Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Levels of Phoenixin-14 and Phoenixin-20 in Patients with Type 2 Diabetes Mellitus

Author(s): Ummugulsum Can*, Sadinaz Akdu and Serdar Şahinoğlu

Volume 24, Issue 11, 2024

Published on: 10 January, 2024

Page: [1315 - 1322] Pages: 8

DOI: 10.2174/0118715303267256231210060250

Price: $65

Abstract

Background: New pathogenesis-related early detection markers are needed to prevent Type 2 Diabetes Mellitus (T2DM).

Objective: We aimed to determine phoenixin (PNX)-14 and PNX-20 levels in T2DM patients and investigate their relationship with diabetes.

Methods: 36 T2DM patients and 36 healthy controls were included in the study, and PNX-14 and PNX-20 levels in blood samples taken from the groups were measured by ELISA method.

Results: Patients' serum PNX-14 and PNX-20 levels were statistically significantly lower than in controls (p <0.001). A negative correlation was detected between PNX-14 and BMI, fasting blood sugar, HbA1c%, and HOMA-IR. A negative correlation was found between PNX-20 and BMI, fasting insulin and glucose, HbA1c%, and HO-MA-IR. A positive correlation was noticed between PNX-14 and PNX-20 levels. In ROC analyses, PNX-14 and PNX-20 performed almost equally in predicting T2DM. In predicting T2DM, the area under the ROC curve for PNX-14 was 0.874 (cutoff value 413.4 ng/L, sensitivity 89 %, specificity 72%), and for PNX-20 was 0.858 (cutoff value 228.7 ng/L, sensitivity 80 %, specificity 83 %).

Conclusion: This study shows that serum PNX measurement may have a high level of evidence in predicting T2DM. PNX, related to pathogenesis, may be useful in diagnosing T2DM and other information to support clinical decision-making.

Graphical Abstract

[1]
You, S.; Zheng, J.; Chen, Y.; Huang, H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front. Endocrinol., 2022, 13, 976465.
[http://dx.doi.org/10.3389/fendo.2022.976465] [PMID: 36060972]
[2]
Lv, C.; Sun, Y.; Zhang, Z.Y.; Aboelela, Z.; Qiu, X.; Meng, Z.X. β- cell dynamics in type 2 diabetes and in dietary and exercise interventions. J. Mol. Cell Biol., 2022, 14(7), mjac046.
[http://dx.doi.org/10.1093/jmcb/mjac046] [PMID: 35929791]
[3]
Liang, H.; Zhao, Q.; Lv, S.; Ji, X. Regulation and physiological functions of phoenixin. Front. Mol. Biosci., 2022, 259, 956500.
[http://dx.doi.org/10.3389/fmolb.2022.956500]
[4]
Kołodziejski, P.A.; Pruszyńska-Oszmałek, E.; Wojciechowicz, T.; Sassek, M.; Leciejewska, N.; Jasaszwili, M.; Billert, M.; Małek, E.; Szczepankiewicz, D.; Misiewicz-Mielnik, M.; Hertig, I.; Nogowski, L.; Nowak, K.W.; Strowski, M.Z.; Skrzypski, M. The role of peptide hormones discovered in the 21st century in the regulation of adipose tissue functions. Genes, 2021, 12(5), 756.
[http://dx.doi.org/10.3390/genes12050756] [PMID: 34067710]
[5]
Mcilwraith, E.K.; Belsham, D.D. Phoenixin: Uncovering its receptor, signaling and functions. Acta Pharmacol. Sin., 2018, 39(5), 774-778.
[http://dx.doi.org/10.1038/aps.2018.13] [PMID: 29671415]
[6]
Cundubey, C.R.; Cam, S.D. Serum Phoenixin-14 levels of women with polycystic ovary syndrome increase proportionally with BMI. Eur. Rev. Med. Pharmacol. Sci., 2023, 27(8), 3519-3525.
[PMID: 37140302]
[7]
Billert, M.; Wojciechowicz, T.; Jasaszwili, M.; Szczepankiewicz, D.; Waśko, J.; Kaźmierczak, S.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Phoenixin-14 stimulates differentiation of 3T3-L1 preadipocytes via cAMP/Epac-dependent mechanism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2018, 1863(12), 1449-1457.
[http://dx.doi.org/10.1016/j.bbalip.2018.09.006] [PMID: 30251651]
[8]
Kalamon, N.; Błaszczyk, K.; Szlaga, A.; Billert, M.; Skrzypski, M.; Pawlicki, P. Górowska - Wójtowicz, E.; Kotula - Balak, M.; Błasiak, A.; Rak, A. Levels of the neuropeptide phoenixin-14 and its receptor GRP173 in the hypothalamus, ovary and periovarian adipose tissue in rat model of polycystic ovary syndrome. Biochem. Biophys. Res. Commun., 2020, 528(4), 628-635.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.101] [PMID: 32505354]
[9]
Global Report on Diabetes. World Health Organization; Diabetes Fact Sheet, 2016.
[10]
Arslan, N.; Erdur, B.; Aydin, A. Hormones and cytokines in childhood obesity. Indian Pediatr., 2010, 47(10), 829-839.
[http://dx.doi.org/10.1007/s13312-010-0142-y] [PMID: 21048235]
[11]
Friedrich, T.; Stengel, A. Current state of phoenixin—the implications of the pleiotropic peptide in stress and its potential as a therapeutic target. Front. Pharmacol., 2023, 14, 1076800.
[http://dx.doi.org/10.3389/fphar.2023.1076800] [PMID: 36860304]
[12]
Billert, M.; Rak, A.; Nowak, K.W.; Skrzypski, M. Phoenixin: More than reproductive peptide. Int. J. Mol. Sci., 2020, 21(21), 8378.
[http://dx.doi.org/10.3390/ijms21218378] [PMID: 33171667]
[13]
Ullah, K. ur Rahman, T.; Wu, D.D.; Lin, X.H.; Liu, Y.; Guo, X.Y.; Leung, P.C.K.; Zhang, R.J.; Huang, H.F.; Sheng, J.Z. Phoenixin-14 concentrations are increased in association with luteinizing hormone and nesfatin-1 concentrations in women with polycystic ovary syndrome. Clin. Chim. Acta, 2017, 471, 243-247.
[http://dx.doi.org/10.1016/j.cca.2017.06.013] [PMID: 28624500]
[14]
Jiang, J.H.; He, Z.; Peng, Y.L.; Jin, W.D.; Wang, Z.; Mu, L.Y.; Chang, M.; Wang, R. Phoenixin-14 enhances memory and mitigates memory impairment induced by Aβ1-42 and scopolamine in mice. Brain Res., 2015, 1629, 298-308.
[http://dx.doi.org/10.1016/j.brainres.2015.10.030] [PMID: 26505917]
[15]
Jiang, J.H.; He, Z.; Peng, Y.L.; Jin, W.D.; Mu, J.; Xue, H.X.; Wang, Z.; Chang, M.; Wang, R. Effects of Phoenixin-14 on anxiolytic-like behavior in mice. Behav. Brain Res., 2015, 286, 39-48.
[http://dx.doi.org/10.1016/j.bbr.2015.02.011] [PMID: 25687846]
[16]
Hofmann, T.; Weibert, E.; Ahnis, A.; Elbelt, U.; Rose, M.; Klapp, B.F.; Stengel, A. Phoenixin is negatively associated with anxiety in obese men. Peptides, 2017, 88, 32-36.
[http://dx.doi.org/10.1016/j.peptides.2016.12.011] [PMID: 27989611]
[17]
Gasparini, S.; Stein, L.M.; Loewen, S.P.; Haddock, C.J.; Soo, J.; Ferguson, A.V.; Kolar, G.R.; Yosten, G.L.C.; Samson, W.K. Novel regulator of vasopressin secretion: phoenixin. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 314(4), R623-R628.
[http://dx.doi.org/10.1152/ajpregu.00426.2017] [PMID: 29364701]
[18]
Schalla, M.; Prinz, P.; Friedrich, T.; Scharner, S.; Kobelt, P.; Goebel-Stengel, M.; Rose, M.; Stengel, A. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides, 2017, 96, 53-60.
[http://dx.doi.org/10.1016/j.peptides.2017.08.004] [PMID: 28844870]
[19]
Rocca, C.; Scavello, F.; Granieri, M.C.; Pasqua, T.; Amodio, N.; Imbrogno, S.; Gattuso, A.; Mazza, R.; Cerra, M.C.; Angelone, T. Phoenixin-14: Detection and novel physiological implications in cardiac modulation and cardioprotection. Cell. Mol. Life Sci., 2018, 75(4), 743-756.
[http://dx.doi.org/10.1007/s00018-017-2661-3] [PMID: 28965207]
[20]
Billert, M.; Kołodziejski, P.A.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Phoenixin-14 stimulates proliferation and insulin secretion in insulin producing INS-1E cells. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(12), 118533.
[http://dx.doi.org/10.1016/j.bbamcr.2019.118533] [PMID: 31422055]
[21]
Zeng, X.; Li, Y.; Ma, S.; Tang, Y.; Li, H. Phoenixin-20 ameliorates lipopolysaccharide-induced activation of microglial NLRP3 inflammasome. Neurotox. Res., 2020, 38(3), 785-792.
[http://dx.doi.org/10.1007/s12640-020-00225-w] [PMID: 32651843]
[22]
Zhang, B.; Li, J. Phoenixin-14 protects human brain vascular endothelial cells against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced inflammation and permeability. Arch. Biochem. Biophys., 2020, 682, 108275.
[http://dx.doi.org/10.1016/j.abb.2020.108275] [PMID: 31962109]
[23]
Friedrich, T.; Stengel, A. Role of the novel peptide phoenixin in stress response and possible interactions with Nesfatin-1. Int. J. Mol. Sci., 2021, 22(17), 9156.
[http://dx.doi.org/10.3390/ijms22179156] [PMID: 34502065]
[24]
Rajeswari, J.J.; Blanco, A.M.; Unniappan, S. Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2020, 318(5), R917-R928.
[http://dx.doi.org/10.1152/ajpregu.00019.2020] [PMID: 32208925]
[25]
McIlwraith, E.K.; Loganathan, N.; Belsham, D.D. Phoenixin expression is regulated by the fatty acids palmitate, docosahexaenoic acid and oleate, and the endocrine disrupting chemical Bisphenol A in immortalized hypothalamic neurons. Front. Neurosci., 2018, 12, 838.
[http://dx.doi.org/10.3389/fnins.2018.00838] [PMID: 30524225]
[26]
Yang, F.; Huang, P.; Shi, L.; Liu, F.; Tang, A.; Xu, S. Phoenixin 14 inhibits high-fat diet-induced non-alcoholic fatty liver disease in experimental mice. Drug Des. Devel. Ther., 2020, 14, 3865-3874.
[http://dx.doi.org/10.2147/DDDT.S258857] [PMID: 33061293]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy