Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Targeting Epigenetic Modifiers: Promising Strategies for Cancer Therapy and Beyond

In Press, (this is not the final "Version of Record"). Available online 12 January, 2024
Author(s): Dilip Kumar Chanchal*, Prateek Porwal and Nidhi Mittal
Published on: 12 January, 2024

DOI: 10.2174/0115748855275769231114094037

Price: $95

Abstract

Epigenetic changes are important for controlling how genes are expressed and how cells work, and their misregulation has been linked to many diseases, including cancer. Targeting epigenetic modifiers has become a promising way to treat cancer, and it may also be useful outside of oncology. This review article goes into detail about the rapidly changing field of epigenetic-based therapies, with a focus on how they are used to treat cancer. We discuss in-depth the main epigenetic changes seen in cancer, such as DNA methylation, changes to histones, and dysregulation of noncoding RNA, as well as their roles in tumour growth, metastasis, and drug resistance. Epigenetic drugs and small molecule inhibitors that target epigenetic enzymes and reader proteins have shown a lot of promise in both preclinical and clinical studies on different types of cancer. We show the most recent evidence that these epigenetic therapies work and look into how they might be used in combination with other treatments. We talk about new research into the therapeutic potential of epigenetic modifiers in diseases other than cancer, such as neurological disorders, autoimmune diseases, and heart conditions. Even though there is a lot of potential for therapy, there are still problems, such as side effects and differences between patients. We talk about the work that is still being done to get around these problems and explain new ways to deliver epigenetic-based interventions that are more precise and effective. For epigenetic-based therapies to be used in clinical settings, it is important to understand how they work and how they interact with other types of treatment. As the field moves forward, we try to figure out where it is going and what it means to target epigenetic modifiers in cancer therapy and other areas of disease. This review looks at the role of epigenetic modulation in shaping the landscape of precision medicine and its possible effects on human health from a broad and forward-looking point of view.

[1]
Pal S, Tyler JK. Epigenetics and aging. Sci Adv 2016; 2(7): e1600584.
[http://dx.doi.org/10.1126/sciadv.1600584] [PMID: 27482540]
[2]
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE commission for classification and terminology. Epilepsia 2017; 58(4): 512-21.
[http://dx.doi.org/10.1111/epi.13709] [PMID: 28276062]
[3]
Ohkura N, Sakaguchi S. Transcriptional and epigenetic basis of Treg cell development and function: Its genetic anomalies or variations in autoimmune diseases. Cell Res 2020; 30(6): 465-74.
[http://dx.doi.org/10.1038/s41422-020-0324-7] [PMID: 32367041]
[4]
Kagohara LT, Stein-O’Brien GL, Kelley D, et al. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis. Brief Funct Genomics 2018; 17(1): 49-63.
[http://dx.doi.org/10.1093/bfgp/elx018] [PMID: 28968850]
[5]
Lyko F. The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet 2018; 19(2): 81-92.
[http://dx.doi.org/10.1038/nrg.2017.80] [PMID: 29033456]
[6]
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2018; 592(5): 743-58.
[http://dx.doi.org/10.1002/1873-3468.12902] [PMID: 29106705]
[7]
Gonzales MM, Garbarino VR, Pollet E, et al. Biological aging processes underlying cognitive decline and neurodegenerative disease. J Clin Invest 2022; 132(10): e158453.
[http://dx.doi.org/10.1172/JCI158453] [PMID: 35575089]
[8]
Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr 2019; 43(2): 181-93.
[http://dx.doi.org/10.1002/jpen.1451] [PMID: 30288759]
[9]
Nirmaladevi R, Paital B, Jayachandran P, Padma PR, Nirmaladevi R. Epigenetic alterations in cancer. Front Biosci 2020; 25(6): 1058-109.
[http://dx.doi.org/10.2741/4847] [PMID: 32114424]
[10]
Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in cancer. Sci Signal 2015; 8(386): 3.
[http://dx.doi.org/10.1126/scisignal.2005825]
[11]
Harper K. Plagues upon the earth: disease and the course of human history. Princeton University Press 2021.
[12]
Berdasco M, Esteller M. Clinical epigenetics: Seizing opportunities for translation. Nat Rev Genet 2019; 20(2): 109-27.
[http://dx.doi.org/10.1038/s41576-018-0074-2] [PMID: 30479381]
[13]
Berk LE. Development through the lifespan. Sage Publications 2022.
[14]
Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: Lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019; 20(4): 235-48.
[http://dx.doi.org/10.1038/s41576-018-0092-0] [PMID: 30647469]
[15]
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2022; 83: 452-71.
[http://dx.doi.org/10.1016/j.semcancer.2020.07.015] [PMID: 32814115]
[16]
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2022; 83: 335-52.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.018] [PMID: 33453404]
[17]
Sharma R, Prajapati PK. Predictive, preventive and personalized medicine: Leads from ayurvedic concept of Prakriti (human constitution). Curr Pharmacol Rep 2020; 6(6): 441-50.
[http://dx.doi.org/10.1007/s40495-020-00244-3]
[18]
Meloni M. Impressionable biologies: from the archaeology of plasticity to the sociology of epigenetics. New York 2019; p. 232.
[http://dx.doi.org/10.4324/9781315169583]
[19]
Buklijas T. Histories and meanings of epigenetics. In: The palgrave handbook of biology and society. 2018; pp. 167-87.
[http://dx.doi.org/10.1057/978-1-137-52879-7_8]
[20]
Stricker SH, Köferle A, Beck S. From profiles to function in epigenomics. Nat Rev Genet 2017; 18(1): 51-66.
[http://dx.doi.org/10.1038/nrg.2016.138] [PMID: 27867193]
[21]
Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M. The molecular biology of meiosis in plants. Annu Rev Plant Biol 2015; 66(1): 297-327.
[http://dx.doi.org/10.1146/annurev-arplant-050213-035923] [PMID: 25494464]
[22]
Ozernyuk ND. From template principle of Nikolai K. Koltzov to the double helix model of DNA structure. Russ J Dev Biol 2022; 53(1): 1-5.
[http://dx.doi.org/10.1134/S1062360422010064]
[23]
Blunk I, Thomsen H, Reinsch N, et al. Genomic imprinting analyses identify maternal effects as a cause of phenotypic variability in type 1 diabetes and rheumatoid arthritis. Sci Rep 2020; 10(1): 11562.
[http://dx.doi.org/10.1038/s41598-020-68212-x] [PMID: 32665606]
[24]
Kowluru RA, Mohammad G. Epigenetic modifications in diabetes. Metabolism 2022; 126: 154920.
[http://dx.doi.org/10.1016/j.metabol.2021.154920] [PMID: 34715117]
[25]
Sinclair DA, LaPlante MD. Lifespan: why we age—and why we don’t have to. In: Atria books. 2019.
[26]
Wolff EM, Chihara Y, Pan F, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 2010; 70(20): 8169-78.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1335] [PMID: 20841482]
[27]
Shailesh H, Zakaria ZZ, Baiocchi R, Sif S. Protein arginine methyltransferase 5 (PRMT5) dysregulation in cancer. Oncotarget 2018; 9(94): 36705-18.
[http://dx.doi.org/10.18632/oncotarget.26404] [PMID: 30613353]
[28]
Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: Emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci 1748; 373(1748): 20170074.
[http://dx.doi.org/10.1098/rstb.2017.0074]
[29]
Rasmi Y, Shokati A, Hassan A, et al. The role of DNA methylation in progression of neurological disorders and neurodegenerative diseases as well as the prospect of using DNA methylation inhibitors as therapeutic agents for such disorders. IBRO Neuroscience Reports 2023; 14: 28-37.
[http://dx.doi.org/10.1016/j.ibneur.2022.12.002] [PMID: 36590248]
[30]
Satterlee JS, Chadwick LH, Tyson FL, et al. The NIH common fund/roadmap epigenomics program: Successes of a comprehensive consortium. Sci Adv 2019; 5(7): eaaw6507.
[http://dx.doi.org/10.1126/sciadv.aaw6507] [PMID: 31501771]
[31]
Phuong J, Riches NO, Madlock-Brown C, et al. Social determinants of health factors for gene–environment COVID‐19 research: challenges and opportunities. Adv Genet 2022; 3(2): 2100056.
[http://dx.doi.org/10.1002/ggn2.202100056] [PMID: 35574521]
[32]
Duncan LE, Pollastri AR, Smoller JW. Mind the gap: Why many geneticists and psychological scientists have discrepant views about gene–environment interaction (G×E) research. Am Psychol 2014; 69(3): 249-68.
[http://dx.doi.org/10.1037/a0036320] [PMID: 24750075]
[33]
Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes 2017; 18(3): 167-77.
[http://dx.doi.org/10.1111/pedi.12521] [PMID: 28401680]
[34]
Illingworth R, Kerr A, DeSousa D, et al. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 2008; 6(1): e22.
[http://dx.doi.org/10.1371/journal.pbio.0060022] [PMID: 18232738]
[35]
Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010; 31(1): 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[36]
Joosten SC, Smits KM, Aarts MJ, et al. Epigenetics in renal cell cancer: Mechanisms and clinical applications. Nat Rev Urol 2018; 15(7): 430-51.
[http://dx.doi.org/10.1038/s41585-018-0023-z] [PMID: 29867106]
[37]
Lequieu J, Schwartz DC, de Pablo JJ. In silico evidence for sequence-dependent nucleosome sliding. Proc Natl Acad Sci 2017; 114(44): E9197-205.
[http://dx.doi.org/10.1073/pnas.1705685114] [PMID: 29078285]
[38]
Barnes CE, English DM, Cowley SM. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem 2019; 63(1): 97-107.
[http://dx.doi.org/10.1042/EBC20180061] [PMID: 30940741]
[39]
Ouellet V, Negrao J, Skibiel AL, et al. Endocrine signals altered by heat stress impact dairy cow mammary cellular processes at different stages of the dry period. Animals (Basel) 2021; 11(2): 563.
[http://dx.doi.org/10.3390/ani11020563] [PMID: 33669991]
[40]
Videtic Paska A, Hudler P. Aberrant methylation patterns in cancer: A clinical view. Biochem Med 2015; 25(2): 161-76.
[http://dx.doi.org/10.11613/BM.2015.017] [PMID: 26110029]
[41]
Song Y, Wang R, Li LW, et al. Long non-coding RNA HOTAIR mediates the switching of histone H3 lysine 27 acetylation to methylation to promote epithelial-to-mesenchymal transition in gastric cancer. Int J Oncol 2018; 54(1): 77-86.
[http://dx.doi.org/10.3892/ijo.2018.4625] [PMID: 30431069]
[42]
Ma F, Zhang C. Histone modifying enzymes: Novel disease biomarkers and assay development. Expert Rev Mol Diagn 2016; 16(3): 297-306.
[http://dx.doi.org/10.1586/14737159.2016.1135057] [PMID: 26750583]
[43]
Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science 2017; 357(6348): eaal2380.
[http://dx.doi.org/10.1126/science.aal2380] [PMID: 28729483]
[44]
Fernandes J, Acuña S, Aoki J, Floeter-Winter L, Muxel S. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 2019; 5(1): 17.
[http://dx.doi.org/10.3390/ncrna5010017] [PMID: 30781588]
[45]
Otmani K, Lewalle P. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: Mechanism of deregulation and clinical implications. Front Oncol 2021; 11: 708765.
[http://dx.doi.org/10.3389/fonc.2021.708765] [PMID: 34722255]
[46]
Zhou K, Liu M, Cao Y. New insight into microRNA functions in cancer: Oncogene–microRNA–tumor suppressor gene network. Front Mol Biosci 2017; 4: 46.
[http://dx.doi.org/10.3389/fmolb.2017.00046] [PMID: 28736730]
[47]
Tan T, Shi P, Abbas M, et al. Epigenetic modification regulates tumor progression and metastasis through EMT (Review). Int J Oncol 2022; 60(6): 70.
[http://dx.doi.org/10.3892/ijo.2022.5360] [PMID: 35445731]
[48]
Kim M, Costello J. DNA methylation: An epigenetic mark of cellular memory. Exp Mol Med 2017; 49(4): 322.
[http://dx.doi.org/10.1038/emm.2017.10]
[49]
Sánchez OF, Mendonca A, Min A, Liu J, Yuan C. Monitoring histone methylation (H3K9me3) changes in live cells. ACS Omega 2019; 4(8): 13250-9.
[http://dx.doi.org/10.1021/acsomega.9b01413] [PMID: 31460452]
[50]
Peñaloza E, Soto-Carrasco G, Krause BJ. MiR-21-5p directly contributes to regulating eNOS expression in human artery endothelial cells under normoxia and hypoxia. Biochem Pharmacol 2020; 182: 114288.
[http://dx.doi.org/10.1016/j.bcp.2020.114288] [PMID: 33075314]
[51]
Smith AR, Smith RG, Pishva E, et al. Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer’s disease. Clin Epigenetics 2019; 11(1): 52.
[http://dx.doi.org/10.1186/s13148-019-0636-y] [PMID: 30898171]
[52]
Efimova OA, Koltsova AS, Krapivin MI, Tikhonov AV, Pendina AA. Environmental epigenetics and genome flexibility: Focus on 5-hydroxymethylcytosine. Int J Mol Sci 2020; 21(9): 3223.
[http://dx.doi.org/10.3390/ijms21093223] [PMID: 32370155]
[53]
Ma Q, Yang L, Tolentino K, et al. Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis. eLife 2022; 11: e79126.
[http://dx.doi.org/10.7554/eLife.79126] [PMID: 36579891]
[54]
Yang Y, Luan Y, Feng Q, et al. Epigenetics and beyond: Targeting histone methylation to treat type 2 diabetes mellitus. Front Pharmacol 2022; 12: 807413.
[http://dx.doi.org/10.3389/fphar.2021.807413] [PMID: 35087408]
[55]
Shtumpf M, Piroeva KV, Agrawal SP, Jacob DR, Teif VB. NucPosDB: A database of nucleosome positioning in vivo and nucleosomics of cell-free DNA. Chromosoma 2022; 131(1-2): 19-28.
[http://dx.doi.org/10.1007/s00412-021-00766-9] [PMID: 35061087]
[56]
Jung G, Hernández-Illán E, Moreira L, Balaguer F, Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 2020; 17(2): 111-30.
[http://dx.doi.org/10.1038/s41575-019-0230-y] [PMID: 31900466]
[57]
Gros C, Fahy J, Halby L, et al. DNA methylation inhibitors in cancer: Recent and future approaches. Biochimie 2012; 94(11): 2280-96.
[http://dx.doi.org/10.1016/j.biochi.2012.07.025] [PMID: 22967704]
[58]
Suraweera A, O’Byrne KJ, Richard DJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of HDACi. Front Oncol 2018; 8: 92.
[http://dx.doi.org/10.3389/fonc.2018.00092] [PMID: 29651407]
[59]
Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: A novel epigenetic approach. Ann Oncol 2017; 28(8): 1776-87.
[http://dx.doi.org/10.1093/annonc/mdx157] [PMID: 28838216]
[60]
Rugo HS, Jacobs I, Sharma S, et al. The promise for histone methyltransferase inhibitors for epigenetic therapy in clinical oncology: a narrative review. Adv Ther 2020; 37(7): 3059-82.
[http://dx.doi.org/10.1007/s12325-020-01379-x] [PMID: 32445185]
[61]
Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 2008; 123(1): 8-13.
[http://dx.doi.org/10.1002/ijc.23607] [PMID: 18425818]
[62]
Chebly A, Prochazkova-Carlotti M, Idrissi Y, et al. Targeting epigenetic modifiers can reduce the clonogenic capacities of Sézary cells. Front Oncol 2021; 11: 775253.
[http://dx.doi.org/10.3389/fonc.2021.775253] [PMID: 34765562]
[63]
Zhao B, Cheng X, Zhou X. The BET-bromodomain inhibitor JQ1 mitigates vemurafenib drug resistance in melanoma. Melanoma Res 2018; 28(6): 521-6.
[http://dx.doi.org/10.1097/CMR.0000000000000497] [PMID: 30192303]
[64]
Straining R, Eighmy W. Tazemetostat: EZH2 Inhibitor. J Adv Pract Oncol 2022; 13(2): 158-63.
[http://dx.doi.org/10.6004/jadpro.2022.13.2.7] [PMID: 35369397]
[65]
Evans JS, Beaumont J, Braga M, et al. Epigenetic potentiation of somatostatin-2 by guadecitabine in neuroendocrine neoplasias as a novel method to allow delivery of peptide receptor radiotherapy. Eur J Cancer 2022; 176: 110-20.
[http://dx.doi.org/10.1016/j.ejca.2022.09.009] [PMID: 36208569]
[66]
Greenfield G, McPherson S, Smith J, et al. Modification of the histone landscape with JAK inhibition in myeloproliferative neoplasms. Cancers 2020; 12(9): 2669.
[http://dx.doi.org/10.3390/cancers12092669] [PMID: 32962027]
[67]
Singh AN, Sharma N. Epigenetic modulators as potential multi-targeted drugs against hedgehog pathway for treatment of cancer. Protein J 2019; 38(5): 537-50.
[http://dx.doi.org/10.1007/s10930-019-09832-9] [PMID: 30993446]
[68]
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, et al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant 2018; 33(11): 1875-86.
[http://dx.doi.org/10.1093/ndt/gfy009] [PMID: 29534238]
[69]
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting epigenetic modifiers of tumor plasticity and cancer stem cell behavior. Cells 2022; 11(9): 1403.
[http://dx.doi.org/10.3390/cells11091403] [PMID: 35563709]
[70]
Falchi L, Ma H, Klein S, et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: A multicenter phase 2 study. Blood 2021; 137(16): 2161-70.
[http://dx.doi.org/10.1182/blood.2020009004] [PMID: 33171487]
[71]
Morabito F, Voso MT, Hohaus S, et al. Panobinostat for the treatment of acute myelogenous leukemia. Expert Opin Investig Drugs 2016; 25(9): 1117-31.
[http://dx.doi.org/10.1080/13543784.2016.1216971] [PMID: 27485472]
[72]
Wang L, Luo J, Chen G, Fang M, Wei X, Li Y, et al. Chidamide, decitabine, cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CDCAG) in patients with relapsed/refractory acute myeloid leukemia: A single-arm, phase 1/2 study. Clin Epigenet 2020.
[http://dx.doi.org/10.1186/s13148-020-00923-4]
[73]
Yang X, Lay F, Han H, Jones PA. Targeting DNA methylation for epigenetic therapy. Trends Pharmacol Sci 2010; 31(11): 536-46.
[http://dx.doi.org/10.1016/j.tips.2010.08.001] [PMID: 20846732]
[74]
Saluveer O, Larsson P, Ridderstråle W, Hrafnkelsdóttir TJ, Jern S, Bergh N. Profibrinolytic effect of the epigenetic modifier valproic acid in man. PLoS One 2014; 9(10): e107582.
[http://dx.doi.org/10.1371/journal.pone.0107582] [PMID: 25295869]
[75]
Zheng YC, Feng SQ. Epigenetic modifications as therapeutic targets. Curr Drug Targets 2020; 21(11): 1046.
[http://dx.doi.org/10.2174/138945012111200727122724]
[76]
Müller MR, Burmeister A, Skowron MA, et al. Therapeutical interference with the epigenetic landscape of germ cell tumors: a comparative drug study and new mechanistical insights. Clin Epigenetics 2022; 14(1): 5.
[http://dx.doi.org/10.1186/s13148-021-01223-1] [PMID: 34996497]
[77]
Waters NJ. Preclinical pharmacokinetics and pharmacodynamics of pinometostat (EPZ-5676), a first-in-class, small molecule S-adenosyl methionine competitive inhibitor of DOT1L. Eur J Drug Metab Pharmacokinet 2017; 42(6): 891-901.
[http://dx.doi.org/10.1007/s13318-017-0404-3] [PMID: 28229434]
[78]
Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol 2017; 29(5): 375-81.
[http://dx.doi.org/10.1097/CCO.0000000000000390] [PMID: 28665819]
[79]
Pearson ADJ, DuBois SG, Buenger V, et al. Bromodomain and extra-terminal inhibitors—A consensus prioritisation after the paediatric strategy forum for medicinal product development of epigenetic modifiers in children—ACCELERATE. Eur J Cancer 2021; 146: 115-24.
[http://dx.doi.org/10.1016/j.ejca.2021.01.018] [PMID: 33601323]
[80]
Borutinskaitė V, Virkšaitė A, Gudelytė G, Navakauskienė R. Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells. Leuk Lymphoma 2018; 59(2): 469-78.
[http://dx.doi.org/10.1080/10428194.2017.1339881] [PMID: 28641467]
[81]
Rahman Z, Bazaz MR, Devabattula G, Khan MA, Godugu C. Targeting H3K9 methyltransferase G9a and its related molecule GLP as a potential therapeutic strategy for cancer. J Biochem Mol Toxicol 2021; 35(3): e22674.
[http://dx.doi.org/10.1002/jbt.22674] [PMID: 33283949]
[82]
Lin HY, Wu HJ, Chen SY, Hou MF, Lin CS, Chu PY. Epigenetic therapy combination of UNC0638 and CI-994 suppresses breast cancer via epigenetic remodeling of BIRC5 and GADD45A. Biomed Pharmacother 2022; 145: 112431.
[http://dx.doi.org/10.1016/j.biopha.2021.112431] [PMID: 34798471]
[83]
Gulati N, Béguelin W, Giulino-Roth L. Enhancer of zeste homolog 2 (EZH2) inhibitors. Leuk Lymphoma 2018; 59(7): 1574-85.
[http://dx.doi.org/10.1080/10428194.2018.1430795] [PMID: 29473431]
[84]
Pfister SX, Ashworth A. Marked for death: Targeting epigenetic changes in cancer. Nat Rev Drug Discov 2017; 16(4): 241-63.
[http://dx.doi.org/10.1038/nrd.2016.256] [PMID: 28280262]
[85]
Momparler RL, Momparler LF, Samson J. Comparison of the antileukemic activity of 5-aza-2′-deoxycytidine, 1-β-d-arabinofuranosylcytosine and 5-azacytidine against L1210 leukemia. Leuk Res 1984; 8(6): 1043-9.
[http://dx.doi.org/10.1016/0145-2126(84)90059-6] [PMID: 6083417]
[86]
Wawruszak A, Borkiewicz L, Okon E, Kukula-Koch W, Afshan S, Halasa M. Vorinostat (SAHA) and breast cancer: An overview. Cancers 2021; 13(18): 4700.
[http://dx.doi.org/10.3390/cancers13184700] [PMID: 34572928]
[87]
Søgaard OS, Graversen ME, Leth S, et al. The depsipeptide Romidepsin reverses HIV-1 latency in vivo. PLoS Pathog 2015; 11(9): e1005142.
[http://dx.doi.org/10.1371/journal.ppat.1005142] [PMID: 26379282]
[88]
Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med 2016; 22(2): 128-34.
[http://dx.doi.org/10.1038/nm.4036] [PMID: 26845405]
[89]
Topper MJ, Vaz M, Marrone KA, Brahmer JR, Baylin SB. The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2020; 17(2): 75-90.
[http://dx.doi.org/10.1038/s41571-019-0266-5] [PMID: 31548600]
[90]
Bruyer A, Maes K, Herviou L, et al. DNMTi/HDACi combined epigenetic targeted treatment induces reprogramming of myeloma cells in the direction of normal plasma cells. Br J Cancer 2018; 118(8): 1062-73.
[http://dx.doi.org/10.1038/s41416-018-0025-x] [PMID: 29500406]
[91]
Maio M, Covre A, Fratta E, et al. Molecular pathways: At the crossroads of cancer epigenetics and immunotherapy. Clin Cancer Res 2015; 21(18): 4040-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2914] [PMID: 26374074]
[92]
Fathi AT, Abdel-Wahab O. Mutations in epigenetic modifiers in myeloid malignancies and the prospect of novel epigenetic-targeted therapy. Adv Hematol 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/469592] [PMID: 21811504]
[93]
Mohammad HP, Barbash O, Creasy CL. Targeting epigenetic modifications in cancer therapy: Erasing the roadmap to cancer. Nat Med 2019; 25(3): 403-18.
[http://dx.doi.org/10.1038/s41591-019-0376-8] [PMID: 30842676]
[94]
Poon CH, Tse LSR, Lim LW. DNA methylation in the pathology of Alzheimer’s disease: From gene to cognition. Ann N Y Acad Sci 2020; 1475(1): 15-33.
[http://dx.doi.org/10.1111/nyas.14373] [PMID: 32491215]
[95]
Guedes-Dias P, de Proença J, Soares TR, et al. HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta Mol Basis Dis 2015; 1852(11): 2484-93.
[http://dx.doi.org/10.1016/j.bbadis.2015.08.012] [PMID: 26300485]
[96]
Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol 2014; 6(5): a019133.
[http://dx.doi.org/10.1101/cshperspect.a019133] [PMID: 24789823]
[97]
Barik RR, Bhatt LK. Emerging epigenetic targets in rheumatoid arthritis. Rheumatol Int 2021; 41(12): 2047-67.
[http://dx.doi.org/10.1007/s00296-021-04951-y] [PMID: 34309725]
[98]
Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q. Impaired DNA methylation and its mechanisms in CD4+T cells of systemic lupus erythematosus. J Autoimmun 2013; 41: 92-9.
[http://dx.doi.org/10.1016/j.jaut.2013.01.005] [PMID: 23340289]
[99]
Kular L, Jagodic M. Epigenetic insights into multiple sclerosis disease progression. J Intern Med 2020; 288(1): 82-102.
[http://dx.doi.org/10.1111/joim.13045] [PMID: 32614160]
[100]
Natarajan R. Epigenetic mechanisms in diabetic vascular complications and metabolic memory: The 2020 Edwin Bierman Award Lecture. Diabetes 2021; 70(2): 328-37.
[http://dx.doi.org/10.2337/dbi20-0030] [PMID: 33472942]
[101]
Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure. J Am Heart Assoc 2019; 8(12): e012673.
[http://dx.doi.org/10.1161/JAHA.119.012673] [PMID: 31185774]
[102]
Placek K, Schultze JL, Aschenbrenner AC. Epigenetic reprogramming of immune cells in injury, repair, and resolution. J Clin Invest 2019; 129(8): 2994-3005.
[http://dx.doi.org/10.1172/JCI124619] [PMID: 31329166]
[103]
Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: A focus on SIRT1‐mediated mechanisms. Mol Nutr Food Res 2014; 58(1): 22-32.
[http://dx.doi.org/10.1002/mnfr.201300195] [PMID: 23881751]
[104]
Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: Implications for pharmacogenomics and drug response. Int J Mol Sci 2015; 16(12): 30483-543.
[http://dx.doi.org/10.3390/ijms161226236] [PMID: 26703582]
[105]
Rroji O, Kumar A, Karuppagounder SS, Ratan RR. Epigenetic regulators of neuronal ferroptosis identify novel therapeutics for neurological diseases: HDACs, transglutaminases, and HIF prolyl hydroxylases. Neurobiol Dis 2021; 147: 105145.
[http://dx.doi.org/10.1016/j.nbd.2020.105145] [PMID: 33127469]
[106]
Ehrhart F, Sangani NB, Curfs LMG. Current developments in the genetics of Rett and Rett-like syndrome. Curr Opin Psychiatry 2018; 31(2): 103-8.
[http://dx.doi.org/10.1097/YCO.0000000000000389] [PMID: 29206688]
[107]
McCarthy SE, Gillis J, Kramer M, et al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 2014; 19(6): 652-8.
[http://dx.doi.org/10.1038/mp.2014.29] [PMID: 24776741]
[108]
Ciechomska M, Roszkowski L, Maslinski W. DNA methylation as a future therapeutic and diagnostic target in rheumatoid arthritis. Cells 2019; 8(9): 953.
[http://dx.doi.org/10.3390/cells8090953] [PMID: 31443448]
[109]
Mazzone R, Zwergel C, Artico M, et al. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics 2019; 11(1): 34.
[http://dx.doi.org/10.1186/s13148-019-0632-2] [PMID: 30808407]
[110]
Zhang Z, Zhang R. Epigenetics in autoimmune diseases: Pathogenesis and prospects for therapy. Autoimmun Rev 2015; 14(10): 854-63.
[http://dx.doi.org/10.1016/j.autrev.2015.05.008] [PMID: 26026695]
[111]
Nicorescu I, Dallinga GM, de Winther MPJ, Stroes ESG, Bahjat M. Potential epigenetic therapeutics for atherosclerosis treatment. Atherosclerosis 2019; 281: 189-97.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.10.006] [PMID: 30340764]
[112]
Prasher D, Greenway SC, Singh RB. The impact of epigenetics on cardiovascular disease. Biochem Cell Biol 2020; 98(1): 12-22.
[http://dx.doi.org/10.1139/bcb-2019-0045] [PMID: 31112654]
[113]
Arif M, Sadayappan S, Becker RC, Martin LJ, Urbina EM. Epigenetic modification: A regulatory mechanism in essential hypertension. Hypertens Res 2019; 42(8): 1099-113.
[http://dx.doi.org/10.1038/s41440-019-0248-0] [PMID: 30867575]
[114]
Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: From basics to birth and beyond. J Dev Orig Health Dis 2017; 8(5): 513-9.
[http://dx.doi.org/10.1017/S2040174417000733] [PMID: 28889823]
[115]
Stols-Gonçalves D, Tristão LS, Henneman P, Nieuwdorp M. Epigenetic markers and microbiota/metabolite-induced epigenetic modifications in the pathogenesis of obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease. Curr Diab Rep 2019; 19(6): 31.
[http://dx.doi.org/10.1007/s11892-019-1151-4] [PMID: 31044315]
[116]
Hoang TT, Sikdar S, Xu CJ, et al. Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. Eur Respir J 2020; 56(3): 2000217.
[http://dx.doi.org/10.1183/13993003.00217-2020] [PMID: 32381493]
[117]
Shanmugam G, Sunny JS, Rakshit S, George M, Leela KV, Sarkar K. Involvement of inflammatory cytokines and epigenetic modification of the mtTFA complex in T-helper cells of patients’ suffering from non-small cell lung cancer and chronic obstructive pulmonary disease. Mol Immunol 2022; 151: 70-83.
[http://dx.doi.org/10.1016/j.molimm.2022.08.006] [PMID: 36099831]
[118]
Grote C, Reinhardt D, Zhang M, Wang J. Regulatory mechanisms and clinical manifestations of musculoskeletal aging. J Orthop Res 2019; 37(7): 1475-88.
[http://dx.doi.org/10.1002/jor.24292] [PMID: 30919498]
[119]
Moufarrij S, Dandapani M, Arthofer E, et al. Epigenetic therapy for ovarian cancer: Promise and progress. Clin Epigenetics 2019; 11(1): 7.
[http://dx.doi.org/10.1186/s13148-018-0602-0] [PMID: 30646939]
[120]
Caradus JR. Intended and unintended consequences of genetically modified crops–myth, fact and/or manageable outcomes. N Z J Agric Res 2022; 01: 1-101.
[http://dx.doi.org/10.1080/00288233.2022.2141273]
[121]
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2(2): 141-60.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[122]
Hamdani N, Costantino S, Mügge A, et al. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: A call for individualized therapies. Eur Heart J 2021; 42(20): 1940-58.
[http://dx.doi.org/10.1093/eurheartj/ehab197]
[123]
Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019; 11(1): 81.
[http://dx.doi.org/10.1186/s13148-019-0675-4] [PMID: 31097014]
[124]
Coussens NP, Sittampalam GS, Jonson SG, et al. The opioid crisis and the future of addiction and pain therapeutics. J Pharmacol Exp Ther 2019; 371(2): 396-408.
[http://dx.doi.org/10.1124/jpet.119.259408] [PMID: 31481516]
[125]
Brown WA. Expectation, the placebo effect and the response to treatment. R I Med J 2013; 98(5): 19-21.
[126]
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. Nat Rev Mater 2021; 6(4): 351-70.
[http://dx.doi.org/10.1038/s41578-020-00269-6] [PMID: 34950512]
[127]
Wathoni N, Puluhulawa LE, Joni IM, et al. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022; 29(1): 2959-70.
[http://dx.doi.org/10.1080/10717544.2022.2120566] [PMID: 36085575]
[128]
Marshall HT, Djamgoz MBA. Immuno-oncology: Emerging targets and combination therapies. Front Oncol 2018; 8: 315.
[http://dx.doi.org/10.3389/fonc.2018.00315] [PMID: 30191140]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy