Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

A Three-year Retrospective Study Looking at Preventing Hospital Acquired Thrombosis

Author(s): Vipin Kammath, Anuj Gupta, Alexander Bald, Gavin Hope, Nisheeth Kansal, Ahmad Al Samaraee and Vish Bhattacharya*

Volume 22, Issue 2, 2024

Published on: 09 January, 2024

Page: [212 - 222] Pages: 11

DOI: 10.2174/0118715257269027231228114930

Price: $65

Abstract

Background: Hospital-acquired venous thromboembolism (HA-VTE) is defined as cases of venous thromboembolism (VTE) that occur in a hospital and within ninety days of a hospital admission. Deep vein thromboses (DVTs) most commonly occur within the deep veins of the pelvis and legs. If the thrombus dislodges and travels to the lungs, it can result in a pulmonary embolus (PE). VTE is associated with significant morbidity and mortality, accounting for almost 10% of all hospital deaths. If risk factors are correctly identified and VTE prophylaxis is prescribed, VTE can be a preventable condition. In 2010, NHS England launched The National Venous Thromboembolism Prevention Programme. This included NICE guidance, and a VTE risk assessment tool, which must be completed for at least 95% of patients on admission. The National Thrombosis Survey, published by Thrombosis UK, studied how this program was implemented locally, and audited HA-VTE prevention strategies nationally.

Objectives: Using the Thrombosis Survey and NICE guidance as an aide, this study collects data about hospital-acquired DVT (HA-DVT) at the Queen Elizabeth Hospital in Gateshead (QEH) and aims to:

1. Identify cases of HA-DVT and understand the clinical circumstances surrounding these cases

2. Assess the quality of VTE preventative measures at QEH

3. Outline potential improvement in reducing the incidence of HA-VTE at this hospital

Methods: This retrospective cohort study used electronic records to identify all cases of DVT between April 2019 and April 2022 at QEH. Cases of HA-DVT were defined as: a positive ultrasound doppler report and either the case occurring in the 90 days following an inpatient stay, or beyond two days into an admission. For these cases of HA-DVT, we recorded the: reason for admission; admitting specialty; presence of an underlying active cancer and deaths occurring within 90 days of diagnosis. We assessed the quality of VTE preventative measures, by recording the: completion of VTE risk assessments; prescription of weight-adjusted pharmacological VTE prophylaxis and provision of VTE prophylaxis on discharge. For HA-DVT cases occurring within 90 days of an inpatient stay, the preventative measures were assessed on the original admission. Electronic records were used to record the completion rate of the National VTE risk assessment tool for all inpatients during this time frame.

Results: The VTE risk assessment tool was completed for 98.5% of all admissions. One hundred and thirty-five cases of HA-DVT were identified between April 2019 and April 2022. Sixteen patients with HA-DVT did not have VTE prophylaxis prescribed on admission. Eleven of these patients had a clearly documented reason why anticoagulation was avoided. In HA-DVT cases where pharmacological VTE prophylaxis was prescribed, 23% were prescribed an inappropriate dose for their weight. If anticoagulation was required on discharge, this was prescribed appropriately in 94% of cases. About 31% of the patients with HA-DVT had an underlying active malignancy. Thirty-nine patients died within 90 days of the DVT being diagnosed; in only 1 case was VTE thought to be a contributing factor to death.

Conclusion: The hospital exceeded the national standard of VTE risk assessment completion on admission (greater than 95%). For almost a quarter of patients with HA-DVT, the dose of thromboprophylaxis prescribed was not appropriate for weight. In five cases of HA-DVT, thromboprophylaxis was omitted with no clear justification. HA-DVT often affects the most clinically vulnerable patients and is associated with a high mortality.

Graphical Abstract

[1]
NICE. Venous thromboembolism in over 16s: Reducing the risk of hospital-acquired deep vein thrombosis or pulmonary embolism., 2018. Available from: https://www.nice.org.uk/guidance/NG89
[2]
Hirsh, J.; Hoak, J. Management of deep vein thrombosis and pulmonary embolism. A statement for healthcare professionals. Council on Thrombosis (in consultation with the Council on Cardiovascular Radiology), American Heart Association. Circulation, 1996, 93(12), 2212-2245.
[http://dx.doi.org/10.1161/01.CIR.93.12.2212] [PMID: 8925592]
[3]
Hunt, B.J. Preventing hospital associated venous thromboembolism. BMJ, 2019, 365, l4239.
[http://dx.doi.org/10.1136/bmj.l4239] [PMID: 31227478]
[4]
Heit, J.A. The epidemiology of venous thromboembolism in the community: Implications for prevention and management. J. Thromb. Thrombolysis, 2006, 21(1), 23-29.
[http://dx.doi.org/10.1007/s11239-006-5572-y] [PMID: 16475038]
[5]
Kahn, S.R.; Morrison, D.R.; Cohen, J.M.; Emed, J.; Tagalakis, V.; Roussin, A.; Geerts, W. Interventions for implementation of thromboprophylaxis in hospitalized medical and surgical patients at risk for venous thromboembolism. Cochrane Libr., 2013, (7), CD008201.
[http://dx.doi.org/10.1002/14651858.CD008201.pub2] [PMID: 23861035]
[6]
Piazza, G.; Fanikos, J.; Zayaruzny, M.; Goldhaber, S.Z. Venous thromboembolic events in hospitalised medical patients. Thromb. Haemost., 2009, 102(3), 505-510.
[PMID: 19718471]
[7]
Roberts, L.N.; Durkin, M.; Arya, R. Annotation: Developing a national programme for VTE prevention. Br. J. Haematol., 2017, 178(1), 162-170.
[http://dx.doi.org/10.1111/bjh.14769] [PMID: 28542789]
[8]
Thrombosis, U.K. Getting it right first time. National Thrombosis Survey., 2021. Available from: https://thrombosisuk.org/girft.php
[9]
Roberts, LN.; Porter, G.; Barker, RD. Comprehensive VTE prevention program incorporating mandatory risk assessment reduces the incidence of hospital-associated thrombosis. Chest, 2013, 144(7), 1276-1281.
[http://dx.doi.org/10.1378/chest.13-0267]
[10]
Lester, W.; Freemantle, N.; Begaj, I.; Ray, D.; Wood, J.; Pagano, D. Fatal venous thromboembolism associated with hospital admission: A cohort study to assess the impact of a national risk assessment target. Heart, 2013, 99(23), 1734-1739.
[http://dx.doi.org/10.1136/heartjnl-2013-304479] [PMID: 24038168]
[11]
Kahn, S.R.; Lim, W.; Dunn, A.S. Prevention of VTE in nonsurgical patients: Antithrombotic therapy and prevention of thrombosis. 9th edn. American College of Chest Physicians evidence-based clinical practice guidelines. Chest, 2012, 141(S2), 195-226.
[12]
Rosenberg, D.; Eichorn, A.; Alarcon, M.; McCullagh, L.; McGinn, T.; Spyropoulos, A.C. External validation of the risk assessment model of the International Medical Prevention Registry on Venous Thromboembolism (IMPROVE) for medical patients in a tertiary health system. J. Am. Heart Assoc., 2014, 3(6), e001152.
[http://dx.doi.org/10.1161/JAHA.114.001152] [PMID: 25404191]
[13]
Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; De Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost., 2010, 8(11), 2450-2457.
[http://dx.doi.org/10.1111/j.1538-7836.2010.04044.x] [PMID: 20738765]
[14]
Alikhan, R.; Forster, R.; Cohen, A.T. Heparin for the prevention of venous thromboembolism in acutely ill medical patients (excluding stroke and myocardial infarction). Cochrane Libr., 2014, 2018(2), CD003747.
[http://dx.doi.org/10.1002/14651858.CD003747.pub4] [PMID: 24804622]
[15]
Laporte, S.; Liotier, J.; Bertoletti, L.; Kleber, F.X.; Pineo, G.F.; Chapelle, C.; Moulin, N.; Mismetti, P. Individual patient data meta‐analysis of enoxaparin vs. unfractionated heparin for venous thromboembolism prevention in medical patients. J. Thromb. Haemost., 2011, 9(3), 464-472.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04182.x] [PMID: 21232002]
[16]
Lester, W.; Gomez, K.; Shapiro, S.; Dabhi, K.; Laffan, M. NICE NG89 recommendations for extended pharmacological thromboprophylaxis – is it justified and is it cost effective: A rebuttal from the British Society for Haematology. Br. J. Haematol., 2019, 186(5), 790-791.
[http://dx.doi.org/10.1111/bjh.16007] [PMID: 31168789]
[17]
Sebaaly, J.; Covert, K. Enoxaparin dosing at extremes of weight: Literature review and dosing recommendations. Ann. Pharmacother., 2018, 52(9), 898-909.
[http://dx.doi.org/10.1177/1060028018768449] [PMID: 29592538]
[18]
Li, A.; Eshaghpour, A.; Tseng, E.K.; Douketis, J.D.; Anvari, M.; Tiboni, M.; Siegal, D.M.; Ikesaka, R.T.; Crowther, M.A. Weight-adjusted tinzaparin for venous thromboembolism prophylaxis in bariatric surgery patients weighing 160 kg or more. Thromb. Res., 2021, 198, 1-6.
[http://dx.doi.org/10.1016/j.thromres.2020.11.021] [PMID: 33246191]
[19]
Pfrepper, C.; Koch, E.; Weise, M.; Siegemund, R.; Siegemund, A.; Petros, S.; Metze, M. Weight-adjusted dosing of tinzaparin for thromboprophylaxis in obese medical patients. Res. Pract. Thromb. Haemost., 2023, 7(2), 100054.
[http://dx.doi.org/10.1016/j.rpth.2023.100054] [PMID: 36876282]
[20]
Ceccato, D.; Di Vincenzo, A.; Pagano, C.; Pesavento, R.; Prandoni, P.; Vettor, R. Weight-adjusted versus fixed dose heparin thromboprophylaxis in hospitalized obese patients: A systematic review and meta-analysis. Eur. J. Intern. Med., 2021, 88, 73-80.
[http://dx.doi.org/10.1016/j.ejim.2021.03.030] [PMID: 33888393]
[21]
Goldenberg, N.; Kahn, S.R.; Solymoss, S. Markers of coagulation and angiogenesis in cancer-associated venous thromboembolism. J. Clin. Oncol., 2003, 21(22), 4194-4199.
[http://dx.doi.org/10.1200/JCO.2003.05.165] [PMID: 14615447]
[22]
Farge, D.; Frere, C.; Connors, J.M.; Khorana, A.A.; Kakkar, A.; Ay, C.; Muñoz, A.; Brenner, B.; Prata, P.H.; Brilhante, D.; Antic, D.; Casais, P.; Guillermo Esposito, M.C.; Ikezoe, T.; Abutalib, S.A.; Meillon-García, L.A.; Bounameaux, H.; Pabinger, I.; Douketis, J.; Ageno, W.; Ajauro, F.; Alcindor, T.; Angchaisuksiri, P.; Arcelus, J.I.; Barba, R.; Bazarbachii, A.; Bellesoeur, A.; Bensaoula, O.; Benzidia, I.; Bita, D.; Bitsadze, V.; Blickstein, D.; Blostein, M.; Bogalho, I.; Brandao, A.; Calado, R.; Carpentier, A.; Ceresetto, J.M.; Chitsike, R.; Connault, J.; Correia, C.J.; Crichi, B.; De Paula, E.V.; Demir, A.M.; Deville, L.; Doucet, L.; Dounaevskaia, V.; Durant, C.; Ellis, M.; Emmerich, J.; Falanga, A.; Font, C.; Gallardo, E.; Gary, T.; Gonçalves, F.; Gris, J-C.; Hayashi, H.; Hij, A.; Jara-Palomares, L.; Jiménez, D.; Khizroeva, J.; N’Guessan, M.; Langer, F.; Le Hello, C.; Le Maignan, C.; Lecumberri, R.; Lee, L.H.; Liederman, Z.; Lopes dos Santos, L.; Machado, D.H.; Makatsariya, A.; Maneyro, A.; Marjanovic, Z.; Milhaileanu, S.; Monreal, M.; Morais, S.; Moreira, A.; Mukai, M.; Ndour, A.; Correa Oliveira, L.; Otero-Candelara, R.; Tostes Pintao, M.C.; Posch, F.; Prilollet, P.; Rafii, H.; Dias Ribeiro, D.; Riess, H.; Righini, M.; Robert-Ebadi, H.; Rothschild, C.; Roussin, A.; Rueda Camino, J.A.; Ruiz-Artacho, P.; Saharov, G.; Santos, J.; Sebuhyan, M.; Shamseddine, A.; Spectre, G.S.; Taher, A.; Trujillo-Santos, J.; Tzoran, I.; Villiers, S.; Wong, R.; Yamashita, Y.; Yannoutsos, A.; Yasuda, C. 2022 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer, including patients with COVID-19. Lancet Oncol., 2022, 23(7), e334-e347.
[http://dx.doi.org/10.1016/S1470-2045(22)00160-7] [PMID: 35772465]
[23]
Osataphan, S.; Patell, R.; Chiasakul, T.; Khorana, A.A.; Zwicker, J.I. Extended thromboprophylaxis for medically ill patients with cancer: A systemic review and meta-analysis. Blood Adv., 2021, 5(8), 2055-2062.
[http://dx.doi.org/10.1182/bloodadvances.2020004118] [PMID: 33861298]
[24]
Kucher, N.; Spirk, D.; Baumgartner, I.; Mazzolai, L.; Korte, W.; Nobel, D.; Banyai, M.; Bounameaux, H. Lack of prophylaxis before the onset of acute venous thromboembolism among hospitalized cancer patients: The SWIss Venous ThromboEmbolism Registry (SWIVTER). Ann. Oncol., 2010, 21(5), 931-935.
[http://dx.doi.org/10.1093/annonc/mdp406] [PMID: 19828560]
[25]
Carrier, M.; Khorana, A.A.; Moretto, P. Lack of Evidence to Support Thromboprophylaxis in Hospitalized Medical Patients with Cancer. Am. J. Med., 2014, 127(1), 82-86.e1.
[26]
Rasmussen, M.S.; Jorgensen, L.N.; Wille-Jørgensen, P.; Nielsen, J.D.; Horn, A.; Mohn, A.C.; Sømod, L.; Olsen, B. Prolonged prophylaxis with dalteparin to prevent late thromboembolic complications in patients undergoing major abdominal surgery: A multicenter randomized open‐label study. J. Thromb. Haemost., 2006, 4(11), 2384-2390.
[http://dx.doi.org/10.1111/j.1538-7836.2006.02153.x] [PMID: 16881934]
[27]
Kakkar, V.V.; Balibrea, J.L.; Martínez-González, J.; Prandoni, P. Extended prophylaxis with bemiparin for the prevention of venous thromboembolism after abdominal or pelvic surgery for cancer: The CANBESURE randomized study. J. Thromb. Haemost., 2010, 8(6), 1223-1229.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03892.x] [PMID: 20456751]
[28]
Rajkumar, C. Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): A multicentre randomised controlled trial. Lancet, 2013, 396(10245), 802-804.
[29]
International Stroke Trial Collaborative Group. The International Stroke Trial (IST): A randomised trial of aspirin, subcutaneous heparin, both, or neither among 19 435 patients with acute ischaemic stroke. Lancet, 1997, 349(9065), 1569-1581.
[http://dx.doi.org/10.1016/S0140-6736(97)04011-7] [PMID: 9174558]
[30]
Dennis, M.; Mordi, N.; Graham, C.; Sandercock, P. The timing, extent, progression and regression of deep vein thrombosis in immobile stroke patients: Observational data from the CLOTS multicenter randomized trials. J. Thromb. Haemost., 2011, 9(11), 2193-2200.
[http://dx.doi.org/10.1111/j.1538-7836.2011.04486.x] [PMID: 21883879]
[31]
Kamphuisen, P.W.; Agnelli, G. What is the optimal pharmacological prophylaxis for the prevention of deep-vein thrombosis and pulmonary embolism in patients with acute ischemic stroke? Thromb. Res., 2007, 119(3), 265-274.
[http://dx.doi.org/10.1016/j.thromres.2006.03.010] [PMID: 16674999]
[32]
Sandercock, P.A.G.; Leong, T.S. Low-molecular-weight heparins or heparinoids versus standard unfractionated heparin for acute ischaemic stroke. Cochrane Libr., 2017, 2017(4), CD000119.
[http://dx.doi.org/10.1002/14651858.CD000119.pub4] [PMID: 28374884]
[33]
Lun, R.; Dhaliwal, S.; Zitikyte, G.; Roy, D.C.; Hutton, B.; Dowlatshahi, D. Comparison of ticagrelor vs. clopidogrel in addition to aspirin in patients with minor ischemic stroke and transient ischemic attack. JAMA Neurol., 2021, 79(2), 141-148.
[PMID: 34870698]
[34]
Prevention and treatment of venous thromboembolism in patients with acute stroke. 2021. Available from: https://www.uptodate.com/contents/prevention-and-treatment-ofvenous-thromboembolism-in-patients-with-acute-stroke

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy