Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Design and Synthesis of Aspirin-chalcone Mimic Conjugates as Potential Anticancer Agents

Author(s): Reham A. Mohamed-Ezzat and Aladdin M. Srour*

Volume 24, Issue 7, 2024

Published on: 09 January, 2024

Page: [544 - 557] Pages: 14

DOI: 10.2174/0118715206280025231213065519

Price: $65

Abstract

Background: Extensive research has been conducted on aspirin, a widely recognized NSAID medication, regarding its potential as an anticancer agent. Studies have revealed its ability to trigger cell death in different types of cancer cells.

Methods: A set of aspirin-chalcone mimic conjugates 5a-k and 6a-d utilizing the freshly prepared acid chloride of aspirin moiety has been designed and synthesized. To evaluate the newly developed compounds, the NCI 60- cell line panel was employed to assess their anti-proliferative properties. Subsequently, cell cycle analysis was conducted along with an examination of the compounds' impact on the levels of p53, Bax, Bcl-2, active caspase- 3, and their inhibition mechanism of tubulin polymerization.

Results: Derivative 6c displayed the best anticancer activity among the tested series while 6d was the best against breast cancer MDA-MB-468, therefore both of them were selected for the 5-dose stage, however, targeting MDA-MB-468, PI-flow cytometry of compound 6d proved the triggered cell growth arrest at the G1/S phase avoiding the mitotic cycle in MDA-MB-468 cells. Similarly, the upregulation of oncogenic parameters such as caspase-3, p53, and Bax/Bcl-2, along with the inhibition of PARP-1 enzyme level, was observed with compound 6d. This compound also exhibited a significant ability to induce apoptosis and disrupt the intracellular microtubule network through a promising activity as a tubulin polymerization inhibitor with IC50 = 1.065 ± 0.024 ng/ml. Furthermore, to examine the manner in which compound 6d binds to the active pocket of the tubulin polymerization enzyme, a molecular docking study was conducted.

Conclusion: The study indicated that compound 6d could be a powerful microtubule-destabilizing agent. Therefore, further research on 6d could be worthwhile.

« Previous
Graphical Abstract

[1]
Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: An overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641.
[http://dx.doi.org/10.1080/13543776.2019.1648433] [PMID: 31353978]
[2]
Peddi, P.F.; Hurvitz, S.A. Ado-trastuzumab emtansine (T-DM1) in human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer: Latest evidence and clinical potential. Ther. Adv. Med. Oncol., 2014, 6(5), 202-209.
[http://dx.doi.org/10.1177/1758834014539183] [PMID: 25342987]
[3]
Elgemeie, G.H.; Mohamed-Ezzat, R.A. New Strategies Targeting Cancer Metabolism, 1st ed; Elsevier: Amsterdam, 2022, pp. 1-619.
[http://dx.doi.org/10.1016/C2019-0-00369-X]
[4]
Singh, H.; Singh, J.V.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett., 2017, 27(17), 3974-3979.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.069] [PMID: 28797799]
[5]
Gangjee, A.; Park, A. Cyclopentapyrimidines and substituted cyclopentapyrimidines as antitubulin and microtubule targeting agents, monocyclic pyrimidines as tubulin inhibitors, and pyrrolopyrimidnes as targeted antifolates and tubulin and multiple receptor tyrosine Kinase inhibition and antitumor agents. US20160304525A1, 2016.
[6]
Kamal, A.; Sultana, F.; Bharathi, E.V. 3-arylethynyl substituted quinazolinone compounds. US 2013/0317221 A1; Council of Scientific & Industrial Research: New Delhi, 2013.
[7]
Kamal, A.; Srikanth, Y.V.; Khan, M.N. Council of Scientific & Industrial Research; 2-anilinonicotinyl linked 2-amino benzothiazoleconugates and process for the prepration thereof. U.S. Pataent, 2013, 2013/0324734, A1.
[8]
Kamal, A.; Mallareddy, A.; Suresh, P. Council of Scientific & Industrial Research (IN); Benzothiazole hybrids useful as anticancer agents and process for the preparation thereof. U.S. Patent 8,921,552 B2, 2014.
[9]
Kamal, A.; Reddy, A.M.; Paidakula, S. Council of Scientific & Industrial Research (IN); Amidobenzothiazoles and process For the preparation thereof. U.S. Patent 9,102,638 B2, 2015.
[10]
Cimino, P.; Huang, L.; Du, L.; Wu, Y.; Bishop, J.; Dalsing-Hernandez, J.; Kotlarczyk, K.; Gonzales, P.; Carew, J.; Nawrocki, S.; Jordan, M.; Wilson, L.; Lloyd, G.; Wirsching, H.G. Plinabulin, an inhibitor of tubulin polymerization, targets KRAS signaling through disruption of endosomal recycling. Biomed. Rep., 2019, 10(4), 218-224.
[http://dx.doi.org/10.3892/br.2019.1196] [PMID: 30972217]
[11]
Nepali, K.; Ojha, R.; Sharma, S.; Bedi, P.; Dhar, K. Tubulin inhibitors: A patent survey. Recent Patents Anticancer Drug Discov., 2014, 9(2), 176-220.
[http://dx.doi.org/10.2174/15748928113089990042] [PMID: 23746164]
[12]
Negi, A.; Prakasham, A. Anticancer and tubulin polymerisation inhibition activity of benzyldeneindanones and process of preparing the same. U.S. Patent 2013/0079396 A1, 2013.
[13]
Alfonso, L.; Ai, G.; Spitale, R.C.; Bhat, G.J. Molecular targets of aspirin and cancer prevention. Br. J. Cancer, 2014, 111(1), 61-67.
[http://dx.doi.org/10.1038/bjc.2014.271] [PMID: 24874482]
[14]
Celebioglu, H.U. Effects of potential synbiotic interaction between Lactobacillus rhamnosus GG and salicylic acid on human colon and prostate cancer cells. Arch. Microbiol., 2021, 203(3), 1221-1229.
[http://dx.doi.org/10.1007/s00203-021-02200-1] [PMID: 33620523]
[15]
Xia, H.; Lee, K.W.; Chen, J.; Kong, S.N.; Sekar, K.; Deivasigamani, A.; Seshachalam, V.P.; Goh, B.K.P.; Ooi, L.L.; Hui, K.M. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib. Cell Death Discov., 2017, 3(1), 17058.
[http://dx.doi.org/10.1038/cddiscovery.2017.58] [PMID: 28900541]
[16]
Claudius, A.K.; Kankipati, C.S.; Kilari, R.S.; Hassan, S.; Guest, K.; Russel, S.T.; Perry, C.J.; Stark, L.A.; Nicholl, I.D. Identification of aspirin analogues that repress NF-κB signalling and demonstrate anti-proliferative activity towards colorectal cancer in vitro and in vivo. Oncol. Rep., 2014, 32(4), 1670-1680.
[http://dx.doi.org/10.3892/or.2014.3373] [PMID: 25109257]
[17]
Dachineni, R.; Ai, G.; Kumar, D.R.; Sadhu, S.S.; Tummala, H.; Bhat, G.J. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic Acid: A Potential Role in Cancer Prevention. Mol. Cancer Res., 2016, 14(3), 241-252.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0360] [PMID: 26685215]
[18]
Ausina, P.; Branco, J.R.; Demaria, T.M.; Esteves, A.M.; Leandro, J.G.B.; Ochioni, A.C.; Mendonça, A.P.M.; Palhano, F.L.; Oliveira, M.F.; Abou-Kheir, W.; Sola-Penna, M.; Zancan, P. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci. Rep., 2020, 10(1), 19617.
[http://dx.doi.org/10.1038/s41598-020-76824-6] [PMID: 33184378]
[19]
Tewari, D.; Majumdar, D.; Vallabhaneni, S.; Bera, A.K.; Bera, A.K. Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC). Sci. Rep., 2017, 7(1), 45184.
[http://dx.doi.org/10.1038/srep45184] [PMID: 28327594]
[20]
Yang, H.; Pellegrini, L.; Napolitano, A.; Giorgi, C.; Jube, S.; Preti, A.; Jennings, C.J.; De Marchis, F.; Flores, E.G.; Larson, D.; Pagano, I.; Tanji, M.; Powers, A.; Kanodia, S.; Gaudino, G.; Pastorino, S.; Pass, H.I.; Pinton, P.; Bianchi, M.E.; Carbone, M. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis., 2015, 6(6), e1786.
[http://dx.doi.org/10.1038/cddis.2015.153] [PMID: 26068794]
[21]
Hou, J.; Karin, M.; Sun, B. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol., 2021, 18(5), 261-279.
[http://dx.doi.org/10.1038/s41571-020-00459-9] [PMID: 33469195]
[22]
Sankaranarayanan, R.; Kumar, D.R.; Altinoz, M.A.; Bhat, G.J. Mechanisms of colorectal cancer prevention by aspirin—a literature review and perspective on the role of COX-dependent and -independent pathways. Int. J. Mol. Sci., 2020, 21(23), 9018.
[http://dx.doi.org/10.3390/ijms21239018] [PMID: 33260951]
[23]
Sankaranarayanan, R.; Kumar, D.R.; Patel, J.; Bhat, G.J. Do aspirin and flavonoids prevent cancer through a common mechanism involving hydroxybenzoic acids?—The metabolite hypothesis. Molecules, 2020, 25(9), 2243.
[http://dx.doi.org/10.3390/molecules25092243] [PMID: 32397626]
[24]
Dachineni, R.; Kumar, D.R. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer Inter. J. Oncol., 2017, 51, 1661-1673.
[25]
Drew, D.A.; Cao, Y.; Chan, A.T. Aspirin and colorectal cancer: The promise of precision chemoprevention. Nat. Rev. Cancer, 2016, 16(3), 173-186.
[http://dx.doi.org/10.1038/nrc.2016.4] [PMID: 26868177]
[26]
Ai, G.; Dachineni, R.; Muley, P.; Tummala, H.; Bhat, G.J. Aspirin and salicylic acid decrease c-Myc expression in cancer cells: A potential role in chemoprevention. Tumour Biol., 2016, 37(2), 1727-1738.
[http://dx.doi.org/10.1007/s13277-015-3959-0] [PMID: 26314861]
[27]
Choi, B.H.; Chakraborty, G.; Baek, K.; Yoon, H.S. Aspirin-induced Bcl-2 translocation and its phosphorylation in the nucleus trigger apoptosis in breast cancer cells. Exp. Mol. Med., 2013, 45(10), e47.
[http://dx.doi.org/10.1038/emm.2013.91] [PMID: 24113271]
[28]
Zhu, Y.; Wang, F.; Zhao, Y.; Wang, P.; Sang, S. Gastroprotective [6]-gingerol aspirinate as a novel chemopreventive prodrug of aspirin for colon cancer. Sci. Rep., 2017, 7(1), 40119.
[http://dx.doi.org/10.1038/srep40119] [PMID: 28067282]
[29]
Nakanishi, C.; Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer, 2005, 5(4), 297-309.
[http://dx.doi.org/10.1038/nrc1588] [PMID: 15803156]
[30]
Bos, C.L.; Kodach, L.L.; van den Brink, G.R.; Diks, S.H.; van Santen, M.M.; Richel, D.J. Effect of aspirin on the Wnt/b-catenin pathway is mediated via protein phosphatase 2A. Oncogene, 2006, 25, 6447-6456.
[http://dx.doi.org/10.1038/sj.onc.1209658] [PMID: 16878161]
[31]
Ricchi, P.; Matola, T.D.; Ruggiero, G.; Zanzi, D.; Apicella, A.; di Palma, A.; Pensabene, M.; Pignata, S.; Zarrilli, R.; Acquaviva, A.M. Effect of non-steroidal anti-inflammatory drugs on colon carcinoma Caco-2 cell responsiveness to topoisomerase inhibitor drugs. Br. J. Cancer, 2002, 86(9), 1501-1509.
[http://dx.doi.org/10.1038/sj.bjc.6600289] [PMID: 11986787]
[32]
Bilani, N.; Bahmad, H.; Abou-Kheir, W. Prostate cancer and aspirin use: Synopsis of the proposed molecular mechanisms. Front. Pharmacol., 2017, 8, 145.
[http://dx.doi.org/10.3389/fphar.2017.00145] [PMID: 28377721]
[33]
Vad, N.M.; Yount, G.; Moridani, M.Y. Biochemical mechanism of acetylsalicylic acid (Aspirin) selective toxicity toward melanoma cell lines. Melanoma Res., 2008, 18(6), 386-399.
[http://dx.doi.org/10.1097/CMR.0b013e3283107df7] [PMID: 18971789]
[34]
Chen, Z.; Luo, Y.; Fang, A.; Fan, C.; Zeng, C. Synthesis of novel SN38-aspirin prodrugs for the treatment of hepatocellular carcinoma. Turk. J. Chem., 2018, 42, 929-939.
[35]
Jeankumar, V.U.; Chandran, M.; Samala, G.; Alvala, M.; Koushik, P.V.; Yogeeswari, P.; Salina, E.G.; Sriram, D. Development of 5-nitrothiazole derivatives: Identification of leads against both replicative and latent Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(24), 7414-7417.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.060] [PMID: 23137434]
[36]
Sharma, H.; Patil, S.; Sanchez, T.W.; Neamati, N.; Schinazi, R.F.; Buolamwini, J.K. Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg. Med. Chem., 2011, 19(6), 2030-2045.
[http://dx.doi.org/10.1016/j.bmc.2011.01.047] [PMID: 21371895]
[37]
Mohamed-Ezzat, R.A.; Kariuki, B.M.; Srour, A.M. Synthesis, “crystal structure and in vitro anti-proliferative activity of 2-[(4-acetyl-phen-yl)carbamoyl]phenyl acetate. Acta Cryst., 2023, E79, 999-1002.
[38]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[39]
Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer, 2006, 6(10), 813-823.
[http://dx.doi.org/10.1038/nrc1951] [PMID: 16990858]
[40]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[41]
NIH. DTP Developmental Therapeutics Program. 2022. Available From: https://dtp.cancer.gov/databases_tools/docs/compare/compare_methodology.htm
[42]
Holbeck, S.L.; Collins, J.M.; Doroshow, J.H. Analysis of FDA-approved anti-cancer agents in the NCI60 panel of human tumor cell lines. Mol. Cancer Ther., 2010, 9(5), 1451-1460.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0106] [PMID: 20442306]
[43]
Jaimes, M.; Inokuma, M.; McIntyre, C.; Mittar, D. Detection of apoptosis using the BD Annexin V FITC assay on the BD FACSVerseTM system. BD BiosciENCE, 2011. 2011.
[44]
Gorczyca, W. Cytometric analyses to distinguish death processes. Endocr. Relat. Cancer, 1999, 6(1), 17-19.
[http://dx.doi.org/10.1677/erc.0.0060017] [PMID: 10732781]
[45]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805.
[PMID: 8183579]
[46]
Zimmermann, K.C.; Green, D.R. How cells die: Apoptosis pathways. J. Allergy Clin. Immunol., 2001, 108(4)(Suppl.), S99-S103.
[http://dx.doi.org/10.1067/mai.2001.117819] [PMID: 11586274]
[47]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[48]
Coskun, D.; Erkisa, M.; Ulukaya, E.; Coskun, M.F.; Ari, F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: Synthesis, characterization and anticancer activity. Eur. J. Med. Chem., 2017, 136, 212-222.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.017] [PMID: 28494257]
[49]
Zhang, L.; Ren, W.; Wang, X.; Zhang, J.; Liu, J.; Zhao, L.; Zhang, X. Discovery of novel polycyclic spiro-fused carbocyclicoxindole-based anticancer agents. Eur. J. Med. Chem., 2017, 126, 1071-1082.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.021] [PMID: 28027532]
[50]
Labib, M.B.; Philoppes, J.N.; Lamie, P.F.; Ahmed, E.R. Azole-hydrazone derivatives: Design, synthesis, in vitro biological evaluation, dual EGFR/HER2 inhibitory activity, cell cycle analysis and molecular docking study as anticancer agents. Bioorg. Chem., 2018, 76, 67-80.
[http://dx.doi.org/10.1016/j.bioorg.2017.10.016] [PMID: 29153588]
[51]
Van Raam, B.J.; Salvesen, G.S. Handbook of Proteolytic Enzymes, 3rd ed; Elsevier Ltd.: Amsterdam, 2013, pp. 2252-2255.
[http://dx.doi.org/10.1016/B978-0-12-382219-2.00506-8]
[52]
Ghorab, M.M.; Alsaid, M.S.; Samir, N.; Abdel-Latif, G.A.; Soliman, A.M.; Ragab, F.A.; Abou El Ella, D.A. Aromatase inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and molecular modeling studies of novel phenothiazine derivatives carrying sulfonamide moiety as hybrid molecules. Eur. J. Med. Chem., 2017, 134, 304-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.028] [PMID: 28427017]
[53]
Bánhegyi, P.; Kéri, G.; Örfi, L.; Szekélyhidi, Z.; Waczek, F. Tricyclic benzo[4,5]thieno[2,3-d]pyrimidine-4-yl-amines, their salts, process for producing the compounds and their pharmaceutical use. U.S. Patent HU 2006000706 A2, 2009.
[54]
Taguchi, T.; Kato, Y.; Baba, Y.; Nishimura, G.; Tanigaki, Y.; Horiuchi, C.; Mochimatsu, I.; Tsukuda, M. Protein levels of p21, p27, cyclin E and Bax predict sensitivity to cisplatin and paclitaxel in head and neck squamous cell carcinomas. Oncol. Rep., 2004, 11(2), 421-426.
[http://dx.doi.org/10.3892/or.11.2.421] [PMID: 14719078]
[55]
Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene, 2003, 22(56), 9030-9040.
[http://dx.doi.org/10.1038/sj.onc.1207116] [PMID: 14663481]
[56]
Srour, A.M.; Ahmed, N.S.; Abd El-Karim, S.S.; Anwar, M.M.; El-Hallouty, S.M. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg. Med. Chem., 2020, 28(18), 115657.
[http://dx.doi.org/10.1016/j.bmc.2020.115657] [PMID: 32828424]
[57]
Brandão, P.; Loureiro, J.B.; Carvalho, S.; Hamadou, M.H.; Cravo, S.; Moreira, J.; Pereira, D.; Palmeira, A.; Pinto, M.; Saraiva, L.; Cidade, H. Targeting the MDM2-p53 protein-protein interaction with prenylchalcones: Synthesis of a small library and evaluation of potential antitumor activity. Eur. J. Med. Chem., 2018, 156, 711-721.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.037] [PMID: 30041135]
[58]
Griguolo, G.; Dieci, M.V.; Guarneri, V.; Conte, P. Olaparib for the treatment of breast cancer. Expert Rev. Anticancer Ther., 2018, 18(6), 519-530.
[http://dx.doi.org/10.1080/14737140.2018.1458613] [PMID: 29582690]
[59]
Amin, K.M.; Anwar, M.M.; Syam, Y.M.; Khedr, M.A.; Kamel, M.M.; Kassem, E.M. A novel class of substituted spiro [quinazoline-2,1′-cyclohexane] derivatives as effective PPAR-1 inhibitors: Molecular modeling, synthesis, cytotoxic and enzyme assay evaluation. Acta Pol. Pharm., 2013, 70(4), 687-708.
[PMID: 23923393]
[60]
Livraghi, L.; Garber, J.E. PARP inhibitors in the management of breast cancer: Current data and future prospects. BMC Med., 2015, 13(1), 188-203.
[http://dx.doi.org/10.1186/s12916-015-0425-1] [PMID: 26268938]
[61]
Srour, A.M.; Panda, S.S.; Mostafa, A.; Fayad, W.; El-Manawaty, M.A.; A F Soliman, A.; Moatasim, Y.; El Taweel, A.; Abdelhameed, M.F.; Bekheit, M.S.; Ali, M.A.; Girgis, A.S. Synthesis of aspirin-curcumin mimic conjugates of potential antitumor and anti-SARS-CoV-2 properties. Bioorg. Chem., 2021, 117, 105466.
[http://dx.doi.org/10.1016/j.bioorg.2021.105466] [PMID: 34775204]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy