Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma

Author(s): Tennyson Prakash Rayginia, Chenicheri Kizhakkeveettil Keerthana, Sadiq Chembothumparambil Shifana, Maria Joy Pellissery, Ajmani Abhishek and Ruby John Anto*

Volume 31, Issue 32, 2024

Published on: 11 January, 2024

Page: [5199 - 5221] Pages: 23

DOI: 10.2174/0109298673275501231213063902

Price: $65

Abstract

Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Seo, D.Y.; Lee, S.R.; Heo, J.W.; No, M.H.; Rhee, B.D.; Ko, K.S.; Kwak, H.B.; Han, J. Ursolic acid in health and disease. Korean J. Physiol. Pharmacol., 2018, 22(3), 235-248.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.235] [PMID: 29719446]
[3]
Craig, A.J.; von Felden, J.; Garcia-Lezana, T.; Sarcognato, S.; Villanueva, A. Tumour evolution in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(3), 139-152.
[http://dx.doi.org/10.1038/s41575-019-0229-4] [PMID: 31792430]
[4]
Ahmed, O.; Liu, L.; Gayed, A.; Baadh, A.; Patel, M.; Tasse, J.; Turba, U.; Arslan, B. The changing face of hepatocellular carcinoma: Forecasting prevalence of nonalcoholic steatohepatitis and hepatitis C cirrhosis. J. Clin. Exp. Hepatol., 2019, 9(1), 50-55.
[http://dx.doi.org/10.1016/j.jceh.2018.02.006] [PMID: 30765939]
[5]
Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; Sangro, B.; Singal, A.G.; Vogel, A.; Fuster, J.; Ayuso, C.; Bruix, J. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol., 2022, 76(3), 681-693.
[http://dx.doi.org/10.1016/j.jhep.2021.11.018] [PMID: 34801630]
[6]
Toh, M.R.; Wong, E.Y.T.; Wong, S.H.; Ng, A.W.T.; Loo, L.H.; Chow, P.K.H.; Ngeow, J. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology, 2023, 164(5), 766-782.
[http://dx.doi.org/10.1053/j.gastro.2023.01.033] [PMID: 36738977]
[7]
Ogunwobi, O.O.; Harricharran, T.; Huaman, J.; Galuza, A.; Odumuwagun, O.; Tan, Y.; Ma, G.X.; Nguyen, M.T. Mechanisms of hepatocellular carcinoma progression. World J. Gastroenterol., 2019, 25(19), 2279-2293.
[http://dx.doi.org/10.3748/wjg.v25.i19.2279] [PMID: 31148900]
[8]
Tarocchi, M.; Polvani, S.; Marroncini, G.; Galli, A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol., 2014, 20(33), 11630-11640.
[http://dx.doi.org/10.3748/wjg.v20.i33.11630] [PMID: 25206269]
[9]
Ramakrishna, G.; Rastogi, A.; Trehanpati, N.; Sen, B.; Khosla, R.; Sarin, S.K. From cirrhosis to hepatocellular carcinoma: New molecular insights on inflammation and cellular senescence. Liver Cancer, 2013, 2(3-4), 367-383.
[http://dx.doi.org/10.1159/000343852] [PMID: 24400224]
[10]
Bartosch, B.; Thimme, R.; Blum, H.E.; Zoulim, F. Hepatitis C virus-induced hepatocarcinogenesis. J. Hepatol., 2009, 51(4), 810-820.
[http://dx.doi.org/10.1016/j.jhep.2009.05.008] [PMID: 19545926]
[11]
Shampay, J.; Szostak, J.W.; Blackburn, E.H. DNA sequences of telomeres maintained in yeast. Nature, 1984, 310(5973), 154-157.
[http://dx.doi.org/10.1038/310154a0] [PMID: 6330571]
[12]
Jafri, M.A.; Ansari, S.A.; Alqahtani, M.H.; Shay, J.W. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med., 2016, 8(1), 69.
[http://dx.doi.org/10.1186/s13073-016-0324-x] [PMID: 27323951]
[13]
Mangnall, D.; Bird, N.C.; Majeed, A.W. The molecular physiology of liver regeneration following partial hepatectomy. Liver Int., 2003, 23(2), 124-138.
[http://dx.doi.org/10.1034/j.1600-0676.2003.00812.x] [PMID: 12654135]
[14]
Hoare, M.; Das, T.; Alexander, G. Ageing, telomeres, senescence, and liver injury. J. Hepatol., 2010, 53(5), 950-961.
[http://dx.doi.org/10.1016/j.jhep.2010.06.009] [PMID: 20739078]
[15]
Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; Calatayud, A.L.; Pinyol, R.; Pelletier, L.; Balabaud, C.; Laurent, A.; Blanc, J.F.; Mazzaferro, V.; Calvo, F.; Villanueva, A.; Nault, J.C.; Bioulac-Sage, P.; Stratton, M.R.; Llovet, J.M.; Zucman-Rossi, J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet., 2015, 47(5), 505-511.
[http://dx.doi.org/10.1038/ng.3252] [PMID: 25822088]
[16]
Nault, J.C.; Datta, S.; Imbeaud, S.; Franconi, A.; Mallet, M.; Couchy, G.; Letouzé, E.; Pilati, C.; Verret, B.; Blanc, J.F.; Balabaud, C.; Calderaro, J.; Laurent, A.; Letexier, M.; Bioulac-Sage, P.; Calvo, F.; Zucman-Rossi, J. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet., 2015, 47(10), 1187-1193.
[http://dx.doi.org/10.1038/ng.3389] [PMID: 26301494]
[17]
La Bella, T.; Imbeaud, S.; Peneau, C.; Mami, I.; Datta, S.; Bayard, Q.; Caruso, S.; Hirsch, T.Z.; Calderaro, J.; Morcrette, G.; Guettier, C.; Paradis, V.; Amaddeo, G.; Laurent, A.; Possenti, L.; Chiche, L.; Bioulac-Sage, P.; Blanc, J.F.; Letouze, E.; Nault, J.C.; Zucman-Rossi, J. Adeno-associated virus in the liver: Natural history and consequences in tumour development. Gut, 2020, 69(4), 737-747.
[http://dx.doi.org/10.1136/gutjnl-2019-318281] [PMID: 31375600]
[18]
Ningarhari, M.; Caruso, S.; Hirsch, T.Z.; Bayard, Q.; Franconi, A.; Védie, A.L.; Noblet, B.; Blanc, J.F.; Amaddeo, G.; Ganne, N.; Ziol, M.; Paradis, V.; Guettier, C.; Calderaro, J.; Morcrette, G.; Kim, Y.; MacLeod, A.R.; Nault, J.C.; Rebouissou, S.; Zucman-Rossi, J. Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J. Hepatol., 2021, 74(5), 1155-1166.
[http://dx.doi.org/10.1016/j.jhep.2020.11.052] [PMID: 33338512]
[19]
Zhang, C.; Li, J.; Huang, T.; Duan, S.; Dai, D.; Jiang, D.; Sui, X.; Li, D.; Chen, Y.; Ding, F.; Huang, C.; Chen, G.; Wang, K. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget, 2016, 7(49), 81255-81267.
[http://dx.doi.org/10.18632/oncotarget.13221] [PMID: 27835605]
[20]
Xu, G.; Zhou, X.; Xing, J.; Xiao, Y.; Jin, B.; Sun, L.; Yang, H.; Du, S.; Xu, H.; Mao, Y. Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int., 2020, 20(1), 547.
[http://dx.doi.org/10.1186/s12935-020-01638-5] [PMID: 33292241]
[21]
Liu, M.; Cui, L.H.; Li, C.C.; Zhang, L. Association of APC, GSTP1 and SOCS1 promoter methylation with the risk of hepatocellular carcinoma. Eur. J. Cancer Prev., 2015, 24(6), 470-483.
[http://dx.doi.org/10.1097/CEJ.0000000000000121] [PMID: 25853848]
[22]
Villanueva, A.; Portela, A.; Sayols, S.; Battiston, C.; Hoshida, Y.; Méndez-González, J.; Imbeaud, S.; Letouzé, E.; Hernandez-Gea, V.; Cornella, H.; Pinyol, R.; Solé, M.; Fuster, J.; Zucman-Rossi, J.; Mazzaferro, V.; Esteller, M.; Llovet, J.M. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology, 2015, 61(6), 1945-1956.
[http://dx.doi.org/10.1002/hep.27732] [PMID: 25645722]
[23]
Li, Y.; Chen, X.; Lu, C. The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep., 2021, 22(5), e51803.
[http://dx.doi.org/10.15252/embr.202051803] [PMID: 33844406]
[24]
Tang, B.; Tang, F.; Li, B.; Yuan, S.; Xu, Q.; Tomlinson, S.; Jin, J.; Hu, W.; He, S. High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget, 2015, 6(14), 12654-12667.
[http://dx.doi.org/10.18632/oncotarget.3705] [PMID: 25909224]
[25]
Ling, S.; Li, J.; Shan, Q.; Dai, H.; Lu, D.; Wen, X.; Song, P.; Xie, H.; Zhou, L.; Liu, J.; Xu, X.; Zheng, S. USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. Mol. Oncol., 2017, 11(6), 682-695.
[http://dx.doi.org/10.1002/1878-0261.12067] [PMID: 28417539]
[26]
Zhang, J.; Luo, N.; Tian, Y.; Li, J.; Yang, X.; Yin, H.; Xiao, C.; Sheng, J.; Li, Y.; Tang, B.; Li, R. USP22 knockdown enhanced chemosensitivity of hepatocellular carcinoma cells to 5-Fu by up-regulation of Smad4 and suppression of Akt. Oncotarget, 2017, 8(15), 24728-24740.
[http://dx.doi.org/10.18632/oncotarget.15798] [PMID: 28445968]
[27]
Shen, Z.T.; Chen, Y.; Huang, G-C.; Zhu, X-X.; Wang, R.; Chen, L-B. Aurora-a confers radioresistance in human hepatocellular carcinoma by activating NF-κB signaling pathway. BMC Cancer, 2019, 19(1), 1075.
[http://dx.doi.org/10.1186/s12885-019-6312-y] [PMID: 30606139]
[28]
Lin, Z.Z.; Jeng, Y.M.; Hu, F.C.; Pan, H.W.; Tsao, H.W.; Lai, P.L.; Lee, P.H.; Cheng, A.L.; Hsu, H.C. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer, 2010, 10(1), 461.
[http://dx.doi.org/10.1186/1471-2407-10-461] [PMID: 20799978]
[29]
Gailhouste, L.; Liew, L.C.; Yasukawa, K.; Hatada, I.; Tanaka, Y.; Nakagama, H.; Ochiya, T. Differentiation therapy by epigenetic reconditioning exerts antitumor effects on liver cancer cells. Mol. Ther., 2018, 26(7), 1840-1854.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.018] [PMID: 29759938]
[30]
Liu, M.; Zhang, L.; Li, H.; Hinoue, T.; Zhou, W.; Ohtani, H.; El-Khoueiry, A.; Daniels, J.; O’Connell, C.; Dorff, T.B.; Lu, Q.; Weisenberger, D.J.; Liang, G. Integrative epigenetic analysis reveals therapeutic targets to the DNA methyltransferase inhibitor guadecitabine (SGI-110) in hepatocellular carcinoma. Hepatology, 2018, 68(4), 1412-1428.
[http://dx.doi.org/10.1002/hep.30091] [PMID: 29774579]
[31]
Alqahtani, A.; Khan, Z.; Alloghbi, A.; Said Ahmed, T.S.; Ashraf, M.; Hammouda, D.M. Hepatocellular carcinoma: Molecular mechanisms and targeted therapies. Medicina, 2019, 55(9), 526.
[http://dx.doi.org/10.3390/medicina55090526] [PMID: 31450841]
[32]
Farzaneh, Z.; Vosough, M.; Agarwal, T.; Farzaneh, M. Critical signaling pathways governing hepatocellular carcinoma behavior: Small molecule-based approaches. Cancer Cell Int., 2021, 21(1), 208.
[http://dx.doi.org/10.1186/s12935-021-01924-w] [PMID: 33849569]
[33]
Ho, D.W.H.; Lo, R.C.L.; Chan, L.K.; Ng, I.O.L. Molecular pathogenesis of hepatocellular carcinoma. Liver Cancer, 2016, 5(4), 290-302.
[http://dx.doi.org/10.1159/000449340] [PMID: 27781201]
[34]
Mekuria, A.; Abdi, A. Potential molecular targets and drugs for treatment of hepatocellular carcinoma. J. Cancer Sci. Ther., 2017, 9, 12.
[35]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[36]
Bais, C. Comprehensive reassessment of plasma VEGFA (pVEGFA) as a candidate predictive biomarker for bevacizumab (Bv) in 13 pivotal trials (seven indications); American Society of Clinical Oncology, 2014.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.3040]
[37]
Whittaker, S.; Marais, R.; Zhu, A.X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010, 29(36), 4989-5005.
[http://dx.doi.org/10.1038/onc.2010.236] [PMID: 20639898]
[38]
Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13(2), 140-156.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[39]
Khan, K.H.; Yap, T.A.; Yan, L.; Cunningham, D. Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin. J. Cancer, 2013, 32(5), 253-265.
[http://dx.doi.org/10.5732/cjc.013.10057] [PMID: 23642907]
[40]
Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in human disease. Cell, 2017, 170(4), 605-635.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[41]
Wang, L.; Wang, W.L.; Zhang, Y.; Guo, S.P.; Zhang, J.; Li, Q.L. Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol. Res., 2007, 37(5), 389-396.
[http://dx.doi.org/10.1111/j.1872-034X.2007.00042.x] [PMID: 17441812]
[42]
Zhu, Y.; Zheng, B.; Wang, H.; Chen, L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol. Sin., 2017, 38(5), 614-622.
[http://dx.doi.org/10.1038/aps.2017.5] [PMID: 28344323]
[43]
Sun, E.J.; Wankell, M.; Palamuthusingam, P.; McFarlane, C.; Hebbard, L. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines, 2021, 9(11), 1639.
[http://dx.doi.org/10.3390/biomedicines9111639] [PMID: 34829868]
[44]
Tian, L.Y.; Smit, D.J.; Jücker, M. The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int. J. Mol. Sci., 2023, 24(3), 2652.
[http://dx.doi.org/10.3390/ijms24032652] [PMID: 36768977]
[45]
Wang, Z.; Sheng, Y.Y.; Gao, X.M.; Wang, C.Q.; Wang, X.Y.; Lu, X.; Wei, J.W.; Zhang, K.L.; Dong, Q.Z.; Qin, L.X. β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma. Mol. Clin. Oncol., 2015, 3(4), 936-940.
[http://dx.doi.org/10.3892/mco.2015.569] [PMID: 26171210]
[46]
Peng, S.Y.; Chen, W.J.; Lai, P.L.; Jeng, Y.M.; Sheu, J.C.; Hsu, H.C. High α-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: Significance of hepatitis virus infection, age, p53 and β-catenin mutations. Int. J. Cancer, 2004, 112(1), 44-50.
[http://dx.doi.org/10.1002/ijc.20279] [PMID: 15305374]
[47]
Waisberg, J.; Saba, G.T. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J. Hepatol., 2015, 7(26), 2631-2635.
[http://dx.doi.org/10.4254/wjh.v7.i26.2631] [PMID: 26609340]
[48]
Khalaf, A.M.; Fuentes, D.; Morshid, A.I.; Burke, M.R.; Kaseb, A.O.; Hassan, M.; Hazle, J.D.; Elsayes, K.M. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J. Hepatocell. Carcinoma, 2018, 5, 61-73.
[http://dx.doi.org/10.2147/JHC.S156701] [PMID: 29984212]
[49]
Bugter, J.M.; Fenderico, N.; Maurice, M.M. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat. Rev. Cancer, 2021, 21(1), 5-21.
[http://dx.doi.org/10.1038/s41568-020-00307-z] [PMID: 33097916]
[50]
Xu, C.; Xu, Z.; Zhang, Y.; Evert, M.; Calvisi, D.F.; Chen, X. β-Catenin signaling in hepatocellular carcinoma. J. Clin. Invest., 2022, 132(4), e154515.
[http://dx.doi.org/10.1172/JCI154515] [PMID: 35166233]
[51]
Qu, B.; Liu, B.R.; Du, Y.J.; Chen, J.; Cheng, Y.Q.; Xu, W.; Wang, X.H. Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol. Lett., 2014, 7(4), 1175-1178.
[http://dx.doi.org/10.3892/ol.2014.1828] [PMID: 24944688]
[52]
Lo, R.C.L.; Leung, C.O.N.; Chan, K.K.S.; Ho, D.W.H.; Wong, C.M.; Lee, T.K.W.; Ng, I.O.L. Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ., 2018, 25(8), 1426-1441.
[http://dx.doi.org/10.1038/s41418-018-0059-x] [PMID: 29445127]
[53]
Leung, H.W.; Leung, C.O.N.; Lau, E.Y.; Chung, K.P.S.; Mok, E.H.; Lei, M.M.L.; Leung, R.W.H.; Tong, M.; Keng, V.W.; Ma, C.; Zhao, Q.; Ng, I.O.L.; Ma, S.; Lee, T.K. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res., 2021, 81(12), 3229-3240.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0184] [PMID: 33903122]
[54]
Karabicici, M.; Azbazdar, Y.; Ozhan, G.; Senturk, S.; Firtina Karagonlar, Z.; Erdal, E. Changes in Wnt and TGF-β signaling mediate the development of regorafenib resistance in hepatocellular carcinoma cell line HuH7. Front. Cell Dev. Biol., 2021, 9, 639779.
[http://dx.doi.org/10.3389/fcell.2021.639779] [PMID: 34458250]
[55]
Arensman, M.D.; Telesca, D.; Lay, A.R.; Kershaw, K.M.; Wu, N.; Donahue, T.R.; Dawson, D.W. The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol. Cancer Ther., 2014, 13(10), 2303-2314.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-1005] [PMID: 25082960]
[56]
Emami, K.H.; Nguyen, C.; Ma, H.; Kim, D.H.; Jeong, K.W.; Eguchi, M.; Moon, R.T.; Teo, J-L.; Oh, S.W.; Kim, H.Y.; Moon, S.H.; Ha, J.R.; Kahn, M. A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription. Proc. Natl. Acad. Sci. USA, 2004, 101(34), 12682-12687.
[http://dx.doi.org/10.1073/pnas.0404875101] [PMID: 15314234]
[57]
Dihlmann, S.; Klein, S.; Doeberitz Mv, Mv. Reduction of β-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated β-catenin. Mol. Cancer Ther., 2003, 2(6), 509-516.
[PMID: 12813129]
[58]
Thorne, C.A.; Hanson, A.J.; Schneider, J.; Tahinci, E.; Orton, D.; Cselenyi, C.S.; Jernigan, K.K.; Meyers, K.C.; Hang, B.I.; Waterson, A.G.; Kim, K.; Melancon, B.; Ghidu, V.P.; Sulikowski, G.A.; LaFleur, B.; Salic, A.; Lee, L.A.; Miller, D.M., III; Lee, E. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat. Chem. Biol., 2010, 6(11), 829-836.
[http://dx.doi.org/10.1038/nchembio.453] [PMID: 20890287]
[59]
Boon, E.M.J.; Keller, J.J.; Wormhoudt, T A M.; Giardiello, F.M.; Offerhaus, G.J.A.; van der Neut, R.; Pals, S.T. Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br. J. Cancer, 2004, 90(1), 224-229.
[http://dx.doi.org/10.1038/sj.bjc.6601505] [PMID: 14710233]
[60]
Gedaly, R.; Galuppo, R.; Daily, M.F.; Shah, M.; Maynard, E.; Chen, C.; Zhang, X.; Esser, K.A.; Cohen, D.A.; Evers, B.M.; Jiang, J.; Spear, B.T. Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One, 2014, 9(6), e99272.
[http://dx.doi.org/10.1371/journal.pone.0099272] [PMID: 24940873]
[61]
Wei, W.; Chua, M.S.; Grepper, S.; So, S. Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int. J. Cancer, 2010, 126(10), 2426-2436.
[http://dx.doi.org/10.1002/ijc.24810] [PMID: 19662654]
[62]
Yamada, Y.; Yoshimi, N.; Hirose, Y.; Hara, A.; Shimizu, M.; Kuno, T.; Katayama, M.; Qiao, Z.; Mori, H. Suppression of occurrence and advancement of β-catenin-accumulated crypts, possible premalignant lesions of colon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib. Jpn. J. Cancer Res., 2001, 92(6), 617-623.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01139.x] [PMID: 11429049]
[63]
Byers, S. 9 TGF-p, Notch, and Wnt in normal and malignant stem cells: Differentiating agents and epigenetic modulation; Cancer Stem Cells, 2009, p. 139.
[64]
Zheng, X.; Zeng, W.; Gai, X.; Xu, Q.; Li, C.; Liang, Z.; Tuo, H.; Liu, Q. Role of the Hedgehog pathway in hepatocellular carcinoma (Review). Oncol. Rep., 2013, 30(5), 2020-2026.
[http://dx.doi.org/10.3892/or.2013.2690] [PMID: 23970376]
[65]
Philips, G.M.; Chan, I.S.; Swiderska, M.; Schroder, V.T.; Guy, C.; Karaca, G.F.; Moylan, C.; Venkatraman, T.; Feuerlein, S.; Syn, W.K.; Jung, Y.; Witek, R.P.; Choi, S.; Michelotti, G.A.; Rangwala, F.; Merkle, E.; Lascola, C.; Diehl, A.M. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One, 2011, 6(9), e23943.
[http://dx.doi.org/10.1371/journal.pone.0023943] [PMID: 21912653]
[66]
Verdelho Machado, M.; Diehl, A.M. The hedgehog pathway in nonalcoholic fatty liver disease. Crit. Rev. Biochem. Mol. Biol., 2018, 53(3), 264-278.
[http://dx.doi.org/10.1080/10409238.2018.1448752] [PMID: 29557675]
[67]
Cheng, W-T.; Xu, K.; Tian, D.Y.; Zhang, Z.G.; Liu, L.J.; Chen, Y. Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int. J. Oncol., 2009, 34(3), 829-836.
[PMID: 19212688]
[68]
Chan, I.S.; Guy, C.D.; Machado, M.V.; Wank, A.; Kadiyala, V.; Michelotti, G.; Choi, S.; Swiderska-Syn, M.; Karaca, G.; Pereira, T.A.; Yip-Schneider, M.T.; Max Schmidt, C.; Diehl, A.M. Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol. Clin. Exp. Res., 2014, 38(3), 787-800.
[http://dx.doi.org/10.1111/acer.12279] [PMID: 24164383]
[69]
Huang, X.B.; Li, J.; Zheng, L.; Zuo, G.H.; Han, K.Q.; Li, H.Y.; Liang, P. Bioinformatics analysis reveals potential candidate drugs for HCC. Pathol. Oncol. Res., 2013, 19(2), 251-258.
[http://dx.doi.org/10.1007/s12253-012-9576-y] [PMID: 23341104]
[70]
Liu, Z.; Liu, X.; Liang, J.; Liu, Y.; Hou, X.; Zhang, M.; Li, Y.; Jiang, X. Immunotherapy for hepatocellular carcinoma: Current status and future prospects. Front. Immunol., 2021, 12, 765101-765101.
[http://dx.doi.org/10.3389/fimmu.2021.765101] [PMID: 34675942]
[71]
Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J. Gastroenterol., 2023, 29(6), 1054-1075.
[http://dx.doi.org/10.3748/wjg.v29.i6.1054] [PMID: 36844141]
[72]
Li, J.; Xuan, S.; Dong, P.; Xiang, Z.; Gao, C.; Li, M.; Huang, L.; Wu, J. Immunotherapy of hepatocellular carcinoma: Recent progress and new strategy. Front. Immunol., 2023, 14, 1192506.
[http://dx.doi.org/10.3389/fimmu.2023.1192506] [PMID: 37234162]
[73]
Guven, D.C.; Sahin, T.K.; Rizzo, A.; Ricci, A.D.; Aksoy, S.; Sahin, K. The use of phytochemicals to improve the efficacy of immune checkpoint inhibitors: Opportunities and challenges. Appl. Sci., 2022, 12(20), 10548.
[http://dx.doi.org/10.3390/app122010548]
[74]
Lee, J.; Han, Y.; Wang, W.; Jo, H.; Kim, H.; Kim, S.; Yang, K.M.; Kim, S.J.; Dhanasekaran, D.N.; Song, Y.S. Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules, 2021, 11(8), 1107.
[http://dx.doi.org/10.3390/biom11081107] [PMID: 34439774]
[75]
Singh, S. Medicinal plants and phytochemicals in prevention and management of life style disorders: Pharmacological studies and challenges. Asian J. Pharm. Clin. Res., 2021, 14(12), 1-6.
[76]
Costa, A.G.V.; Garcia-Diaz, D.F.; Jimenez, P.; Silva, P.I. Bioactive compounds and health benefits of exotic tropical red–black berries. J. Funct. Foods, 2013, 5(2), 539-549.
[http://dx.doi.org/10.1016/j.jff.2013.01.029]
[77]
Prahalathan, P.; Saravanakumar, M.; Raja, B. The flavonoid morin restores blood pressure and lipid metabolism in DOCA-salt hypertensive rats. Redox Rep., 2012, 17(4), 167-175.
[http://dx.doi.org/10.1179/1351000212Y.0000000015] [PMID: 22781105]
[78]
Chan, J.Y.Y.; Yuen, A.C.Y.; Chan, R.Y.K.; Chan, S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res., 2013, 27(5), 637-646.
[http://dx.doi.org/10.1002/ptr.4796] [PMID: 22888009]
[79]
Dong, J.; Zhang, X.; Zhang, L.; Bian, H.X.; Xu, N.; Bao, B.; Liu, J. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J. Lipid Res., 2014, 55(3), 363-374.
[http://dx.doi.org/10.1194/jlr.M038786] [PMID: 24465016]
[80]
Anto, R.J.; Mukhopadhyay, A.; Denning, K.; Aggarwal, B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002, 23(1), 143-150.
[http://dx.doi.org/10.1093/carcin/23.1.143] [PMID: 11756235]
[81]
Vinod, B.S.; Maliekal, T.T.; Anto, R.J. Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid. Redox Signal., 2013, 18(11), 1307-1348.
[http://dx.doi.org/10.1089/ars.2012.4573] [PMID: 22871022]
[82]
Kunnumakkara, A.B.; Bordoloi, D.; Harsha, C.; Banik, K.; Gupta, S.C.; Aggarwal, B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci., 2017, 131(15), 1781-1799.
[http://dx.doi.org/10.1042/CS20160935] [PMID: 28679846]
[83]
Puliyappadamba, V.T.; Thulasidasan, A.K.T.; Vijayakurup, V.; Antony, J.; Bava, S.V.; Anwar, S.; Sundaram, S.; Anto, R.J. Curcumin inhibits B [a] PDE -induced procarcinogenic signals in lung cancer cells, and curbs B [a] P -induced mutagenesis and lung carcinogenesis. Biofactors, 2015, 41(6), 431-442.
[http://dx.doi.org/10.1002/biof.1244] [PMID: 26643788]
[84]
Puliyappadamba, V.T.; Cheriyan, V.T.; Thulasidasan, A.K.T.; Bava, S.V.; Vinod, B.S.; Prabhu, P.R.; Varghese, R.; Bevin, A.; Venugopal, S.; Anto, R.J. Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol. Cancer, 2010, 9(1), 220.
[http://dx.doi.org/10.1186/1476-4598-9-220] [PMID: 20727180]
[85]
Haritha, N.H.; Nawab, A.; Vijayakurup, V.; Anto, N.P.; Liju, V.B.; Alex, V.V.; Amrutha, A.N.; Aiswarya, S.U.; Swetha, M.; Vinod, B.S.; Sundaram, S.; Guijarro, M.V.; Herlevich, T.; Krishna, A.; Nestory, N.K.; Bava, S.V.; Sadasivan, C.; Zajac-Kaye, M.; Anto, R.J. Targeting thymidylate synthase enhances the chemosensitivity of triple-negative breast cancer towards 5-FU-based combinatorial therapy. Front. Oncol., 2021, 11, 656804.
[http://dx.doi.org/10.3389/fonc.2021.656804] [PMID: 34336653]
[86]
Bava, S.V.; Puliappadamba, V.T.; Deepti, A.; Nair, A.; Karunagaran, D.; Anto, R.J. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J. Biol. Chem., 2005, 280(8), 6301-6308.
[http://dx.doi.org/10.1074/jbc.M410647200] [PMID: 15590651]
[87]
Bava, S.V.; Sreekanth, C.N.; Thulasidasan, A.K.T.; Anto, N.P.; Cheriyan, V.T.; Puliyappadamba, V.T.; Menon, S.G.; Ravichandran, S.D.; Anto, R.J. Akt is upstream and MAPKs are downstream of NF-κB in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism. Int. J. Biochem. Cell Biol., 2011, 43(3), 331-341.
[http://dx.doi.org/10.1016/j.biocel.2010.09.011] [PMID: 20883815]
[88]
Pan, Z.; Zhuang, J.; Ji, C.; Cai, Z.; Liao, W.; Huang, Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett., 2018, 15(4), 4821-4826.
[http://dx.doi.org/10.3892/ol.2018.7988] [PMID: 29552121]
[89]
Abouzied, M.M.M.; Eltahir, H.M.; Abdel Aziz, M.A.; Ahmed, N.S.; Abd El-Ghany, A.A.; Abd El-Aziz, E.A.; Abd El-Aziz, H.O. Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biol., 2015, 36(3), 1763-1771.
[http://dx.doi.org/10.1007/s13277-014-2778-z] [PMID: 25519685]
[90]
Li, J. Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evid Based Complement. Altern. Med., 2020.
[91]
Shao, S. Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxid. Med. Cell. Longev., 2019.
[http://dx.doi.org/10.1155/2019/8148510]
[92]
Wang, J.; Wang, C.; Bu, G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp. Ther. Med., 2018, 15(4), 3650-3658.
[http://dx.doi.org/10.3892/etm.2018.5805] [PMID: 29545895]
[93]
Thulasidasan, A.K.T.; Retnakumari, A.P.; Shankar, M.; Vijayakurup, V.; Anwar, S.; Thankachan, S.; Pillai, K.S.; Pillai, J.J.; Nandan, C.D.; Alex, V.V.; Chirayil, T.J.; Sundaram, S.; Kumar, G.S.V.; Anto, R.J. Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG nanoparticles towards paclitaxel chemotherapy. Oncotarget, 2017, 8(64), 107374-107389.
[http://dx.doi.org/10.18632/oncotarget.22376] [PMID: 29296172]
[94]
Vijayakurup, V.; Thulasidasan, A.T.; Shankar G, M.; Retnakumari, A.P.; Nandan, C.D.; Somaraj, J.; Antony, J.; Alex, V.V.; Vinod, B.S.; Liju, V.B.; Sundaram, S.; Kumar, G.S.V.; Anto, R.J. Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B [a] P-induced lung carcinogenesis. Cancer Prev. Res., 2019, 12(4), 225-236.
[http://dx.doi.org/10.1158/1940-6207.CAPR-18-0437] [PMID: 30760502]
[95]
Zheng, Y.; Jia, R.; Li, J.; Tian, X.; Qian, Y. Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma. J. Nanobiotechnology, 2022, 20(1), 339.
[http://dx.doi.org/10.1186/s12951-022-01554-y] [PMID: 35858935]
[96]
Banerjee, S.; Bueso-Ramos, C.; Aggarwal, B.B. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res., 2002, 62(17), 4945-4954.
[PMID: 12208745]
[97]
Zhang, B.; Yin, X.; Sui, S. Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol. Rep., 2018, 40(5), 2758-2765.
[http://dx.doi.org/10.3892/or.2018.6648] [PMID: 30132535]
[98]
Bhattacharya, S. Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action; Pharmacological Research-Modern Chinese Medicine, 2023, p. 100233.
[99]
Vinod, B.S.; Nair, H.H.; Vijayakurup, V.; Shabna, A.; Shah, S.; Krishna, A.; Pillai, K.S.; Thankachan, S.; Anto, R.J. Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2–Akt axis. Cell Death Discov., 2015, 1(1), 15061.
[http://dx.doi.org/10.1038/cddiscovery.2015.61] [PMID: 27551486]
[100]
Gao, M.; Deng, C.; Dang, F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr. Res., 2021, 65, 65.
[http://dx.doi.org/10.29219/fnr.v65.3602] [PMID: 34776832]
[101]
Izzo, C.; Annunziata, M.; Melara, G.; Sciorio, R.; Dallio, M.; Masarone, M.; Federico, A.; Persico, M. The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients, 2021, 13(3), 933.
[http://dx.doi.org/10.3390/nu13030933] [PMID: 33805795]
[102]
Bishayee, A.; Dhir, N. Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis. Chem. Biol. Interact., 2009, 179(2-3), 131-144.
[http://dx.doi.org/10.1016/j.cbi.2008.11.015] [PMID: 19073162]
[103]
Xie, L.; Dai, H.; Li, M.; Yang, W.; Yu, G.; Wang, X.; Wang, P.; Liu, W.; Hu, X.; Zhao, M. MARCH1 encourages tumour progression of hepatocellular carcinoma via regulation of PI3K-AKT-β-catenin pathways. J. Cell. Mol. Med., 2019, 23(5), 3386-3401.
[http://dx.doi.org/10.1111/jcmm.14235] [PMID: 30793486]
[104]
Chan, E.W.C. Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J. Appl. Pharm. Sci., 2019, 9(7), 124-129.
[http://dx.doi.org/10.7324/JAPS.2019.90717]
[105]
Shin, H.J.; Han, J.M.; Choi, Y.S.; Jung, H.J. Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol. Molecules, 2020, 25(1), 228.
[http://dx.doi.org/10.3390/molecules25010228] [PMID: 31935877]
[106]
Wang, R.; Xu, Z.; Tian, J.; Liu, Q.; Dong, J.; Guo, L.; Hai, B.; Liu, X.; Yao, H.; Chen, Z.; Xu, J.; Zhu, L.; Chen, H.; Hou, T.; Zhu, W.; Shao, J. Pterostilbene inhibits hepatocellular carcinoma proliferation and HBV replication by targeting ribonucleotide reductase M2 protein. Am. J. Cancer Res., 2021, 11(6), 2975-2989.
[PMID: 34249439]
[107]
Qian, Y.Y.; Liu, Z.S.; Pan, D.Y.; Li, K. Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma. Exp. Ther. Med., 2017, 14(4), 3098-3104.
[http://dx.doi.org/10.3892/etm.2017.4923] [PMID: 29042910]
[108]
Qian, Y.Y.; Liu, Z.S.; Zhang, Z.; Levenson, A.; Li, K. Pterostilbene increases PTEN expression through the targeted downregulation of microRNA-19a in hepatocellular carcinoma. Mol. Med. Rep., 2018, 17(4), 5193-5201.
[http://dx.doi.org/10.3892/mmr.2018.8515] [PMID: 29393488]
[109]
Yu, C.L.; Yang, S.F.; Hung, T.W.; Lin, C.L.; Hsieh, Y.H.; Chiou, H.L. Inhibition of eIF2α dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis., 2019, 10(6), 418.
[http://dx.doi.org/10.1038/s41419-019-1639-5] [PMID: 31138785]
[110]
Lee, C.-M. BlueBerry isolate, pterostilbene, functions as a potential anticancer stem cell agent in suppressing irradiation-mediated enrichment of hepatoma stem cells. Evid Based Complement. Altern. Med., 2013.
[http://dx.doi.org/10.1155/2013/258425]
[111]
Pan, M.H.; Chiou, Y.S.; Chen, W.J.; Wang, J.M.; Badmaev, V.; Ho, C.T. Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis, 2009, 30(7), 1234-1242.
[http://dx.doi.org/10.1093/carcin/bgp121] [PMID: 19447859]
[112]
Huang, C.S.; Ho, C.T.; Tu, S.H.; Pan, M.H.; Chuang, C.H.; Chang, H.W.; Chang, C.H.; Wu, C.H.; Ho, Y.S. Long-term ethanol exposure-induced hepatocellular carcinoma cell migration and invasion through lysyl oxidase activation are attenuated by combined treatment with pterostilbene and curcumin analogues. J. Agric. Food Chem., 2013, 61(18), 4326-4335.
[http://dx.doi.org/10.1021/jf4004175] [PMID: 23560895]
[113]
Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors, 2018, 44(1), 16-25.
[http://dx.doi.org/10.1002/biof.1410] [PMID: 29315886]
[114]
Nath, L.R.; Gorantla, J.N.; Thulasidasan, A.K.T.; Vijayakurup, V.; Shah, S.; Anwer, S.; Joseph, S.M.; Antony, J.; Veena, K.S.; Sundaram, S.; Marelli, U.K.; Lankalapalli, R.S.; Anto, R.J. Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 36318.
[http://dx.doi.org/10.1038/srep36318] [PMID: 27808117]
[115]
Swetha, M.; Keerthana, C.K.; Rayginia, T.P.; Nath, L.R.; Haritha, N.H.; Shabna, A.; Kalimuthu, K.; Thangarasu, A.K.; Aiswarya, S.U.; Jannet, S.; Pillai, S.; Harikumar, K.B.; Sundaram, S.; Anto, N.P.; Wu, D.H.; Lankalapalli, R.S.; Towner, R.; Isakov, N.; Deepa, S.S.; Anto, R.J. Augmented efficacy of uttroside B over sorafenib in a murine model of human hepatocellular carcinoma. Pharmaceuticals, 2022, 15(5), 636.
[http://dx.doi.org/10.3390/ph15050636] [PMID: 35631464]
[116]
Nath, L.R. Blockade of uttroside B-induced autophagic pro-survival signals augments its chemotherapeutic efficacy against hepatocellular carcinoma. Front. Oncol., 2022, 12, 247.
[117]
Suresh Varma, S.; Aiswarya, S.U.; Keerthana, C.K.; Rayginia, T.P.; Induja, D.K.; John Anto, R.; Lankalapalli, R.S. Putative role of uttronin (degalactotigonin) in cytotoxicity of uttroside B in HepG2 cells. Tetrahedron Lett., 2023, 127, 154668.
[http://dx.doi.org/10.1016/j.tetlet.2023.154668]
[118]
Wu, K. Study on chemical components of steroidal saponins from Tribulus terrestris L. J. Tianjin Univ. Trad. Chin. Med, 2012, 31, 225-228.
[119]
Jin, J.M.; Zhang, Y.J.; Yang, C.R. Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J. Nat. Prod., 2004, 67(1), 5-9.
[http://dx.doi.org/10.1021/np034028a] [PMID: 14738376]
[120]
Alam, M.F.; Ajeibi, A.O.; Safhi, M.H.; Alabdly, A.J.A.; Alshahrani, S.; Rashid, H.; Qadri, M.; Jali, A.M.; Alqahtani, S.; Nomier, Y.; Moni, S.S.; Khalid, M.; Anwer, T. Therapeutic potential of capsaicin against cyclophosphamide-induced liver damage. J. Clin. Med., 2023, 12(3), 911.
[http://dx.doi.org/10.3390/jcm12030911] [PMID: 36769559]
[121]
Hacioglu, C.; Kar, F. Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells. Metab. Brain Dis., 2023, 38(2), 393-408.
[http://dx.doi.org/10.1007/s11011-022-00983-w] [PMID: 35438378]
[122]
Ilie, M.; Caruntu, C.; Tampa, M.; Georgescu, S.R.; Matei, C.; Negrei, C.; Ion, R.M.; Constantin, C.; Neagu, M.; Boda, D. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review). Exp. Ther. Med., 2019, 18(2), 916-925.
[http://dx.doi.org/10.3892/etm.2019.7513] [PMID: 31384324]
[123]
Zhang, S.; Wang, D.; Huang, J.; Hu, Y.; Xu, Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J. Clin. Pharm. Ther., 2020, 45(1), 16-28.
[http://dx.doi.org/10.1111/jcpt.13039] [PMID: 31545523]
[124]
Jung, M.Y.; Kang, H.J.; Moon, A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett., 2001, 165(2), 139-145.
[http://dx.doi.org/10.1016/S0304-3835(01)00426-8] [PMID: 11275362]
[125]
Hacioglu, C. Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling pathways in HepG2 and HL-7702 cells. J. Biochem. Mol. Toxicol., 2022, 36(3), e22974.
[http://dx.doi.org/10.1002/jbt.22974] [PMID: 34939720]
[126]
Xie, Z.Q.; Li, H.X.; Hou, X.J.; Huang, M.Y.; Zhu, Z.M.; Wei, L.X.; Tang, C.X. Capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of hepatic progenitor cells via SIRT1 / SOX2 signaling pathway. Cancer Med., 2022, 11(22), 4283-4296.
[http://dx.doi.org/10.1002/cam4.4777] [PMID: 35674129]
[127]
Dai, N.; Ye, R.; He, Q.; Guo, P.; Chen, H.; Zhang, Q. Capsaicin and sorafenib combination treatment exerts synergistic anti-hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol. Rep., 2018, 40(6), 3235-3248.
[PMID: 30272354]
[128]
Bort, A.; Spínola, E.; Rodríguez-Henche, N.; Díaz-Laviada, I. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget, 2017, 8(50), 87684-87698.
[http://dx.doi.org/10.18632/oncotarget.21196] [PMID: 29152112]
[129]
Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J. Med. Assoc. Thai., 2009, 92(1), 108-113.
[PMID: 19260251]
[130]
Osarieme, E.D.; Modupe, D.T.; Oluchukwu, O.P. The anticancer activity of caffeine-a review. Arch. Clin. Biomed. Res., 2019, 3(5), 326-342.
[131]
Kisku, T.; Paul, K.; Singh, B.; Das, S.; Mukherjee, S.; Kundu, A.; Rath, J.; Sekhar Das, R. Synthesis of Cu(II)-caffeine complex as potential therapeutic agent: Studies on antioxidant, anticancer and pharmacological activities. J. Mol. Liq., 2022, 364, 119897.
[http://dx.doi.org/10.1016/j.molliq.2022.119897]
[132]
Okano, J.; Nagahara, T.; Matsumoto, K.; Murawaki, Y. Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin. Pharmacol. Toxicol., 2008, 102(6), 543-551.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00231.x] [PMID: 18346049]
[133]
Wang, Z.; Gu, C.; Wang, X.; Lang, Y.; Wu, Y.; Wu, X.; Zhu, X.; Wang, K.; Yang, H. Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med. Oncol., 2019, 36(12), 97.
[http://dx.doi.org/10.1007/s12032-019-1323-8] [PMID: 31664534]
[134]
Kawano, Y.; Nagata, M.; Kohno, T.; Ichimiya, A.; Iwakiri, T.; Okumura, M.; Arimori, K. Caffeine increases the antitumor effect of Cisplatin in human hepatocellular carcinoma cells. Biol. Pharm. Bull., 2012, 35(3), 400-407.
[http://dx.doi.org/10.1248/bpb.35.400] [PMID: 22382328]
[135]
Wang, T.J.; Liu, Z.S.; Zeng, Z.C.; Du, S.S.; Qiang, M.; Zhang, S.M.; Zhang, Z.Y.; Tang, Z.Y.; Wu, W.Z.; Zeng, H.Y. Caffeine enhances radiosensitization to orthotopic transplant LM3 hepatocellular carcinoma in vivo. Cancer Sci., 2010, 101(6), 1440-1446.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01564.x] [PMID: 20384627]
[136]
Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol., 2022, 13, 820969.
[http://dx.doi.org/10.3389/fphar.2022.820969] [PMID: 35140617]
[137]
Mousavi, Y.; Adlercreutz, H. Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. Steroids, 1993, 58(7), 301-304.
[http://dx.doi.org/10.1016/0039-128X(93)90088-5] [PMID: 8212077]
[138]
Chodon, D.; Ramamurty, N.; Sakthisekaran, D. Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol. In vitro, 2007, 21(5), 887-891.
[http://dx.doi.org/10.1016/j.tiv.2007.01.023] [PMID: 17391909]
[139]
Chodon, D.; Banu, S.M.; Padmavathi, R.; Sakthisekaran, D. Inhibition of cell proliferation and induction of apoptosis by genistein in experimental hepatocellular carcinoma. Mol. Cell. Biochem., 2007, 297(1-2), 73-80.
[http://dx.doi.org/10.1007/s11010-006-9324-2] [PMID: 17006617]
[140]
Zhang, Q. Inhibitory effect of genistein on PLC/PRF5 hepatocellular carcinoma cell line. 2015.
[141]
Zhang, Q.; Bao, J.; Yang, J. Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migrationand inhibition of cell migration. Arch. Med. Sci., 2019, 15(4), 1001-1009.
[http://dx.doi.org/10.5114/aoms.2018.78742] [PMID: 31360194]
[142]
Lee, S.R.; Kwon, S.W.; Lee, Y.H.; Kaya, P.; Kim, J.M.; Ahn, C.; Jung, E.M.; Lee, G.S.; An, B.S.; Jeung, E.B.; Park, B.; Hong, E.J. Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation. BMC Cancer, 2019, 19(1), 6.
[http://dx.doi.org/10.1186/s12885-018-5222-8] [PMID: 30606143]
[143]
Dai, W.; Wang, F.; He, L.; Lin, C.; Wu, S.; Chen, P.; Zhang, Y.; Shen, M.; Wu, D.; Wang, C.; Lu, J.; Zhou, Y.; Xu, X.; Xu, L.; Guo, C. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT 1. Mol. Carcinog., 2015, 54(4), 301-311.
[http://dx.doi.org/10.1002/mc.22100] [PMID: 24243709]
[144]
Gu, Y.; Zhu, C.F.; Dai, Y.L.; Zhong, Q.; Sun, B. Inhibitory effects of genistein on metastasis of human hepatocellular carcinoma. World J. Gastroenterol., 2009, 15(39), 4952-4957.
[http://dx.doi.org/10.3748/wjg.15.4952] [PMID: 19842228]
[145]
Wang, S.D.; Chen, B.C.; Kao, S.T.; Liu, C.J.; Yeh, C.C. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement. Altern. Med., 2014, 14(1), 26.
[http://dx.doi.org/10.1186/1472-6882-14-26] [PMID: 24433534]
[146]
Chodon, D.; Arumugam, A.; Rajasekaran, D.; Dhanapal, S. Effect of genistein on modulating lipid peroxidation and membrane-bound enzymes in N-nitrosodiethylamine-induced and phenobarbital-promoted rat liver carcinogenesis. J. Health Sci., 2008, 54(2), 137-142.
[http://dx.doi.org/10.1248/jhs.54.137]
[147]
Chen, P.; Hu, M.D.; Deng, X.F.; Li, B. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac. J. Cancer Prev., 2013, 14(2), 759-764.
[http://dx.doi.org/10.7314/APJCP.2013.14.2.759] [PMID: 23621233]
[148]
Sanaei, M.; Kavoosi, F.; Atashpour, S.; Haghighat, S. Effects of genistein and synergistic action in combination with tamoxifen on the HepG2 human hepatocellular carcinoma cell line. Asian Pac. J. Cancer Prev. APJCP, 2017, 18(9), 2381-2385.
[PMID: 28950682]
[149]
Li, D.; Cao, D.; Cui, Y.; Sun, Y.; Jiang, J.; Cao, X. The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front. Pharmacol., 2023, 14, 1201085.
[http://dx.doi.org/10.3389/fphar.2023.1201085] [PMID: 37292151]
[150]
Min, K.; Kwon, T.K. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr. Med. Res., 2014, 3(1), 16-24.
[http://dx.doi.org/10.1016/j.imr.2013.12.001] [PMID: 28664074]
[151]
Kuo, P-L.; Lin, C-C. Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J. Biomed. Sci., 2003, 10(2), 219-227.
[PMID: 12595758]
[152]
Shimizu, M.; Shirakami, Y.; Sakai, H.; Tatebe, H.; Nakagawa, T.; Hara, Y.; Weinstein, I.B.; Moriwaki, H. EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Lett., 2008, 262(1), 10-18.
[http://dx.doi.org/10.1016/j.canlet.2007.11.026] [PMID: 18164805]
[153]
Shirakami, Y.; Shimizu, M.; Adachi, S.; Sakai, H.; Nakagawa, T.; Yasuda, Y.; Tsurumi, H.; Hara, Y.; Moriwaki, H. (–)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor–vascular endothelial growth factor receptor axis. Cancer Sci., 2009, 100(10), 1957-1962.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01241.x] [PMID: 19558547]
[154]
Tang, Y.; Cao, J.; Cai, Z.; An, H.; Li, Y.; Peng, Y.; Chen, N.; Luo, A.; Tao, H.; Li, K. Epigallocatechin gallate induces chemopreventive effects on rats with diethylnitrosamine-induced liver cancer via inhibition of cell division cycle 25A. Mol. Med. Rep., 2020, 22(5), 3873-3885.
[http://dx.doi.org/10.3892/mmr.2020.11463] [PMID: 33000276]
[155]
Sur, S.; Pal, D.; Roy, R.; Barua, A.; Roy, A.; Saha, P.; Panda, C.K. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol. Appl. Pharmacol., 2016, 300, 34-46.
[http://dx.doi.org/10.1016/j.taap.2016.03.016] [PMID: 27058323]
[156]
Shen, X.; Zhao, J.; Wang, Q.; Chen, P.; Hong, Y.; He, X.; Chen, D.; Liu, H.; Wang, Y.; Cai, X. The invasive potential of hepatoma cells induced by radiotherapy is related to the activation of hepatic stellate cells and could be inhibited by EGCG through the TLR4 signaling pathway. Radiat. Res., 2022, 197(4), 365-375.
[http://dx.doi.org/10.1667/RADE-21-00129.1] [PMID: 35051295]
[157]
Liang, G.; Tang, A.; Lin, X.; Li, L.; Zhang, S.; Huang, Z.; Tang, H.; Li, Q.Q. Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int. J. Oncol., 2010, 37(1), 111-123.
[PMID: 20514403]
[158]
Wei, D.Z.; Yang, J.Y.; Liu, J.W.; Tong, W.Y. Inhibition of liver cancer cell proliferation and migration by a combination of (-)-epigallocatechin-3-gallate and ascorbic acid. J. Chemother., 2003, 15(6), 591-595.
[http://dx.doi.org/10.1179/joc.2003.15.6.591] [PMID: 14998086]
[159]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[160]
Çetinkaya, M.; Baran, Y. Therapeutic potential of luteolin on cancer. Vaccines, 2023, 11(3), 554.
[http://dx.doi.org/10.3390/vaccines11030554] [PMID: 36992138]
[161]
Yao, C.; Dai, S.; Wang, C.; Fu, K.; Wu, R.; Zhao, X.; Yao, Y.; Li, Y. Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed. Pharmacother., 2023, 167, 115464.
[http://dx.doi.org/10.1016/j.biopha.2023.115464] [PMID: 37713990]
[162]
Ding, S.; Hu, A.; Hu, Y.; Ma, J.; Weng, P.; Dai, J. Anti-hepatoma cells function of luteolin through inducing apoptosis and cell cycle arrest. Tumour Biol., 2014, 35(4), 3053-3060.
[http://dx.doi.org/10.1007/s13277-013-1396-5] [PMID: 24287949]
[163]
Hwang, Y.J.; Lee, E.J.; Kim, H.R.; Hwang, K.A. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep., 2013, 46(12), 611-616.
[http://dx.doi.org/10.5483/BMBRep.2013.46.12.133] [PMID: 24257119]
[164]
Niu, J.X.; Guo, H.P.; Gan, H.M.; Bao, L.D.; Ren, J.J. Effect of luteolin on gene expression in mouse H22 hepatoma cells. Genet. Mol. Res., 2015, 14(4), 14448-14456.
[http://dx.doi.org/10.4238/2015.November.18.7] [PMID: 26600503]
[165]
Cao, Z.; Zhang, H.; Cai, X.; Fang, W.; Chai, D.; Wen, Y.; Chen, H.; Chu, F.; Zhang, Y. Luteolin promotes cell apoptosis by inducing autophagy in hepatocellular carcinoma. Cell. Physiol. Biochem., 2017, 43(5), 1803-1812.
[http://dx.doi.org/10.1159/000484066] [PMID: 29049999]
[166]
Zhang, Q.; Yang, J.; Wang, J. Modulatory effect of luteolin on redox homeostasis and inflammatory cytokines in a mouse model of liver cancer. Oncol. Lett., 2016, 12(6), 4767-4772.
[http://dx.doi.org/10.3892/ol.2016.5291] [PMID: 28101223]
[167]
Balamurugan, K.; Karthikeyan, J. Evaluation of the antioxidant and anti-inflammatory nature of luteolin in experimentally induced hepatocellular carcinoma. Biomed. Prev. Nutr., 2012, 2(2), 86-90.
[http://dx.doi.org/10.1016/j.bionut.2012.01.002]
[168]
Nazim, U.M.; Park, S.Y. Luteolin sensitizes human liver cancer cells to TRAIL-induced apoptosis via autophagy and JNK-mediated death receptor 5 upregulation. Int. J. Oncol., 2019, 54(2), 665-672.
[PMID: 30431076]
[169]
Horiuchi, K.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol. Pharm. Bull., 2007, 30(2), 287-290.
[http://dx.doi.org/10.1248/bpb.30.287] [PMID: 17268067]
[170]
Offord, E.A.; Macé, K.; Avanti, O.; Pfeifer, A.M.A. Mechanisms involved in the chemoprotective effects of rosemary extract studied in human liver and bronchial cells. Cancer Lett., 1997, 114(1-2), 275-281.
[http://dx.doi.org/10.1016/S0304-3835(97)04680-6] [PMID: 9103309]
[171]
Sotelo-Félix, J.I.; Martinez-Fong, D.; Muriel De la Torre, P. Protective effect of carnosol on CCl4-induced acute liver damage in rats. Eur. J. Gastroenterol. Hepatol., 2002, 14(9), 1001-1006.
[http://dx.doi.org/10.1097/00042737-200209000-00011] [PMID: 12352220]
[172]
Kong, S.; Xiao, W.; Ma, T.; Chen, Y.; Shi, H.; Tu, J.; Zou, J.; Zhang, M. Carnosol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells in vitro by regulating the ampk signaling pathway. Anticancer. Agents Med. Chem., 2023.
[PMID: 37073668]
[173]
Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic acid: Extraction, characterization and biological activity. Nutrients, 2022, 14(3), 623.
[http://dx.doi.org/10.3390/nu14030623] [PMID: 35276982]
[174]
Wang, H.; Zhong, W.; Zhao, J.; Zhang, H.; Zhang, Q.; Liang, Y.; Chen, S.; Liu, H.; Zong, S.; Tian, Y.; Zhou, H.; Sun, T.; Liu, Y.; Yang, C. Oleanolic acid inhibits epithelial–mesenchymal transition of hepatocellular carcinoma by promoting iNOS dimerization. Mol. Cancer Ther., 2019, 18(1), 62-74.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0448] [PMID: 30297361]
[175]
Shyu, M.H.; Kao, T.C.; Yen, G.C. Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J. Agric. Food Chem., 2010, 58(10), 6110-6118.
[http://dx.doi.org/10.1021/jf100574j] [PMID: 20415421]
[176]
Khan, M.; Zhao, P.; Khan, A.; Raza, F.; Raza, S.M.; Sarfraz, M.; Chen, Y.; Li, M.; Yang, T.; Ma, X.; Xiang, G. Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int. J. Nanomedicine, 2019, 14, 3753-3771.
[http://dx.doi.org/10.2147/IJN.S196651] [PMID: 31239661]
[177]
Jeong, D.W.; Kim, Y.H.; Kim, H.H.; Ji, H.Y.; Yoo, S.D.; Choi, W.R.; Lee, S.M.; Han, C.K.; Lee, H.S. Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm. Drug Dispos., 2007, 28(2), 51-57.
[http://dx.doi.org/10.1002/bdd.530] [PMID: 17163409]
[178]
Bava, S.V.; Puliyappadamba, V.T.; Deepti, A.; Nair, A.; Karunagaran, D.; Anto, R.J. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κ B and the serine/threonine kinase Akt and is independent of tubulin polymerization. J. Biol. Chem., 2018, 293(31), 12283.
[http://dx.doi.org/10.1074/jbc.AAC118.004745] [PMID: 30076255]
[179]
Arumuggam, N.; Bhowmick, N.A.; Rupasinghe, H.P.V. A review: Phytochemicals targeting JAK/STAT signaling and IDO expression in cancer. Phytother. Res., 2015, 29(6), 805-817.
[http://dx.doi.org/10.1002/ptr.5327] [PMID: 25787773]
[180]
Parveen, A.; Subedi, L.; Kim, H.; Khan, Z.; Zahra, Z.; Farooqi, M.; Kim, S. Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J. Clin. Med., 2019, 8(3), 350.
[http://dx.doi.org/10.3390/jcm8030350] [PMID: 30871059]
[181]
Dave, A. Phytochemicals and cancer chemoprevention. J. Cancer. Metastasis. Treat., 2020, 6, 46.
[182]
Capiralla, H.; Vingtdeux, V.; Zhao, H.; Sankowski, R.; Al-Abed, Y.; Davies, P.; Marambaud, P. Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J. Neurochem., 2012, 120(3), 461-472.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07594.x] [PMID: 22118570]
[183]
Ferrari, E.; Bettuzzi, S.; Naponelli, V. The potential of epigallocatechin gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int. J. Mol. Sci., 2022, 23(11), 6075.
[http://dx.doi.org/10.3390/ijms23116075] [PMID: 35682754]
[184]
Bimonte, S.; Albino, V.; Piccirillo, M.; Nasto, A.; Molino, C.; Palaia, R.; Cascella, M. Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. Drug Des. Devel. Ther., 2019, 13, 611-621.
[http://dx.doi.org/10.2147/DDDT.S180079] [PMID: 30858692]
[185]
Zhou, Q.; Lui, V.W.Y.; Yeo, W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol., 2011, 7(10), 1149-1167.
[http://dx.doi.org/10.2217/fon.11.95] [PMID: 21992728]
[186]
Witkowska-Banaszczak, E.; Krajka-Kuźniak, V.; Papierska, K. The effect of luteolin 7-glucoside, apigenin 7-glucoside and Succisa pratensis extracts on NF-κB activation and α-amylase activity in HepG2 cells. Acta Biochim. Pol., 2020, 67(1), 41-47.
[http://dx.doi.org/10.18388/abp.2020_2894] [PMID: 32129972]
[187]
Gu, Y.; Zhu, C.F.; Iwamoto, H.; Chen, J.S. Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J. Gastroenterol., 2005, 11(41), 6512-6517.
[http://dx.doi.org/10.3748/wjg.v11.i41.6512] [PMID: 16425425]
[188]
Tong, Y.; Wang, M.; Huang, H.; Zhang, J.; Huang, Y.; Chen, Y.; Pan, H. Inhibitory effects of genistein in combination with gefitinib on the hepatocellular carcinoma Hep3B cell line. Exp. Ther. Med., 2019, 18(5), 3793-3800.
[http://dx.doi.org/10.3892/etm.2019.8027] [PMID: 31611933]
[189]
Seydi, E.; Salimi, A.; Rasekh, H.R.; Mohsenifar, Z.; Pourahmad, J. Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: involvement of ROS-mediated mitochondrial targeting. Nutr. Cancer, 2018, 70(4), 594-604.
[http://dx.doi.org/10.1080/01635581.2018.1460679] [PMID: 29693446]
[190]
Yang, P.W.; Lu, Z.Y.; Pan, Q.; Chen, T.T.; Feng, X.J.; Wang, S.M.; Pan, Y.C.; Zhu, M.H.; Zhang, S.H. MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine, 2019, 57, 18-29.
[http://dx.doi.org/10.1016/j.phymed.2018.10.027] [PMID: 30668319]
[191]
Liao, S.; Lin, J.; Liu, J.; Chen, T.; Xu, M.; Zheng, J. Chemoprevention of elite tea variety CFT-1 rich in EGCG against chemically induced liver cancer in rats. Food Sci. Nutr., 2019, 7(8), 2647-2665.
[http://dx.doi.org/10.1002/fsn3.1121] [PMID: 31428352]
[192]
Chen, R.J.; Kuo, H.C.; Cheng, L.H.; Lee, Y.H.; Chang, W.T.; Wang, B.J.; Wang, Y.J.; Cheng, H.C. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci., 2018, 19(1), 287.
[http://dx.doi.org/10.3390/ijms19010287] [PMID: 29346311]
[193]
Qian, Y.; Liu, Z.; Yan, H.; Yuan, Y.; Levenson, A.S.; Li, K. Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed. Pharmacother., 2018, 101, 852-859.
[http://dx.doi.org/10.1016/j.biopha.2018.03.022] [PMID: 29635894]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy