Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Discovery of Novel Pyrimidine Based Small Molecule Inhibitors as VEGFR-2 Inhibitors: Design, Synthesis, and Anti-Cancer Studies

In Press, (this is not the final "Version of Record"). Available online 05 January, 2024
Author(s): Sachin A. Dhawale, Santosh N. Mokale* and Pratap S. Dabhade
Published on: 05 January, 2024

DOI: 10.2174/0115734099269413231018065351

Price: $95

Abstract

Background: Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized.

Methods: Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger.

Results: In comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 µM), compound SP2 revealed promising cytotoxic activity (IC50 = 4.07 and 4.98 µM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC50 = 6.82 µM) against the reference drug, Cabozantinib (IC50 = 0.045 µM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study.

Conclusion: The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.

[1]
Marzouk, A.A.; Abdel-Aziz, S.A.; Abdelrahman, K.S.; Wanas, A.S.; Gouda, A.M.; Youssif, B.G.M.; Abdel-Aziz, M. Design and synthesis of new 1,6-dihydropyridine-2-thio derivatives targeting VEGFR-2: Molecular docking and antiproliferative evaluation. Bioorg. Chem., 2020, 102, 104090.
[http://dx.doi.org/10.1016/j.bioorg.2020.104090]
[2]
Biemar, F.; Foti, M. Global progress against cancer-challenges and opportunities. Cancer Biol. Med., 2013, 10(4), 183-186.
[http://dx.doi.org/10.7497/j.issn.2095-3941.2013.04.001] [PMID: 24349827]
[3]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[4]
Arora, A.; Scholar, E.M. Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther., 2005, 315(3), 971-979.
[http://dx.doi.org/10.1124/jpet.105.084145] [PMID: 16002463]
[5]
Awazu, Y.; Nakamura, K.; Mizutani, A.; Kakoi, Y.; Iwata, H.; Yamasaki, S.; Miyamoto, N.; Imamura, S.; Miki, H.; Hori, A. A novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities. Mol. Cancer Ther., 2013, 12(6), 913-924.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1011] [PMID: 23548264]
[6]
Robinson, D.R.; Wu, Y.M.; Lin, S.F. The protein tyrosine kinase family of the human genome. Oncogene, 2000, 19(49), 5548-5557.
[http://dx.doi.org/10.1038/sj.onc.1203957] [PMID: 11114734]
[7]
Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell, 2011, 146(6), 873-887.
[http://dx.doi.org/10.1016/j.cell.2011.08.039] [PMID: 21925313]
[8]
Otrock, Z.K.; Makarem, J.A.; Shamseddine, A.I. Vascular endothelial growth factor family of ligands and receptors: Review. Blood Cells Mol. Dis., 2007, 38(3), 258-268.
[http://dx.doi.org/10.1016/j.bcmd.2006.12.003] [PMID: 17344076]
[9]
Garofalo, A.; Farce, A.; Ravez, S.; Lemoine, A.; Six, P.; Chavatte, P.; Goossens, L.; Depreux, P. Synthesis and structure-activity relationships of (aryloxy)quinazoline ureas as novel, potent, and selective vascular endothelial growth factor receptor-2 inhibitors. J. Med. Chem., 2012, 55(3), 1189-1204.
[http://dx.doi.org/10.1021/jm2013453] [PMID: 22229669]
[10]
Sanphanya, K.; Wattanapitayakul, S.K.; Phowichit, S.; Fokin, V.V.; Vajragupta, O. Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach. Bioorg. Med. Chem. Lett., 2013, 23(10), 2962-2967.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.042] [PMID: 23562241]
[11]
Belal, A.; Abdel Gawad, N.M.; Mehany, A.B.M.; Abourehab, M.A.S.; Elkady, H.; Al-Karmalawy, A.A.; Ismael, A.S. Design, synthesis and molecular docking of new fused 1 H -pyrroles, pyrrolo[3,2- d ]pyrimidines and pyrrolo[3,2- e ][1, 4]diazepine derivatives as potent EGFR/CDK2 inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1884-1902.
[http://dx.doi.org/10.1080/14756366.2022.2096019] [PMID: 35801486]
[12]
Trenker, R.; Jura, N. Receptor tyrosine kinase activation: From the ligand perspective. Curr. Opin. Cell Biol., 2020, 63, 174-185.
[http://dx.doi.org/10.1016/j.ceb.2020.01.016] [PMID: 32114309]
[13]
Verheul, H.M.W.; Pinedo, H.M. Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat. Rev. Cancer, 2007, 7(6), 475-485.
[http://dx.doi.org/10.1038/nrc2152] [PMID: 17522716]
[14]
Baeriswyl, V.; Christofori, G. The angiogenic switch in carcinogenesis. In: Seminars in Cancer Biology; Elsevier, 2009; pp. 329-337.
[15]
Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal., 2007, 19(10), 2003-2012.
[http://dx.doi.org/10.1016/j.cellsig.2007.05.013] [PMID: 17658244]
[16]
Brekken, R.A.; Overholser, J.P.; Stastny, V.A.; Waltenberger, J.; Minna, J.D.; Thorpe, P.E. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res., 2000, 60(18), 5117-5124.
[PMID: 11016638]
[17]
Claesson-Welsh, L.; Welsh, M. VEGFA and tumor angiogenesis. J. Int. Med., 2013, 273(2), 114-127.
[18]
Guo, Y.; Gao, B.; Gao, P.; Fang, L.; Gou, S. Novel anilinopyrimidine derivatives as potential EGFRT790M/C797S Inhibitors: Design, Synthesis, biological activity study. Bioorg. Med. Chem., 2022, 70, 116907.
[http://dx.doi.org/10.1016/j.bmc.2022.116907] [PMID: 35810715]
[19]
Motzer, R.J.; Michaelson, M.D.; Redman, B.G.; Hudes, G.R.; Wilding, G.; Figlin, R.A.; Ginsberg, M.S.; Kim, S.T.; Baum, C.M.; DePrimo, S.E.; Li, J.Z.; Bello, C.L.; Theuer, C.P.; George, D.J.; Rini, B.I. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2006, 24(1), 16-24.
[http://dx.doi.org/10.1200/JCO.2005.02.2574] [PMID: 16330672]
[20]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 835-844.
[http://dx.doi.org/10.1038/nrd2130] [PMID: 17016424]
[21]
Ho, T.H.; Jonasch, E. Axitinib in the treatment of metastatic renal cell carcinoma. Future Oncol., 2011, 7(11), 1247-1253.
[http://dx.doi.org/10.2217/fon.11.107] [PMID: 22044199]
[22]
Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular bases of VEGFR-2-mediated physiological function and pathological role. Front. Cell Dev. Biol., 2020, 8, 599281.
[http://dx.doi.org/10.3389/fcell.2020.599281] [PMID: 33304904]
[23]
Modi, S.J.; Kulkarni, V.M. Vascular endothelial growth factor receptor (VEGFR-2)/KDR inhibitors: Medicinal chemistry perspective. Med. Drug Discov., 2019, 2, 100009.
[http://dx.doi.org/10.1016/j.medidd.2019.100009]
[24]
Silva, S.R.; Bowen, K.A.; Rychahou, P.G.; Jackson, L.N.; Weiss, H.L.; Lee, E.Y.; Townsend, C.M., Jr; Evers, B.M. VEGFR‐2 expression in carcinoid cancer cells and its role in tumor growth and metastasis. Int. J. Cancer, 2011, 128(5), 1045-1056.
[http://dx.doi.org/10.1002/ijc.25441] [PMID: 20473929]
[25]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[26]
Ignatowska, J.; Mironiuk-Puchalska, E.; Grześkowiak, P.; Wińska, P.; Wielechowska, M.; Bretner, M.; Karatsai, O.; Jolanta Rędowicz, M.; Koszytkowska-Stawińska, M. New insight into nucleo α-amino acids - Synthesis and SAR studies on cytotoxic activity of β-pyrimidine alanines. Bioorg. Chem., 2020, 100, 103864.
[http://dx.doi.org/10.1016/j.bioorg.2020.103864] [PMID: 32446118]
[27]
Irshad, N.; Khan, A.; Alamgeer; Khan, S.U.D.; Iqbal, M.S. Antihypertensive potential of selected pyrimidine derivatives: Explanation of underlying mechanistic pathways. Biomed. Pharmacother., 2021, 139, 111567.
[http://dx.doi.org/10.1016/j.biopha.2021.111567] [PMID: 33848773]
[28]
Okamoto, S.; Miyano, K.; Choshi, T.; Sugisawa, N.; Nishiyama, T.; Kotouge, R.; Yamamura, M.; Sakaguchi, M.; Kinoshita, R.; Tomonobu, N.; Katase, N.; Sasaki, K.; Nishina, S.; Hino, K.; Kurose, K.; Oka, M.; Kubota, H.; Ueno, T.; Hirai, T.; Fujiwara, H.; Kawai, C.; Itadani, M.; Morihara, A.; Matsushima, K.; Kanegasaki, S.; Hoffman, R.M.; Yamauchi, A.; Kuribayashi, F. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay. Biomed. Pharmacother., 2022, 155, 113733.
[http://dx.doi.org/10.1016/j.biopha.2022.113733] [PMID: 36271542]
[29]
Damaraju, V.L.; Damaraju, S.; Young, J.D.; Baldwin, S.A.; Mackey, J.; Sawyer, M.B.; Cass, C.E. Nucleoside anticancer drugs: The role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene, 2003, 22(47), 7524-7536.
[http://dx.doi.org/10.1038/sj.onc.1206952] [PMID: 14576856]
[30]
Fox, M.; Boyle, J.M.; Kinsella, A.R. Nucleoside salvage and resistance to antimetabolite anticancer agents. Br. J. Cancer, 1991, 64(3), 428-436.
[http://dx.doi.org/10.1038/bjc.1991.327] [PMID: 1911182]
[31]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov., 2002, 1(7), 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[32]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12(1), 38.
[http://dx.doi.org/10.1186/s13065-018-0406-5] [PMID: 29619583]
[33]
Dansena, H.; Dhongade, H.J.; Chandrakar, K. Pharmacological potentials of pyrimidine derivative: A review. Asian J. Pharm. Clin. Res., 2015, 8, 171-177.
[34]
Selvam, TP; James, CR; Dniandev, PV; Valzita, SK A mini review of pyrimidine and fused pyrimidine marketed drugs. Res. Pharma., 2015, 2(4)
[35]
Diao, P.C.; Lin, W.Y.; Jian, X.E.; Li, Y.H.; You, W.W.; Zhao, P.L. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity. Eur. J. Med. Chem., 2019, 179, 196-207.
[36]
Munikrishnappa, C.S.; Puranik, S.B.; Kumar, G.V.S.; Prasad, Y.R. Part-1: Design, synthesis and biological evaluation of novel bromopyrimidine analogs as tyrosine kinase inhibitors. Eur. J. Med. Chem., 2016, 119, 70-82.
[37]
Zhu, M.; Ma, L.; Zhou, H.; Dong, B.; Wang, Y.; Wang, Z.; Zhou, J.; Zhang, G.; Wang, J.; Liang, C.; Cen, S.; Wang, Y. Preliminary SAR and biological evaluation of potent HIV-1 protease inhibitors with pyrimidine bases as novel P2 ligands to enhance activity against DRV-resistant HIV-1 variants. Eur. J. Med. Chem., 2020, 185, 111866.
[http://dx.doi.org/10.1016/j.ejmech.2019.111866] [PMID: 31734023]
[38]
Mehraban, M.H.; Yousefi, R.; Kafrani, A.T.; Panahi, F.; Nezhad, A. Binding study of novel anti-diabetic pyrimidine fused heterocycles to b-lactoglobulin as a carrier protein. Coll. Surf. B Biointer., 2013, 112, 374-379.
[39]
Farghaly, A.M. Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med. Chem. Res., 2019, 28, 360-379.
[40]
Gupta, J.K.; Sharma, P.K.; Dudhe, R.; Mondal, S.C.; Chaudhary, A.; Verma, P.K. Synthesis and analgesic activity of novel pyrimidine derivatives of coumarin moiety. Acta Pol. Pharm., 2011, 68, 785-793.
[41]
Kolman, V.; Kalcic, F.; Jansa, P.; Zídek, Z.; Janeba, Z. Influence of the C-5 substitution in polysubstituted pyrimidines on inhibition of prostaglandin E2 production. Eur. J. Med. Chem., 2018, 156, 295-301.
[42]
Liu, P.; Yang, Y.; Tang, Y.; Yang, T.; Sang, Z.; Liu, Z.; Zhang, T.; Luo, Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem., 2019, 163, 169-182.
[43]
Federico, S.; Margiotta, E.; Salmaso, V.; Pastorin, G.; Kachler, S.; Klotz, K.; Moro, S.; Spalluto, G. Spalluto, [1,2,4] Triazolo [1,5-c] pyrimidines as adenosine receptor antagonists: Modifications at the 8 position to reach selectivity towards A3 adenosine receptor subtype. Eur. J. Med. Chem., 2018, 157, 837-851.
[44]
Fang, Z.; Zheng, S.; Chan, K.; Yuan, W.; Guo, Q.; Wu, W.; Lui, H.; Lu, Y.; Leung, Y.; Chan, T.; Wong, K.; Sun, N. Design, synthesis and antibacterial evaluation of 2,4-disubstituted-6-thiophenyl-pyrimidines. Eur. J. Med. Chem, 2019, 161, 141-153.
[45]
Kaur, R.; Kaur, P.; Sharma, S.; Singha, G.; Mehndiratta, S.; Bedia, P.M.S.; Nepalia, K. Anti-cancer pyrimidines in diverse scaffolds: A review of patent literature, Recent Pat. Anti-Cancer Drug Discov., 2015, 10, 23-71.
[46]
Chang, S.; Zhang, L.; Xu, S.; Luo, J.; Lu, X.; Zhang, Z.; Xu, T.; Liu, Y.; Tu, Z.; Xu, Y.; Ren, X.; Geng, M.; Ding, J.; Pei, D.; Ding, K. Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine790 / methionine790 mutant. J. Med. Chem., 2012, 55, 2711-2723.
[47]
Barlaam, C.B.; Ducray, R.; Kettle, G.J. Pyrimidine derivatives 934. W.O. Patent 2009010789, 2009.
[48]
Mahboobi, S.; Dove, S.; Sellmer, A.; Winkler, M.; Eichhorn, E.; Pongratz, H.; Ciossek, T.; Baer, T.; Maier, T.; Beckers, T. Design of chimeric histone deacetylase-and tyrosine kinase-inhibitors: A series of imatinib hybrids as potent inhibitors of wild-type and mutant bcr abl, pdgf-rb, and histone deacetylases. J. Med. Chem., 2009, 52, 2265-2279.
[49]
Hawkinson, J.E.; Sinville, R.; Mudaliar, D.; Shetty, J.; Ward, T.; Herr, J.C.; Georg, G.I. Potent pyrimidine and pyrrolopyrimidine inhibitors of testisspecific serine/threonine kinase 2 (TSSK2). ChemMedChem, 2017, 12, 1857-1865.
[50]
Long, S.A.; Thorarensen, A.; Schnute, M.E. Pyrimidine and pyridine derivatives useful in therapy. W.O. Patent 2013054185, 2013.
[51]
Geng, K.; Liu, H.; Song, Z.; Zhang, C.; Zhang, M.; Yang, H.; Cao, J.; Geng, M.; Shen, A.; Zhang, A. Design, synthesis and pharmacological evaluation of ALK and Hsp90 dual inhibitors bearing resorcinol and 2,4-diaminopyrimidine motifs. Eur. J. Med. Chem., 2018, 152, 76-86.
[52]
Pass, M. 2,4,6-trisubstituted pyrimidines as phosphotidylinositol-3-kinase inhibitors and their use in the treatment of cancer. U.S. Patent 20090143384, 2009.
[53]
Zhan, Z.; Ai, J.; Liu, Q.; Ji, Y.; Chen, T.; Xu, Y.; Geng, M.; Duan, W. Discovery of anilinopyrimidines as dual inhibitors of c-MET and vegfr-2: Synthesis, sar, and cellular activity. ACS Med. Chem. Lett., 2014, 5(6), 673-678.
[http://dx.doi.org/10.1021/ml500066m] [PMID: 24944742]
[54]
Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; Lennon, V.A.; Celis, E.; Chen, L. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med., 2002, 8(8), 793-800.
[http://dx.doi.org/10.1038/nm730] [PMID: 12091876]
[55]
Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[56]
Zam, W.; Ali, L. Immune checkpoint inhibitors in the treatment of cancer. Curr. Rev. Clin. Experimen. Pharmacol., 2022, 17(2), 103-113.
[http://dx.doi.org/10.2174/27724336MTE1eMDQh5] [PMID: 33823768]
[57]
Kumar, P.; Bhattacharya, P.; Prabhakar, B.S. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J. Autoimmun., 2018, 95, 77-99.
[http://dx.doi.org/10.1016/j.jaut.2018.08.007] [PMID: 30174217]
[58]
Cassetta, L.; Kitamura, T. Macrophage targeting: Opening new possibilities for cancer immunotherapy. Immunology, 2018, 155(3), 285-293.
[http://dx.doi.org/10.1111/imm.12976] [PMID: 29963704]
[59]
Saleh, R.; Elkord, E. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression. Semin. Cancer Biol., 2020, 65, 13-27.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.017] [PMID: 31362073]
[60]
Uehata, T.; Iwasaki, H.; Vandenbon, A.; Matsushita, K.; Hernandez-Cuellar, E.; Kuniyoshi, K.; Satoh, T.; Mino, T.; Suzuki, Y.; Standley, D.M.; Tsujimura, T.; Rakugi, H.; Isaka, Y.; Takeuchi, O.; Akira, S. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell, 2013, 153(5), 1036-1049.
[http://dx.doi.org/10.1016/j.cell.2013.04.034] [PMID: 23706741]
[61]
Shimu, A.S.; Wei, H.; Li, Q.; Zheng, X.; Li, B. The new progress in cancer immunotherapy. Clin. Exp. Med., 2022, 23(3), 553-567.
[http://dx.doi.org/10.1007/s10238-022-00887-0] [PMID: 36109471]
[62]
Christensen, J.G.; Burrows, J.; Salgia, R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett., 2005, 225(1), 1-26.
[http://dx.doi.org/10.1016/j.canlet.2004.09.044] [PMID: 15922853]
[63]
Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; Orf, J.; You, A.; Laird, A.D.; Engst, S.; Lee, L.; Lesch, J.; Chou, Y.C.; Joly, A.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther., 2011, 10(12), 2298-2308.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0264] [PMID: 21926191]
[64]
Lai, G.M.; Chen, Y.N.; Mickley, L.A.; Fojo, A.T.; Bates, S.E. P-glycoprotein expression and schedule dependence of adriamycin cytotoxicity in human colon carcinoma cell lines. Int. J. Cancer, 1991, 49(5), 696-703.
[http://dx.doi.org/10.1002/ijc.2910490512] [PMID: 1682280]
[65]
Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res., 1987, 47(4), 936-942.
[PMID: 3802100]
[66]
Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol., 2017, 12(2), 8.
[http://dx.doi.org/10.3329/bjp.v12i2.30892]
[67]
Narayanan, S.; Teng, Q.X.; Wu, Z.X.; Nazim, U.; Karadkhelkar, N.; Acharekar, N.; Yoganathan, S.; Mansoor, N.; Ping, F.F.; Chen, Z.S. Anticancer effect of indanone-based thiazolyl hydrazone derivative on p53 mutant colorectal cancer cell lines: An in vitro and in vivo study. Front. Oncol., 2022, 12, 949868.
[http://dx.doi.org/10.3389/fonc.2022.949868] [PMID: 35992866]
[68]
Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Gouda, A.M.; Youssif, B.G.M.; Tateishi, H.; Fujita, M.; Otsuka, M.; Abdel-Aziz, M. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAFV600E kinases. Bioorg. Chem., 2020, 2020, 104510.
[http://dx.doi.org/10.1016/j.bioorg.2020.104510] [PMID: 33279248]
[69]
Youssif, B.G.M.; Mohamed, A.M.; Osman, E.E.A.; Abou-Ghadir, O.F.; Elnaggar, D.H.; Abdelrahman, M.H.; Treamblu, L.; Gomaa, H.A.M. 5-Chlorobenzofuran-2-carboxamides: From allosteric CB1 modulators to potential apoptotic antitumor agents. Eur. J. Med. Chem., 2019, 177, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.040] [PMID: 31128433]
[70]
McKinnon, K.M. Flow cytometry: An overview. Curr. Protoc. Immunol., 2018, 120(1), 1.1-, 11.
[http://dx.doi.org/10.1002/cpim.40] [PMID: 29512141]
[71]
Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol., 2017, 37(2), 163-176.
[http://dx.doi.org/10.3109/07388551.2015.1128876] [PMID: 26767547]
[72]
Qian, F.; Engst, S.; Yamaguchi, K.; Yu, P.; Won, K.A.; Mock, L.; Lou, T.; Tan, J.; Li, C.; Tam, D.; Lougheed, J.; Yakes, F.M.; Bentzien, F.; Xu, W.; Zaks, T.; Wooster, R.; Greshock, J.; Joly, A.H. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res., 2009, 69(20), 8009-8016.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4889] [PMID: 19808973]
[73]
Norman, M.H.; Liu, L.; Lee, M.; Xi, N.; Fellows, I.; D’Angelo, N.D.; Dominguez, C.; Rex, K.; Bellon, S.F.; Kim, T.S.; Dussault, I. Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives. J. Med. Chem., 2012, 55(5), 1858-1867.
[http://dx.doi.org/10.1021/jm201330u] [PMID: 22320343]
[74]
Bannen, Lynne al c-met modulators and method of use. W.O. Patent 2005/030140A22005,

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy