Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

One Pot Synthesis of New Benzimidazole Derivatives with Exceptionally High Luminescence Quantum Efficiency

Author(s): Abraham Mensah, Xin-Ye Liu, Bing-Xiang Hu, Ennin Vendish Kweku, Fang-Ming Wang*, Li-Zhuang Chen* and Shao-Jun Zheng*

Volume 21, Issue 8, 2024

Published on: 11 January, 2024

Page: [1091 - 1101] Pages: 11

DOI: 10.2174/0115701794271985231219070212

Price: $65

Abstract

Aim and Objectives: There are different approaches to the synthesis of benzimidazole. In this article, five new benzimidazole derivatives, BMPO, Me-BMPO, Di-MeBMPO, F-BMPO and Cl-BMPO where (BMPO=3-[(1H)-benzo[d]imidazol-2-yl]pyridin-2(1H)-one), have been prepared. Another study was carried out on luminescence properties and their potential applications for the detection of transition metal ions.

Materials and Methods: From the one-pot synthesis approach, all the derivatives of the benzimidazole compounds were obtained. The compounds were characterized using HRMS, 1HNMR, 13CNMR, and X-ray crystallography. Herein, a mechanism has been deciphered by predicting the release of HCl(g).

Results: All compounds showed a strong deep blue emission when dissolved in dimethylacetamide (DMA), with emission wavelengths at 423, 428, 435, 423, and 421 nm, and half-times of 3.64, 2.77, 2, 19, 3.42 and 3.52 ns, respectively. In addition, their emission quantum yields were determined to be 72, 50, 42, 73 and 80%.

Conclusion: Five new benzimidazole derivatives, BMPO, Me-BMPO, Di-MeBIPO, F-BIPO, and Cl-BIPO, have been successfully synthesized by the one-pot synthesis method, and their structures are characterized and confirmed. The compounds exhibited exceptional luminescence by emitting a strong blue light in DMA with high fluorescence quantum yields between 42~80%.

Graphical Abstract

[1]
Wright, J.B. The chemistry of the benzimidazoles. Chem. Rev., 1951, 48(3), 397-541.
[http://dx.doi.org/10.1021/cr60151a002 ] [PMID: 24541208]
[2]
Su, C.Y.; Goforth, A.M.; Smith, M.D.; zur Loye, H.C. Formation of dinuclear, macrocyclic, and chain structures from HgI(2) and a semirigid benzimidazole-based bridging ligand: an example of ring-opening supramolecular isomerism. Inorg. Chem., 2003, 42(18), 5685-5692.
[http://dx.doi.org/10.1021/ic034388l ] [PMID: 12950218]
[3]
Samai, S.; Biradha, K. Coordination Polymers of Flexible Bis(benzimidazole) Ligand: Halogen Bridging and Metal···Arene Interactions. Cryst. Growth Des., 2011, 11(12), 5723-5732.
[http://dx.doi.org/10.1021/cg2013254]
[4]
Aljourani, J.; Raeissi, K.; Golozar, M.A. Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corros. Sci., 2009, 51(8), 1836-1843.
[http://dx.doi.org/10.1016/j.corsci.2009.05.011]
[5]
Paul, A.; Gupta, R.K.; Dubey, M.; Sharma, G.; Koch, B.; Hundal, G.; Hundal, M.S.; Pandey, D.S. Potential apoptosis inducing agents based on a new benzimidazole schiff base ligand and its dicopper (II) complex. RSC Advances, 2014, 4(78), 41228-41236.
[http://dx.doi.org/10.1039/C4RA08680E]
[6]
Rodionov, V.O.; Stanislav, I. Benzimidazole and related ligands for cu-catalyzed azide-alkyne cycloaddition. J. Am. Chem. Soc., 2007, 129(42), 12697.
[7]
Ebenezer, O.; Oyetunde-Joshua, F.; Omotoso, O.D.; Shapi, M. Benzimidazole and its derivatives: Recent advances (2020–2022). Results in Chemistry, 2023, 5, 100925.
[http://dx.doi.org/10.1016/j.rechem.2023.100925]
[8]
Singh, P.K.; Silakari, O. Benzimidazole: Journey from single targeting to multitargeting molecule. In: Key Heterocycle Cores for Designing Multitargeting Molecules; Silakari, O., Ed.; Elsevier, 2018; pp. 31-52.
[http://dx.doi.org/10.1016/B978-0-08-102083-8.00002-9]
[9]
Basuri, P.; Gonzalez, L.E.; Morato, N.M.; Pradeep, T.; Cooks, R.G. Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids. Chem. Sci. (Camb.), 2020, 11(47), 12686-12694.
[http://dx.doi.org/10.1039/D0SC02467H ] [PMID: 34094463]
[10]
Venugopal, S.; Kaur, B.; Verma, A.; Wadhwa, P.; Sahu, S.K. A review on modern approaches to benzimidazole synthesis. Curr. Org. Synth., 2023, 20(6), 595-605.
[http://dx.doi.org/10.2174/1570179420666221010091157 ] [PMID: 36221870]
[11]
Chanda, K.; Rajasekhar, S.; Maiti, B.; Musuvathi, B. Synthesis and medicinal applications of benzimidazoles: An overview. Curr. Org. Synth., 2016, 13, 1.
[12]
Grimmett, M.R. 8 - Synthesis of Specifically Substituted Imidazoles and Benzimidazoles.Imidazole and Benzimidazole Synthesis; Grimmett, M.R., Ed.; Academic Press: San Diego, 1997, pp. 227-248.
[http://dx.doi.org/10.1016/B978-012303190-7/50021-2]
[13]
Hisano, T.; Ichikawa, M.; Tsumoto, K.; Tasaki, M. Synthesis of benzoxazoles, benzothiazoles and benzimidazoles and evaluation of their antifungal, insecticidal and herbicidal activities. Chem. Pharm. Bull. (Tokyo), 1982, 30(8), 2996-3004.
[http://dx.doi.org/10.1248/cpb.30.2996]
[14]
Largeron, M.; Nguyen, K. Recent Advances in the Synthesis of Benzimidazole Derivatives from the Oxidative Coupling of Primary Amines. Synthesis, 2018, 50(2), 241-253.
[http://dx.doi.org/10.1055/s-0036-1590915]
[15]
Petyunin, P.A.; Choudry, A.M. Synthesis of benzimidazole-2-carboxylic acid amides from o-phenylenediamine and oxamic acid esters. Chem. Heterocycl. Compd., 1982, 18(5), 519-521.
[http://dx.doi.org/10.1007/BF00526091]
[16]
Han, X.; Ma, H.; Wang, Y. A simple and efficient synthesis of 2-aryl-substituted benzimidazoles. Russ. J. Org. Chem., 2008, 44(6), 863-865.
[http://dx.doi.org/10.1134/S1070428008060146]
[17]
Hassan, J.A.; Rasheed, M.K. Synthesis and characterization of some benzimidazole derivatives from 4-methyl ortho-phenylene diamine and evaluating their effectiveness against bacteria and fungi. AIP Conf. Proc., 2022, 2394(1), 040040.
[http://dx.doi.org/10.1063/5.0121766]
[18]
Lin, S.; Yang, L. A simple and efficient procedure for the synthesis of benzimidazoles using air as the oxidant. Tetrahedron Lett., 2005, 46(25), 4315-4319.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.101]
[19]
Tzani, M.A.; Gabriel, C.; Lykakis, I.N. Selective Synthesis of Benzimidazoles from o-Phenylenediamine and Aldehydes Promoted by Supported Gold Nanoparticles. Nanomaterials (Basel), 2020, 10(12), 2405.
[http://dx.doi.org/10.3390/nano10122405] [PMID: 33271922]
[20]
Jawad Kadhim, A.; Chazi Kazim, A. Synthesis and Characterization of Benzimidazole by Using o-Phenylenediamine with Different Aldehydes and Carboxylic Acids in the Presence of ρ-TSOH as a Catalyst. Orient. J. Chem., 2018, 34(4), 2131-2136.
[http://dx.doi.org/10.13005/ojc/3404054]
[21]
Mamada, M.; Pérez-Bolívar, C.; Kumaki, D.; Esipenko, N.A.; Tokito, S.; Anzenbacher, P., Jr Benzimidazole derivatives: synthesis, physical properties, and n-type semiconducting properties. Chemistry, 2014, 20(37), 11835-11846.
[http://dx.doi.org/10.1002/chem.201403058] [PMID: 25079856]
[22]
Tian, X.; Wang, S.; Li, J.; Liu, F.; Wang, X.; Chen, H.; Wang, D.; Ni, H.; Wang, Z. Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications. Appl. Surf. Sci., 2019, 465, 332-339.
[http://dx.doi.org/10.1016/j.apsusc.2018.09.170]
[23]
Rasal, K.B.; Yadav, G.D. One-pot synthesis of benzimidazole using DMF as a multitasking reagent in presence CuFe 2 O 4 as catalyst. Catal. Today, 2018, 309, 51-60.
[http://dx.doi.org/10.1016/j.cattod.2017.10.014]
[24]
Shiraishi, Y.; Sugano, Y.; Tanaka, S.; Hirai, T. One-pot synthesis of benzimidazoles by simultaneous photocatalytic and catalytic reactions on Pt@TiO2 nanoparticles. Angew. Chem. Int. Ed., 2010, 49(9), 1656-1660.
[http://dx.doi.org/10.1002/anie.200906573] [PMID: 20112317]
[25]
Bahrami, K.; Khodaei, M.M.; Kavianinia, I. A simple and efficient one-pot synthesis of 2-substituted benzimidazoles. J. Org. Chem., 2007, 2007(04), 547-550.
[26]
Khan, A.T.; Parvin, T.; Choudhury, L.H. A simple and convenient one-pot synthesis of benzimidazole derivatives using cobalt (II) chloride hexahydrate as catalyst. Synth. Commun., 2009, 39(13), 2339-2346.
[http://dx.doi.org/10.1080/00397910802654815]
[27]
Gaware, S.; Chatterjee, R.; Dhayalan, V.; Dandela, R. Metal-free one-pot synthesis of 2-substituted benzimidazoles from N-aryl imines and TMSN3. Tetrahedron Lett., 2023, 115, 154289.
[http://dx.doi.org/10.1016/j.tetlet.2022.154289]
[28]
Güzel, E.; Acar Çevik, U.; Evren, A.E.; Bostancı, H.E.; Gül, Ü.D.; Kayış, U.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis of Benzimidazole-1,2,4-triazole derivatives as potential antifungal agents targeting 14α-demethylase. ACS Omega, 2023, 8(4), 4369-4384.
[http://dx.doi.org/10.1021/acsomega.2c07755] [PMID: 36743066]
[29]
Hsiao, Y.S.; Narhe, B.D.; Chang, Y.S.; Sun, C.M. One-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles via a multicomponent [4 + 1] cycloaddition reaction. ACS Comb. Sci., 2013, 15(10), 551-555.
[http://dx.doi.org/10.1021/co400075z] [PMID: 24016144]
[30]
Kim, Y.; Kumar, M.R.; Park, N.; Heo, Y.; Lee, S. Copper-catalyzed, one-pot, three-component synthesis of benzimidazoles by condensation and C-N bond formation. J. Org. Chem., 2011, 76(23), 9577-9583.
[http://dx.doi.org/10.1021/jo2019416] [PMID: 22034860]
[31]
Trivedi, R.; De, S.K.; Gibbs, R.A. A convenient one-pot synthesis of 2-substituted benzimidazoles. J. Mol. Catal. Chem., 2006, 245(1-2), 8-11.
[http://dx.doi.org/10.1016/j.molcata.2005.09.025]
[32]
Chen, D.; Li, W.; Gan, L.; Wang, Z.; Li, M.; Su, S.J. Non-noble-metal-based organic emitters for OLED applications. Mater. Sci. Eng. Rep., 2020, 142, 100581.
[http://dx.doi.org/10.1016/j.mser.2020.100581]
[33]
Ha, J.M.; Hur, S.H.; Pathak, A.; Jeong, J.E.; Woo, H.Y. Recent advances in organic luminescent materials with narrowband emission. NPG Asia Mater., 2021, 13(1), 53.
[http://dx.doi.org/10.1038/s41427-021-00318-8]
[34]
Davydova, M.P.; Rakhmanova, M.I.; Bagryanskaya, I.Y.; Brylev, K.A.; Artem’ev, A.V.A. 1D coordination polymer based on CuI and 2-(Diphenylphosphino)Pyrimidine: Synthesis, structure and luminescent properties. J. Struct. Chem., 2020, 61(6), 894-898.
[http://dx.doi.org/10.1134/S0022476620060086]
[35]
Kelly, A.W.; Handy, J.V.; Nicholas, A.D.; Barnes, F.H.; Patterson, H.H.; Wojtas, L.; Pike, R.D. Tetragonal Diiodotetrapyridinedicopper(I): Structure, Luminescence, and Computational Modeling. J. Inorg. Organomet. Polym. Mater., 2017, 27(S1), 90-100.
[http://dx.doi.org/10.1007/s10904-017-0584-y]
[36]
Farinola, G.M.; Ragni, R. Organic emitters for solid state lighting. Journal of Solid State Lighting, 2015, 2(1), 9.
[http://dx.doi.org/10.1186/s40539-015-0028-7]
[37]
De Silva, T.P.D.; Youm, S.G.; Tamas, G.G.; Yang, B.; Wang, C.H.; Fronczek, F.R.; Sahasrabudhe, G.; Sterling, S.; Quarels, R.D.; Chhotaray, P.K.; Nesterov, E.E.; Warner, I.M. Pyrenylpyridines: Sky-blue emitters for organic light-emitting diodes. ACS Omega, 2019, 4(16), 16867-16877.
[http://dx.doi.org/10.1021/acsomega.9b01948 ] [PMID: 31646233]
[38]
Chiu, N.F.; Huang, T.Y.; Kuo, C.C.; Lin, C.W.; Lee, J.H. Organic-based plasmonic emitters for sensing applications. Appl. Opt., 2013, 52(7), 1383-1388.
[http://dx.doi.org/10.1364/AO.52.001383 ] [PMID: 23458789]
[39]
Wu, J.; Li, C.; Chen, Q.; Xu, L.; Jian, M.; Zhao, J. Detection of volatile organic compounds, water in organic solvents, and anions using all-in-one type fluorescent emitters, and their data protection applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2022, 10(29), 10595-10608.
[http://dx.doi.org/10.1039/D2TC01332K]
[40]
Singh, R.; Gupta, A.K.; Pradeep, C.P. Synthesis of a new series of organic solid-state near-infrared emitters: The role of crystal packing and weak intermolecular interactions and application in latent fingerprint detection. Cryst. Growth Des., 2021, 21(2), 1062-1076.
[http://dx.doi.org/10.1021/acs.cgd.0c01392]
[41]
Ta, S.; Das, S.; Ghosh, M.; Banerjee, M.; Hira, S.K.; Manna, P.P.; Das, D. A unique benzimidazole-naphthalene hybrid molecule for independent detection of Zn2+ and N3− ions: Experimental and theoretical investigations. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 209, 170-185.
[http://dx.doi.org/10.1016/j.saa.2018.10.006] [PMID: 30388587]
[42]
Taş, H.; Adams, J.; Namyslo, J.C.; Schmidt, A. Zn 2+ detection of a benzimidazole 8-aminoquinoline fluorescent sensor by inhibited tautomerization. RSC Advances, 2021, 11(58), 36450-36458.
[http://dx.doi.org/10.1039/D1RA05591G] [PMID: 35494348]
[43]
Verdasco, G.; Martín, M.A.; del Castillo, B.; López-Alvarado, P.; Menéndez, J.C. Solvent effects on the fluorescent emission of some new benzimidazole derivatives. Anal. Chim. Acta, 1995, 303(1), 73-78.
[http://dx.doi.org/10.1016/0003-2670(94)00365-S]
[44]
Jana, P.; Yadav, M.; Kumar, T.; Kanvah, S. Benzimidazole-acrylonitriles as chemosensors for picric acid detection. J. Photochem. Photobiol. Chem., 2021, 404, 112874.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112874]
[45]
Xiong, J.F.; Li, J.X.; Mo, G.Z.; Huo, J.P.; Liu, J.Y.; Chen, X.Y.; Wang, Z.Y. Benzimidazole derivatives: Selective fluorescent chemosensors for the picogram detection of picric acid. J. Org. Chem., 2014, 79(23), 11619-11630.
[http://dx.doi.org/10.1021/jo502281b] [PMID: 25387225]
[46]
Feng, H.T.; Zeng, J.; Yin, P.A.; Wang, X.D.; Peng, Q.; Zhao, Z.; Lam, J.W.Y.; Tang, B.Z. Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nat. Commun., 2020, 11(1), 2617.
[http://dx.doi.org/10.1038/s41467-020-16412-4] [PMID: 32457319]
[47]
Boonsri, M.; Vongnam, K.; Namuangruk, S.; Sukwattanasinitt, M.; Rashatasakhon, P. Pyrenyl benzimidazole-isoquinolinones: Aggregation-induced emission enhancement property and application as TNT fluorescent sensor. Sens. Actuators B Chem., 2017, 248, 665-672.
[http://dx.doi.org/10.1016/j.snb.2017.03.170]
[48]
Lopes, AB; Wagner, P; Gulea, M Synthesis of benzimidazole-fused medium-sized n,s-heterocycles via palladium-catalyzed cyclizations. 2019, 2019(6), 1361-1370.
[49]
Barwiolek, M.; Wojtczak, A.; Kozakiewicz, A.; Babinska, M.; Tafelska-Kaczmarek, A.; Larsen, E.; Szlyk, E. The synthesis, characterization and fluorescence properties of new benzimidazole derivatives. J. Lumin., 2019, 211, 88-95.
[http://dx.doi.org/10.1016/j.jlumin.2019.03.026]
[50]
Li, Y.; Cao, B.; Zhou, Q.; Zhang, X.; Li, B.; Su, X.; Shi, Y. Enhancing fluorescence of benzimidazole derivative via solvent-regulated ESIPT and TICT process: A TDDFT study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 258, 119862.
[http://dx.doi.org/10.1016/j.saa.2021.119862] [PMID: 33957448]
[51]
Wei, Y.; Wang, N.; Li, D.; Wang, G.; He, Y. Study on the fluorescence modulation of benzimidazole through energy transfer and photochromic isomerization in the pillar(5)arene-based supermolecular system. React. Funct. Polym., 2019, 144, 104351.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104351]
[52]
Xu, X.D.; Liang, Y.; Mensah, A.; Li, J.F.; Zhou, L.; Chen, L.Z.; Wang, F-M. Synthesis, Structures and Fluorescence Properties of Two Novel Cadmium MOFs Based on a Tetraphenylethene(TPE)‐Core Ligand. ChemistrySelect, 2019, 4(42), 12380-12385.
[http://dx.doi.org/10.1002/slct.201902901]
[53]
Shao, J.J.; Ni, J.; Chen, W.M.; Mensah, A.; Liu, P.; Liang, Y.; Li, G-J.; Wang, F-M.; Wen, L-L. A Mn-based LMOF with an AIEgens ligand for selective detection of Fe3+, CrO42− and Cr2O72− ions in aqueous solution. J. Solid State Chem., 2022, 314, 123374.
[http://dx.doi.org/10.1016/j.jssc.2022.123374]
[54]
Ni, J.L.; Shao, J.J.; Liang, Y.; Li, G.J.; Li, J.F.; Mensah, A.; Chen, L-Z.; Wang, F-M. Luminescent Mn-based metal-organic framework as an unusual detector to OH− and a multi-responsive sensor for Fe3+, Cr2O72− and CrO42− in aqueous media. J. Mol. Struct., 2022, 1257, 132485.
[http://dx.doi.org/10.1016/j.molstruc.2022.132485]
[55]
Shao, J.J.; Ni, J.L.; Mensah, A.; Liang, Y.; Li, G.J.; Chen, L.Z.; Wang, F-M. Anion-induced two stable isostructural Cd(II) LMOFs based on benzotriazole with the highly selective detection of Fe 3+ ions. New J. Chem., 2022, 46(22), 10927-10933.
[http://dx.doi.org/10.1039/D2NJ01514E]
[56]
Duan, Y.; Xin, W.; Lu, F.; Li, T.; Li, M.; Wu, J.; Wang, J.; Zhou, M. Benzimidazole- and QoI-resistance in Corynespora cassiicola populations from greenhouse-cultivated cucumber: An emerging problem in China. Pestic. Biochem. Physiol., 2019, 153, 95-105.
[http://dx.doi.org/10.1016/j.pestbp.2018.11.006] [PMID: 30744902]
[57]
Zhang, H.; Guo, T.; Wu, M.; Huo, X.; Tang, S.; Wang, X.; Liu, J. 4CzIPN catalyzed photochemical oxidation of benzylic alcohols. Tetrahedron Lett., 2021, 67, 152878.
[http://dx.doi.org/10.1016/j.tetlet.2021.152878]
[58]
Liu, W.; Zhu, K.; Teat, S.J.; Dey, G.; Shen, Z.; Wang, L.; O’Carroll, D.M.; Li, J. All-in-One: Achieving robust, strongly luminescent and highly dispersible hybrid materials by combining ionic and coordinate bonds in molecular crystals. J. Am. Chem. Soc., 2017, 139(27), 9281-9290.
[http://dx.doi.org/10.1021/jacs.7b04550] [PMID: 28625054]
[59]
Mensah, A.; Shao, J.J.; Ni, J.L.; Li, G.J.; Wang, F.M.; Chen, L.Z. Recent progress in luminescent Cu (I) halide complexes: A mini-review. Front Chem., 2022, 9, 816363.
[http://dx.doi.org/10.3389/fchem.2021.816363] [PMID: 35145957]
[60]
Shao, J.J.; Chen, W.M.; Mensah, A.; Liu, P.L.; Ni, J.L.; Chen, L.Z.; Wang, F.M. Realizing near white and warm light emission of cuprous iodide complexes by alkyl-isomerization of ligands. Dalton Trans., 2023, 52(11), 3254-3259.
[http://dx.doi.org/10.1039/D2DT02526D] [PMID: 36625273]
[61]
Wang, F.M.; Chen, L.Z.; Liu, Y.M.; Lu, C.S.; Duan, X.Y.; Meng, Q.J. Prolonging luminescent lifetimes by introducing bis(maleonitriledithiolato)metalate anions with a fluorescent organic cation. J. Coord. Chem., 2012, 65(1), 87-103.
[http://dx.doi.org/10.1080/00958972.2011.641539]
[62]
Li, J.; Xu, X.; Zhou, L.; Zhou, Z.; Chen, L.; Wang, F. Synthesis, structure and fluorescence properties of two metal-organic frameworks based on a benzimidazole-derived ligand. J. Chem. Res., 2018, 42(8), 424-427.
[http://dx.doi.org/10.3184/174751918X15339085140792]
[63]
Falivene, L.; Cavallo, L. Theoretical NMR spectroscopy of N-heterocyclic carbenes and their metal complexes. Coord. Chem. Rev., 2017, 344, 101-114.
[http://dx.doi.org/10.1016/j.ccr.2016.12.015]
[64]
Crowley, T.E. Nuclear magnetic resonance spectroscopy. In: Purification and Characterization of Secondary Metabolites; Crowley, T.E., Ed.; Academic Press, 2020; pp. 67-78.
[http://dx.doi.org/10.1016/B978-0-12-813942-4.00007-3]
[65]
Singh, M.K.; Singh, A. Nuclear magnetic resonance spectroscopy. In: Characterization of Polymers and Fibres; Singh, M.K.; Singh, A., Eds.; Woodhead Publishing, 2022; pp. 321-339.
[http://dx.doi.org/10.1016/B978-0-12-823986-5.00011-7]
[66]
Bell, J.D.; Preece, N.E.; Parkes, H.G. 14 - NMR studies of body fluids and tissue extracts. In: NMR in Physiology and Biomedicine; Gillies, R.J., Ed.; Academic Press: San Diego, 1994; pp. 221-236.
[http://dx.doi.org/10.1016/B978-0-12-283980-1.50019-3]
[67]
Peak, D. Fourier transform infrared spectroscopy. In: Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, 2005; pp. 80-85.
[http://dx.doi.org/10.1016/B0-12-348530-4/00174-0]
[68]
Tao, J. Chapter Twenty-Two - FTIR and raman studies of structure and bonding in mineral and organic–mineral composites. In: Methods in Enzymology. 532; De Yoreo, J.J., Ed.; Academic Press, 2013; pp. 533-556.
[69]
Tashiro, S.; Umeki, T.; Kubota, R.; Shionoya, M. Rational synthesis of benzimidazole[3]arenes by Cu II -catalyzed post-macrocyclization transformation. Chem. Sci., 2018, 9(39), 7614-7619.
[http://dx.doi.org/10.1039/C8SC03086C] [PMID: 30393521]
[70]
Wan, S.B.; Liu, Z.L.; Chen, D.; Dou, Q.P.; Jiang, T. Polyphosphorous acid catalyzed cyclization in the synthesis of cryptolepine derivatives. Chin. Chem. Lett., 2007, 18(10), 1179-1181.
[http://dx.doi.org/10.1016/j.cclet.2007.08.014]
[71]
Krongauz, E.S.; Rusanov, A.L.; Renard, T.L. Polyphosphoric acid in cyclisation and polycyclisation reactions. Russ. Chem. Rev., 1970, 39(9), 747-765.
[http://dx.doi.org/10.1070/RC1970v039n09ABEH002020]
[72]
Koo, J. Studies in polyphosphoric acid cyclizations. J. Am. Chem. Soc., 1953, 75(8), 1891-1895.
[http://dx.doi.org/10.1021/ja01104a034]
[73]
Popp, F.D.; McEwen, W.E. Polyphosphoric acids as a reagent in organic chemistry. Chem. Rev., 1958, 58(2), 321-401.
[http://dx.doi.org/10.1021/cr50020a004]
[74]
Kapinos, L.E.; Sigel, H. On the metal-ion-coordinating properties of the benzimidazolate residue in aqueous solution – extent of acidification of benzimidazole-(N3)H Sites by (N1)-Coordinated Divalent Metal Ions. Eur. J. Inorg. Chem., 1999, 1999(10), 1781-1786.
[http://dx.doi.org/10.1002/(SICI)1099-0682(199910)1999:10<1781::AID-EJIC1781>3.0.CO;2-H]
[75]
Gao, B.; Chen, L.; Chen, T. Effect of electron-donating substituent groups on aromatic ring on photoluminescence properties of complexes of benzoic acid-functionalized polysulfone with Eu(III) ions. Phys. Chem. Chem. Phys., 2015, 17(38), 25322-25332.
[http://dx.doi.org/10.1039/C5CP03300D] [PMID: 26355714]
[76]
Omary, M.A.; Patterson, H.H. Luminescence, theory. In: Encyclopedia of Spectroscopy and Spectrometry, 3rd ed; Lindon, J.C.; Tranter, G.E.; Koppenaal, D.W., Eds.; Academic Press: Oxford, 2017; pp. 636-653.
[http://dx.doi.org/10.1016/B978-0-12-803224-4.00193-X]
[77]
Raj, M.; Padhi, S.K. Synthesis, Characterization, and Structure of Quinoline‐based Benzimidazole Derivatives. J. Heterocycl. Chem., 2019, 56(3), 988-997.
[http://dx.doi.org/10.1002/jhet.3481]
[78]
Fujimori, S.; Inoue, S. Main group carbonyl complexes. Commun. Chem., 2020, 3(1), 175.
[http://dx.doi.org/10.1038/s42004-020-00423-9 ] [PMID: 36703371]
[79]
Dong, J.; Zhang, X.D.; Xie, X.F.; Guo, F.; Sun, W.Y. Amino group dependent sensing properties of metal–organic frameworks: selective turn-on fluorescence detection of lysine and arginine. RSC Advances, 2020, 10(61), 37449-37455.
[http://dx.doi.org/10.1039/D0RA06879A ] [PMID: 35521281]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy