Abstract
Background: In the last years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 760 million infections and 6.9 million deaths. Currently, remains a public health problem with limited pharmacological treatments. Among the virus drug targets, the SARS-CoV-2 spike protein attracts the development of new anti-SARS-CoV-2 agents.
Objective: The aim of this work was to identify new compounds derived from natural products (BIOFACQUIM and Selleckchem databases) as potential inhibitors of the spike receptor binding domain (RBD)-ACE2 binding complex.
Methods: Molecular docking, molecular dynamics simulations, and ADME-Tox analysis were performed to screen and select the potential inhibitors. ELISA-based enzyme assay was done to confirm our predictive model.
Results: Twenty compounds were identified as potential binders of RBD of the spike protein. In vitro assay showed compound B-8 caused 48% inhibition at 50 μM, and their binding pattern exhibited interactions via hydrogen bonds with the key amino acid residues present on the RBD.
Conclusion: Compound B-8 can be used as a scaffold to develop new and more efficient antiviral drugs.
Graphical Abstract
[http://dx.doi.org/10.1126/science.abp8337] [PMID: 35881005]
[http://dx.doi.org/10.1038/s41579-022-00713-0] [PMID: 35354968]
[http://dx.doi.org/10.1177/08971900211048139] [PMID: 34597525]
[http://dx.doi.org/10.1016/j.biopha.2021.112517] [PMID: 34902743]
[http://dx.doi.org/10.1007/s40265-017-0723-3] [PMID: 28290136]
[http://dx.doi.org/10.1016/j.eclinm.2022.101489] [PMID: 35677732]
[http://dx.doi.org/10.1002/rmv.2402] [PMID: 36226323]
[http://dx.doi.org/10.1093/cid/ciac180] [PMID: 35245942]
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[http://dx.doi.org/10.1128/mBio.03681-20] [PMID: 33785634]
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[http://dx.doi.org/10.1016/j.molliq.2020.114493] [PMID: 33041407]
[http://dx.doi.org/10.1016/j.compbiomed.2021.104818] [PMID: 34481181]
[http://dx.doi.org/10.1016/j.ymeth.2022.02.004] [PMID: 35167916]
[http://dx.doi.org/10.1080/07391102.2020.1868338] [PMID: 33397223]
[http://dx.doi.org/10.3906/biy-2104-5] [PMID: 34803452]
[http://dx.doi.org/10.2147/DDDT.S292805] [PMID: 33737804]
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[http://dx.doi.org/10.3390/biom9010031] [PMID: 30658522]
[http://dx.doi.org/10.1002/minf.202100285] [PMID: 34931466]
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[http://dx.doi.org/10.1007/s12250-017-4057-9] [PMID: 28884445]
[http://dx.doi.org/10.1128/JVI.02202-16] [PMID: 28031359]
[http://dx.doi.org/10.1016/j.ejmech.2019.111704] [PMID: 31557608]
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[http://dx.doi.org/10.3390/molecules26226900] [PMID: 34833991]
[http://dx.doi.org/10.1007/s10787-022-01038-3] [PMID: 35922738]
[http://dx.doi.org/10.22207/JPAM.14.SPL1.37]
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[http://dx.doi.org/10.1016/B978-0-12-802734-9.00013-5]
[http://dx.doi.org/10.1002/chem.202101004] [PMID: 34038596]
[http://dx.doi.org/10.3390/cancers14163971] [PMID: 36010961]
[http://dx.doi.org/10.1080/07391102.2020.1835721] [PMID: 33103586]