID: 30013539]
[8]
Hwang, I.; Hwang, J.H.; Choi, H.; Kim, K.J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol., 2012, 61(12), 1719-1726.
[http://dx.doi.org/10.1099/jmm.0.047100-0] [PMID: 22956753]
[9]
Masadeh, M.M.; Karasneh, G.A.; Al-Akhras, M.A.; Albiss, B.A.; Aljarah, K.M.; Al-azzam, S.I.; Alzoubi, K.H. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology, 2015, 67(3), 427-435.
[http://dx.doi.org/10.1007/s10616-014-9701-8] [PMID: 24643389]
[10]
Stewart, P.S.; William Costerton, J. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[http://dx.doi.org/10.1016/S0140-6736(01)05321-1] [PMID: 11463434]
[11]
Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 2010, 35(4), 322-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[12]
Blackledge, M.S.; Worthington, R.J.; Melander, C. Biologically inspired strategies for combating bacterial biofilms. Curr. Opin. Pharmacol., 2013, 13(5), 699-706.
[http://dx.doi.org/10.1016/j.coph.2013.07.004] [PMID: 23871261]
[13]
Beloin, C.; Renard, S.; Ghigo, J.M.; Lebeaux, D. Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol., 2014, 18, 61-68.
[http://dx.doi.org/10.1016/j.coph.2014.09.005] [PMID: 25254624]
[14]
Sharma, A.; Kumar Arya, D.; Dua, M.; Chhatwal, G.S.; Johri, A.K. Nano-technology for targeted drug delivery to combat antibiotic resistance; Taylor & Francis, 2012, pp. 1325-1332.
[15]
Zonaro, E.; Lampis, S.; Turner, R.J.; Qazi, S.J.S.; Vallini, G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front. Microbiol., 2015, 6, 584.
[http://dx.doi.org/10.3389/fmicb.2015.00584] [PMID: 26136728]
[16]
Fernando, S; Gunasekara, T; Holton, J. Antimicrobial Nanoparticles: Applications and mechanisms of action. Sri Lankan J. Infect. Dis., 2018, 8(1), 2.
[http://dx.doi.org/10.4038/sljid.v8i1.8167]
[17]
Ashajyothi, C.; Harish, K.H.; Dubey, N.; Chandrakanth, R.K. Antibiofilm activity of biogenic copper and zinc oxide nanoparticles-antimicrobials collegiate against multiple drug resistant bacteria: A nanoscale approach. J. Nanostruct. Chem., 2016, 6(4), 329-341.
[http://dx.doi.org/10.1007/s40097-016-0205-2]
[18]
Kathiresan, K.; Manivannan, S.; Nabeel, M.A.; Dhivya, B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B Biointerfaces, 2009, 71(1), 133-137.
[http://dx.doi.org/10.1016/j.colsurfb.2009.01.016] [PMID: 19269142]
[19]
Younis, A.B.; Haddad, Y.; Kosaristanova, L.; Smerkova, K. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, 15(3), e1860.
[http://dx.doi.org/10.1002/wnan.1860] [PMID: 36205103]
[20]
Shi, L.E.; Li, Z.H.; Zheng, W.; Zhao, Y.F.; Jin, Y.F.; Tang, Z.X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2014, 31(2), 173-186.
[http://dx.doi.org/10.1080/19440049.2013.865147] [PMID: 24219062]
[21]
Shan, J.; Li, X.; Huang, Z.; Kong, B.; Wang, H.; Ren, L. In situ sprayed difunctional gel avoiding microenvironments limitations to treat pressure ulcers. Macromol. Biosci., 2023, 23(5), 2300006.
[http://dx.doi.org/10.1002/mabi.202300006] [PMID: 36951403]
[22]
Shan, J.; Zhang, X.; Wang, L.; Zhao, Y. Spatiotemporal catalytic nanozymes microneedle patches with opposite properties for wound management. Small, 2023, 19(36), 2302347.
[http://dx.doi.org/10.1002/smll.202302347] [PMID: 37127862]
[23]
Dong, H.; Yang, K.; Zhang, Y.; Li, Q.; Xiu, W.; Ding, M.; Shan, J.; Mou, Y. Photocatalytic Cu2WS4 nanocrystals for efficient bacterial killing and biofilm disruption. Int. J. Nanomedicine, 2022, 17, 2735-2750.
[http://dx.doi.org/10.2147/IJN.S360246] [PMID: 35769516]
[24]
Shan, J.; Che, J.; Song, C.; Zhao, Y. Emerging antibacterial nanozymes for wound healing. Smart Med., 2023, 2(3), e20220025.
[http://dx.doi.org/10.1002/SMMD.20220025]
[25]
Bhande, R.M.; Khobragade, C.N.; Mane, R.S.; Bhande, S. Enhanced synergism of antibiotics with zinc oxide nanoparticles against extended spectrum β-lactamase producers implicated in urinary tract infections. J. Nanopart. Res., 2013, 15(1), 1413.
[http://dx.doi.org/10.1007/s11051-012-1413-4]
[26]
Vincent, M.G.; John, N.P.; Narayanan, P.; Vani, C.; Murugan, S. In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm. Sci., 2014, 4(7), 41.
[27]
Abdulkareem, E.H.; Memarzadeh, K.; Allaker, R.P.; Huang, J.; Pratten, J.; Spratt, D. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J. Dent., 2015, 43(12), 1462-1469.
[http://dx.doi.org/10.1016/j.jdent.2015.10.010] [PMID: 26497232]
[28]
Bhattacharyya, P.; Agarwal, B.; Goswami, M.; Maiti, D.; Baruah, S.; Tribedi, P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie van Leeuwenhoek, 2018, 111(1), 89-99.
[http://dx.doi.org/10.1007/s10482-017-0930-7] [PMID: 28889242]
[29]
Jesline, A.; John, N.P.; Narayanan, P.M.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci., 2015, 5(2), 157-162.
[http://dx.doi.org/10.1007/s13204-014-0301-x]
[30]
Mohan, A.C.; Renjanadevi, B. Preparation of Zinc Oxide nanoparticles and itscharacterization using scanning electron microscopy (SEM) and X-Raydiffraction(XRD). Procedia Technol., 2016, 24, 761-766.
[http://dx.doi.org/10.1016/j.protcy.2016.05.078]
[31]
D, M.; P, K.; Kolli, V.R. Characterization and antibacterial activity of ZnO nanoparticles synthesized by co precipitation method. Int. J. Appl. Pharmaceut., 2018, 10(6), 224-228.
[http://dx.doi.org/10.22159/ijap.2018v10i6.29376]
[32]
Bao, Y.; He, J.; Song, K.; Guo, J.; Zhou, X.; Liu, S. Plant-extract-mediated synthesis of metal nanoparticles. J. Chem., 2021, 2021, 1-14.
[http://dx.doi.org/10.1155/2021/6562687]
[33]
Alias, S.S.; Ismail, A.B.; Mohamad, A.A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd., 2010, 499(2), 231-237.
[http://dx.doi.org/10.1016/j.jallcom.2010.03.174]
[34]
Getie, S.; Belay, A.; Chandra Reddy, A.; Belay, Z. Synthesis and characterizations of zinc oxide nanoparticles for antibacterial applications. J. Nanomed. Nanotechno. S., 2017, 8(004)
[35]
Javed, R.; Usman, M.; Tabassum, S.; Zia, M. Effect of capping agents: Structural, optical and biological properties of ZnO nanoparticles. Appl. Surf. Sci., 2016, 386, 319-326.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.042]
[36]
García-Gómez, C.; García, S.; Obrador, A.; Almendros, P.; González, D.; Fernández, M.D. Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies. Sci. Total Environ., 2020, 706, 135713.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135713] [PMID: 31791765]
[37]
Yan, Y.; Wang, G.; Huang, J.; Zhang, Y.; Cheng, X.; Chuai, M.; Brand-Saberi, B.; Chen, G.; Jiang, X.; Yang, X. Zinc oxide nanoparticles exposure-induced oxidative stress restricts cranial neural crest development during chicken embryogenesis. Ecotoxicol. Environ. Saf., 2020, 194, 110415.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110415] [PMID: 32151871]
[38]
CLSI CJM-SJ. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. 2014. Available from:file:///C:/Users/Bisma/Downloads/CLSIM100-24-2014.pdf
[39]
Masadeh, M.; Ayyad, A.; Haddad, R.; Alsaggar, M.; Alzoubi, K.; Alrabadi, N. Functional and toxicological evaluation of MAA-41: A novel rationally designed antimicrobial peptide using hybridization and modification methods from LL-37 and BMAP-28. Curr. Pharm. Des., 2022, 28(26), 2177-2188.
[http://dx.doi.org/10.2174/1381612828666220705150817] [PMID: 35792128]
[40]
Deng, X.; Luan, Q.; Chen, W.; Wang, Y.; Wu, M.; Zhang, H.; Jiao, Z. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology, 2009, 20(11), 115101.
[http://dx.doi.org/10.1088/0957-4484/20/11/115101] [PMID: 19420431]
[41]
O’Leary, W.M. Practical handbook of microbiology; CRC press, 1989.
[42]
Christopher, DD When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol., 2014, 52(12), 4124-4128.
[43]
Luca, V; Stringaro, A; Colone, M; Pini, A; Mangoni, MLJC Esculentin (1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol. Life Sci., 2013, 70(15), 2773-2786.
[44]
da Silva, J.B., Jr; Espinal, M.; Ramón-Pardo, P. Antimicrobial resistance: Time for action. Rev. Panam. Salud Publica, 2020, 44, 1.
[http://dx.doi.org/10.26633/RPSP.2020.131] [PMID: 33005187]
[45]
Zerfas, B.L.; Joo, Y.; Gao, J.; Gramicidin, A. Gramicidin a mutants with antibiotic activity against both gram‐positive and gram‐negative bacteria. ChemMedChem, 2016, 11(6), 629-636.
[http://dx.doi.org/10.1002/cmdc.201500602] [PMID: 26918268]
[46]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[47]
Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep., 2020, 25, e00427.
[http://dx.doi.org/10.1016/j.btre.2020.e00427] [PMID: 32055457]
[48]
Tyagi, P.K.; Gola, D.; Tyagi, S.; Mishra, A.K.; Kumar, A.; Chauhan, N.; Ahuja, A.; Sirohi, S. Synthesis of zinc oxide nanoparticles and its conjugation with antibiotic: Antibacterial and morphological characterization. Environ. Nanotechnol. Monit. Manag., 2020, 14, 100391.
[http://dx.doi.org/10.1016/j.enmm.2020.100391]
[49]
Perera, W.P.T.D.; Dissanayake, R.K.; Ranatunga, U.I.; Hettiarachchi, N.M.; Perera, K.D.C.; Unagolla, J.M.; De Silva, R.T.; Pahalagedara, L.R. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Advances, 2020, 10(51), 30785-30795.
[http://dx.doi.org/10.1039/D0RA05755J] [PMID: 35516060]
[50]
Ahamed, A.J.; Kumar, P.V. Synthesis and characterization of ZnO nanoparticles by co-precipitation method at room temperature. J. Chem. Pharm. Res., 2016, 8(5), 624-628.
[51]
Kayani, Z.N.; Saleemi, F.; Batool, I. Effect of calcination temperature on the properties of ZnO nanoparticles. Appl. Phys., A Mater. Sci. Process., 2015, 119(2), 713-720.
[http://dx.doi.org/10.1007/s00339-015-9019-1]
[52]
Padalia, H.; Moteriya, P.; Chanda, S. Synergistic antimicrobial and cytotoxic potential of zinc oxide nanoparticles synthesized using Cassia auriculata leaf extract. Bionanoscience, 2018, 8(1), 196-206.
[http://dx.doi.org/10.1007/s12668-017-0463-6]
[53]
Durmus, N.G.; Taylor, E.N.; Kummer, K.M.; Webster, T.J. Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv. Mater., 2013, 25(40), 5706-5713.
[http://dx.doi.org/10.1002/adma.201302627] [PMID: 23963848]
[54]
Wang, L.; Muhammed, M. Synthesis of zinc oxide nanoparticles with controlled morphology. J. Mater. Chem., 1999, 9(11), 2871-2878.
[http://dx.doi.org/10.1039/a907098b]
[55]
Swaroop, K; Somashekarappa, H. Effect of pH values on surface morphology and particle size variation in ZnO nanoparticles synthesised by co-precipitation method. Res. J. Recent Sci., 2015, 2277, 2502.
[56]
Chaudhary, A.; Kumar, N.; Kumar, R.; Salar, R.K. Antimicrobial activity of zinc oxide nanoparticles synthesized from Aloe vera peel extract. SN Appl. Sci., 2019, 1(1), 136.
[http://dx.doi.org/10.1007/s42452-018-0144-2]
[57]
Xiong, G; Pal, U; Serrano, J; Ucer, K; Williams, R. Photoluminesence and FTIR study of ZnO nanoparticles: The impurity and defect perspective. Phys. Status Solidi C, 2006, 3(10), 3577-3581.
[58]
Babayevska, N.; Przysiecka, Ł.; Iatsunskyi, I.; Nowaczyk, G.; Jarek, M.; Janiszewska, E.; Jurga, S. ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci. Rep., 2022, 12(1), 8148.
[http://dx.doi.org/10.1038/s41598-022-12134-3] [PMID: 35581357]
[59]
Peulen, T.O.; Wilkinson, K.J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol., 2011, 45(8), 3367-3373.
[http://dx.doi.org/10.1021/es103450g] [PMID: 21434601]
[60]
Koutu, V.; Shastri, L.; Malik, M.M. Effect of NaOH concentration on optical properties of zinc oxide nanoparticles. Mater. Sci. Pol., 2016, 34(4), 819-827.
[http://dx.doi.org/10.1515/msp-2016-0119]
[61]
Mahamuni, P.P.; Patil, P.M.; Dhanavade, M.J.; Badiger, M.V.; Shadija, P.G.; Lokhande, A.C.; Bohara, R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep., 2019, 17, 71-80.
[http://dx.doi.org/10.1016/j.bbrep.2018.11.007] [PMID: 30582010]
[62]
Fatehah, M.O.; Aziz, H.A.; Stoll, S. Stability of ZnO nanoparticles in solution. Influence of pH, dissolution, aggregation and disaggregation effects. J. Coll. Sci. Biotechnol., 2014, 3(1), 75-84.
[http://dx.doi.org/10.1166/jcsb.2014.1072]
[63]
Tejamaya, M. Synthesis, characterization, and stability test of silver nanoparticles in ecotoxicology media; University of Birmingham, 2014.
[64]
Badawy, A.M.E.; Luxton, T.P.; Silva, R.G.; Scheckel, K.G.; Suidan, M.T.; Tolaymat, T.M. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol., 2010, 44(4), 1260-1266.
[http://dx.doi.org/10.1021/es902240k] [PMID: 20099802]
[65]
Joseph, E; Singhvi, G Chapter 4 - Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In: Nanomaterials for Drug Delivery and Therapy; William Andrew, 2019.
[http://dx.doi.org/10.1016/B978-0-12-816505-8.00007-2]
[66]
Baek, Y.W.; An, Y.J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ., 2011, 409(8), 1603-1608.
[http://dx.doi.org/10.1016/j.scitotenv.2011.01.014] [PMID: 21310463]
[67]
Reddy, K.M.; Feris, K.; Bell, J.; Wingett, D.G.; Hanley, C.; Punnoose, A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett., 2007, 90(21), 213902.
[http://dx.doi.org/10.1063/1.2742324] [PMID: 18160973]
[68]
Shakal, M. In vitro evaluation of antibacterial properties of Zinc Oxide nanoparticles alone and in combination with antibiotics against avian pathogenic E. coli. J. World Poult. Res., 2020, 10(2S), 278-284.
[69]
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 2020, 25(6), 1340.
[http://dx.doi.org/10.3390/molecules25061340] [PMID: 32187986]
[70]
Neu, H.C.; Labthavikul, P. In vitro activity of norfloxacin, a quinolinecarboxylic acid, compared with that of beta-lactams, aminoglycosides, and trimethoprim. Antimicrob. Agents Chemother., 1982, 22(1), 23-27.
[http://dx.doi.org/10.1128/AAC.22.1.23] [PMID: 6214995]
[71]
Chukwudi, C.U.; Good, L. Doxycycline inhibits pre-rRNA processing and mature rRNA formation in E. coli. J. Antibiot., 2019, 72(4), 225-236.
[http://dx.doi.org/10.1038/s41429-019-0149-0] [PMID: 30737453]
[72]
Falagas, M.E.; Kasiakou, S.K.; Saravolatz, L.D. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis., 2005, 40(9), 1333-1341.
[http://dx.doi.org/10.1086/429323] [PMID: 15825037]
[73]
Raynor, B.D. Penicillin and ampicillin. Prim. Care Update Ob Gyns, 1997, 4(4), 147-152.
[http://dx.doi.org/10.1016/S1068-607X(97)00012-7]
[74]
Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett., 2015, 7(3), 219-242.
[http://dx.doi.org/10.1007/s40820-015-0040-x] [PMID: 30464967]
[75]
Souza, R.C.; Haberbeck, L.U.; Riella, H.G.; Ribeiro, D.H.B.; Carciofi, B.A.M. Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz. J. Chem. Eng., 2019, 36(2), 885-893.
[http://dx.doi.org/10.1590/0104-6632.20190362s20180027]
[76]
Chandrika, K.R.; Mayi, P.K. Role of nanoparticles in enhancing the antibacterial activity of antibiotics. Asian J. Pharm. Clin. Res., 2012, 5, 97-99.
[77]
Ghasemi, F.; Jalal, R. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J. Glob. Antimicrob. Resist., 2016, 6, 118-122.
[http://dx.doi.org/10.1016/j.jgar.2016.04.007] [PMID: 27530853]
[78]
Venubabu Thati, A.; Roy, S.; Prasad, M.; Shivannavar, C.; Gaddad, S. Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. Biosci Technol J., 2010, 1(2), 64-69.
[79]
Applerot, G.; Lellouche, J.; Perkas, N.; Nitzan, Y.; Gedanken, A.; Banin, E. ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Advances, 2012, 2(6), 2314-2321.
[http://dx.doi.org/10.1039/c2ra00602b]
[80]
Banoee, M; Seif, S; Nazari, ZE; Jafari, F; Shahverdi, HR ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 93(2), 557-561.
[81]
Ehsan, S.; Sajjad, M. Bioinspired synthesis of zinc oxide nanoparticle and its combined efficacy with different antibiotics against multidrug resistant bacteria. J. Biomater. Nanobiotechnol., 2017, 8(2), 159-175.
[http://dx.doi.org/10.4236/jbnb.2017.82011]
[82]
Yahav, D.; Farbman, L.; Leibovici, L.; Paul, M. Colistin: New lessons on an old antibiotic. Clin. Microbiol. Infect., 2012, 18(1), 18-29.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03734.x] [PMID: 22168320]
[83]
Fadwa, A.O.; Albarag, A.M.; Alkoblan, D.K.; Mateen, A. Determination of synergistic effects of antibiotics and Zno NPs against isolated E. Coli and A. Baumannii bacterial strains from clinical samples. Saudi J. Biol. Sci., 2021, 28(9), 5332-5337.
[http://dx.doi.org/10.1016/j.sjbs.2021.05.057] [PMID: 34466112]
[84]
Fadwa, A.O.; Alkoblan, D.K.; Mateen, A.; Albarag, A.M. Synergistic effects of zinc oxide nanoparticles and various antibiotics combination against Pseudomonas aeruginosa clinically isolated bacterial strains. Saudi J. Biol. Sci., 2021, 28(1), 928-935.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.064] [PMID: 33424384]
[85]
Bowers, D.R.; Cao, H.; Zhou, J.; Ledesma, K.R.; Sun, D.; Lomovskaya, O.; Tam, V.H. Assessment of minocycline and polymyxin B combination against Acinetobacter baumannii. Antimicrob. Agents Chemother., 2015, 59(5), 2720-2725.
[http://dx.doi.org/10.1128/AAC.04110-14] [PMID: 25712362]
[86]
Zhao, L.H.; Zhang, J.; Sun, S.Q. Stable aqueous ZnO nanoparticles with green photoluminescence and biocompatibility. J. Lumin., 2012, 132(10), 2595-2598.
[http://dx.doi.org/10.1016/j.jlumin.2012.04.028]
[87]
Das, D.; Nath, B.C.; Phukon, P.; kalita, A.; Dolui, S.K. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf. B Biointerfaces, 2013, 111, 556-560.
[http://dx.doi.org/10.1016/j.colsurfb.2013.06.041] [PMID: 23891844]
[88]
Liang, C.; Jia, Z.; Chen, R. An automated particle size analysis method for SEM images of powder coating particles. Coatings, 2023, 13(9), 1547.
[http://dx.doi.org/10.3390/coatings13091547]
[89]
Zhang, S.; Wang, C. Precise analysis of nanoparticle size distribution in TEM Image. Methods Protoc., 2023, 6(4), 63.
[http://dx.doi.org/10.3390/mps6040063] [PMID: 37489430]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy