Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention

Author(s): Shiva Mohammadi, Maryam Dalaei Moghadam, Maryam Nasiriasl, Morteza Akhzari and Mahdi Barazesh*

Volume 19, Issue 4, 2024

Published on: 05 January, 2024

Page: [327 - 354] Pages: 28

DOI: 10.2174/0127724328268507231218051058

Price: $65

Abstract

Resveratrol (3, 5, 4′‐trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age‐related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.

Graphical Abstract

[1]
Pop R, Daescu A, Rugina D, Pintea A. Resveratrol: Its path from isolation to therapeutic action in eye diseases. Antioxidants 2022; 11(12): 2447.
[http://dx.doi.org/10.3390/antiox11122447] [PMID: 36552655]
[2]
Crăciun AL. Study on extraction and purification of transresveratrol from vine waste-a review. Food and Environment Safety Journal 2021; 20(2)
[3]
Desmedt W, Mangelinckx S, Kyndt T, Vanholme B. A phytochemical perspective on plant defense against nematodes. Front Plant Sci 2020; 11: 602079.
[http://dx.doi.org/10.3389/fpls.2020.602079] [PMID: 33281858]
[4]
Pezzuto JM. Resveratrol: Twenty years of growth, development and controversy. Biomol Ther 2019; 27(1): 1-14.
[http://dx.doi.org/10.4062/biomolther.2018.176] [PMID: 30332889]
[5]
Peng W, Qin R, Li X, Zhou H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: A review. J Ethnopharmacol 2013; 148(3): 729-45.
[http://dx.doi.org/10.1016/j.jep.2013.05.007] [PMID: 23707210]
[6]
Wang Q, Su H, Liu J. Protective effect of natural medicinal plants on cardiomyocyte injury in heart failure: Targeting the dysregulation of mitochondrial homeostasis and mitophagy. Oxid Med Cell Longev 2022; 2022: 3617086.
[http://dx.doi.org/10.1155/2022/3617086]
[7]
Cebova M, Pechanova O. Protective effects of polyphenols against ischemia/reperfusion injury. Molecules 2020; 25(15): 3469.
[http://dx.doi.org/10.3390/molecules25153469] [PMID: 32751587]
[8]
Gezer C. Stress response of dietary phytochemicals in a hormetic manner for health and longevity. In: Gene Expression and Regulation in Mammalian Cells - Transcription Toward the Establishment of Novel Therapeutics. Intechopen 2018.
[http://dx.doi.org/10.5772/intechopen.71867]
[9]
Duke SO. Benefits of resveratrol and pterostilbene to crops and their potential nutraceutical value to mammals. Agriculture 2022; 12(3): 368.
[http://dx.doi.org/10.3390/agriculture12030368]
[10]
Zhou Z, Fan Z, Meenu M, Xu B. Impact of germination time on resveratrol, phenolic acids, and antioxidant capacities of different varieties of peanut (Arachis hypogaea Linn.) from China. Antioxidants 2021; 10(11): 1714.
[http://dx.doi.org/10.3390/antiox10111714] [PMID: 34829585]
[11]
Gutiérrez-Escobar R, Aliaño-González MJ, Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021; 26(3): 718.
[http://dx.doi.org/10.3390/molecules26030718] [PMID: 33573150]
[12]
Velić D. Chemical constituents of fruit wines as descriptors of their nutritional, sensorial and health-related properties. In: Descriptive Food Science. 2018; pp. 59-91.
[13]
Rahman MM, Rahaman MS, Islam MR, et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021; 27(1): 233.
[http://dx.doi.org/10.3390/molecules27010233] [PMID: 35011465]
[14]
Bié J, Sepodes B, Fernandes PCB, Ribeiro MHL. Polyphenols in health and disease: Gut microbiota, bioaccessibility, and bioavailability. Compounds 2023; 3(1): 40-72.
[http://dx.doi.org/10.3390/compounds3010005]
[15]
Sahiner M, Yilmaz AS, Gungor B, Ayoubi Y, Sahiner N. Therapeutic and nutraceutical effects of polyphenolics from natural sources. Molecules 2022; 27(19): 6225.
[http://dx.doi.org/10.3390/molecules27196225] [PMID: 36234762]
[16]
Koushki M, Amiri-Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei-Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci Nutr 2018; 6(8): 2473-90.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[17]
Komorowska J, Wątroba M, Szukiewicz D. Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer’s disease. Adv Med Sci 2020; 65(2): 415-23.
[http://dx.doi.org/10.1016/j.advms.2020.08.002] [PMID: 32871321]
[18]
Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 2015; 14(9): 623-41.
[http://dx.doi.org/10.1038/nrd4623] [PMID: 26265312]
[19]
Zordoky BNM, Robertson IM, Dyck JRB. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1155-77.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.016] [PMID: 25451966]
[20]
Kumar S, Chang YC, Lai KH, Hwang TL. Resveratrol, a molecule with anti-inflammatory and anti-cancer activities: natural product to chemical synthesis. Curr Med Chem 2021; 28(19): 3773-86.
[http://dx.doi.org/10.2174/1875533XMTEwrMDQh5] [PMID: 32957870]
[21]
Huang DD, Shi G, Jiang Y, Yao C, Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 2020; 125: 109767.
[http://dx.doi.org/10.1016/j.biopha.2019.109767] [PMID: 32058210]
[22]
Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors 2018; 44(1): 69-82.
[http://dx.doi.org/10.1002/biof.1400] [PMID: 29210129]
[23]
Abo-Kadoum MA, Abouelela ME, Al Mousa AA, et al. Resveratrol biosynthesis, optimization, induction, bio-transformation and bio-degradation in mycoendophytes. Front Microbiol 2022; 13: 1010332.
[http://dx.doi.org/10.3389/fmicb.2022.1010332] [PMID: 36304949]
[24]
Park JY, Lim J-H, Ahn J-H, Kim B-G. Biosynthesis of resveratrol using metabolically engineered Escherichia coli. Appl Biol Chem 2021; 64(1): 20.
[http://dx.doi.org/10.1186/s13765-021-00595-5]
[25]
Valletta A, Iozia LM, Leonelli F. Impact of environmental factors on stilbene biosynthesis. Plants 2021; 10(1): 90.
[http://dx.doi.org/10.3390/plants10010090] [PMID: 33406721]
[26]
Novelle MG, Wahl D, Diéguez C, Bernier M, de Cabo R. Resveratrol supplementation: Where are we now and where should we go? Ageing Res Rev 2015; 21: 1-15.
[http://dx.doi.org/10.1016/j.arr.2015.01.002] [PMID: 25625901]
[27]
Poór M, Kaci H, Bodnárová S, et al. Interactions of resveratrol and its metabolites (resveratrol-3-sulfate, resveratrol-3-glucuronide, and dihydroresveratrol) with serum albumin, cytochrome P450 enzymes, and OATP transporters. Biomed Pharmacother 2022; 151: 113136.
[http://dx.doi.org/10.1016/j.biopha.2022.113136 ] [PMID: 35594715]
[28]
Nasef N, Mehta S, Ferguson LR. Dietary interactions with the bacterial sensing machinery in the intestine: the plant polyphenol case. Front Genet 2014; 5: 64.
[http://dx.doi.org/10.3389/fgene.2014.00064] [PMID: 24772116]
[29]
Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J. Multiplicity of effects and health benefits of resveratrol. Medicina 2016; 52(3): 148-55.
[http://dx.doi.org/10.1016/j.medici.2016.03.003] [PMID: 27496184]
[30]
Gambini J. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev 2015; 2015
[31]
Springer M, Moco S. Resveratrol and its human metabolites-effects on metabolic health and obesity. Nutrients 2019; 11(1): 143.
[http://dx.doi.org/10.3390/nu11010143] [PMID: 30641865]
[32]
Cocetta V, Quagliariello V, Fiorica F, Berretta M, Montopoli M. Resveratrol as chemosensitizer agent: State of art and future perspectives. Int J Mol Sci 2021; 22(4): 2049.
[http://dx.doi.org/10.3390/ijms22042049] [PMID: 33669559]
[33]
Gianchecchi E, Fierabracci A. Insights on the effects of resveratrol and some of its derivatives in cancer and autoimmunity: a molecule with a dual activity. Antioxidants 2020; 9(2): 91.
[http://dx.doi.org/10.3390/antiox9020091] [PMID: 31978952]
[34]
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021; 26(1): 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[35]
Mattioli R, Di Risola D, Federico R, et al. Effect of natural deep eutectic solvents on trans-resveratrol photo-chemical induced isomerization and 2,4,6-trihydroxyphenanthrene electro-cyclic formation. Molecules 2022; 27(7): 2348.
[http://dx.doi.org/10.3390/molecules27072348] [PMID: 35408747]
[36]
Intagliata S, Modica MN, Santagati LM, Montenegro L. Strategies to improve resveratrol systemic and topical bioavailability: An update. Antioxidants 2019; 8(8): 244.
[http://dx.doi.org/10.3390/antiox8080244] [PMID: 31349656]
[37]
Gligorijević N, Stanić-Vučinić D, Radomirović M, et al. Role of resveratrol in prevention and control of cardiovascular disorders and cardiovascular complications related to COVID-19 disease: Mode of action and approaches explored to increase its bioavailability. Molecules 2021; 26(10): 2834.
[http://dx.doi.org/10.3390/molecules26102834] [PMID: 34064568]
[38]
El Khawand T, Courtois A, Valls J, Richard T, Krisa S. A review of dietary stilbenes: Sources and bioavailability. Phytochem Rev 2018; 17(5): 1007-29.
[http://dx.doi.org/10.1007/s11101-018-9578-9]
[39]
Perrone D, Fuggetta MP, Ardito F, et al. Resveratrol (3,5,4′-trihydroxystilbene) and its properties in oral diseases. Exp Ther Med 2017; 14(1): 3-9.
[http://dx.doi.org/10.3892/etm.2017.4472] [PMID: 28672886]
[40]
Jannin B. Approaches in the study of bioabsorption of resveratrol, a wine component: Interactions with proteins and cell uptake. Bulletin de l'OIV 2002; 75(851-52): 62-80.
[41]
Park EJ, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1071-113.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.014]
[42]
Bullón-Vela V, Abete I, Zulet MA, et al. Urinary resveratrol metabolites output: Differential associations with cardiometabolic markers and liver enzymes in house-dwelling subjects featuring metabolic syndrome. Molecules 2020; 25(18): 4340.
[http://dx.doi.org/10.3390/molecules25184340] [PMID: 32971870]
[43]
Amri A, Chaumeil JC, Sfar S, Charrueau C. Administration of resveratrol: What formulation solutions to bioavailability limitations? J Control Release 2012; 158(2): 182-93.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.083] [PMID: 21978644]
[44]
Vesely O, Baldovska S, Kolesarova A. Enhancing bioavailability of nutraceutically used resveratrol and other stilbenoids. Nutrients 2021; 13(9): 3095.
[http://dx.doi.org/10.3390/nu13093095] [PMID: 34578972]
[45]
Kamiloglu S, Tomas M, Ozdal T, Capanoglu E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci Technol 2021; 117: 15-33.
[http://dx.doi.org/10.1016/j.tifs.2020.10.030]
[46]
Drabińska N, Jarocka-Cyrta E. Crosstalk between resveratrol and gut barrier: A review. Int J Mol Sci 2022; 23(23): 15279.
[http://dx.doi.org/10.3390/ijms232315279] [PMID: 36499603]
[47]
Chimento A, De Amicis F, Sirianni R, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci 2019; 20(6): 1381.
[http://dx.doi.org/10.3390/ijms20061381] [PMID: 30893846]
[48]
Pannu N, Bhatnagar A. Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomed Pharmacother 2019; 109: 2237-51.
[http://dx.doi.org/10.1016/j.biopha.2018.11.075] [PMID: 30551481]
[49]
Dudhatra GB, Mody SK, Awale MM, et al. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci World J 2012; 2012: 1-33.
[http://dx.doi.org/10.1100/2012/637953] [PMID: 23028251]
[50]
Wightman EL, Reay JL, Haskell CF, Williamson G, Dew TP, Kennedy DO. Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation. Br J Nutr 2014; 112(2): 203-13.
[http://dx.doi.org/10.1017/S0007114514000737] [PMID: 24804871]
[51]
Fragopoulou E, Gkotsi K, Petsini F, et al. Synthesis and biological evaluation of resveratrol methoxy derivatives. Molecules 2023; 28(14): 5547.
[http://dx.doi.org/10.3390/molecules28145547] [PMID: 37513418]
[52]
Alessandra S, Gaia F, Rita R. Resveratrol and SIRT1 Activators for the Treatment of Aging and Age-Related Diseases. In: Farid AB, Ed Resveratrol - Adding Life to Years, Not Adding Years to Life IntechOpen. 2018.
[53]
Thakkar K, Geahlen RL, Cushman M. Synthesis and protein-tyrosine kinase inhibitory activity of polyhydroxylated stilbene analogs of piceatannol. J Med Chem 1993; 36(20): 2950-5.
[http://dx.doi.org/10.1021/jm00072a015] [PMID: 8411012]
[54]
Lee KW, Kang NJ, Rogozin EA, et al. The resveratrol analogue 3,5,3′,4′,5′‐pentahydroxy‐ trans ‐stilbene inhibits cell transformation via MEK. Int J Cancer 2008; 123(11): 2487-96.
[http://dx.doi.org/10.1002/ijc.23830] [PMID: 18767048]
[55]
Calvo-Castro LA, Schiborr C, David F, et al. The oral bioavailability of trans -resveratrol from a grapevine-shoot extract in healthy humans is significantly increased by micellar solubilization. Mol Nutr Food Res 2018; 62(9): 1701057.
[http://dx.doi.org/10.1002/mnfr.201701057] [PMID: 29534330]
[56]
Mikulski D, Molski M. Quantitative structure–antioxidant activity relationship of trans-resveratrol oligomers, trans-4,4′-dihydroxystilbene dimer, trans-resveratrol-3-O-glucuronide, glucosides: Trans-piceid, cis-piceid, trans-astringin and trans-resveratrol-4′-O-β-D-glucopyranoside. Eur J Med Chem 2010; 45(6): 2366-80.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.016] [PMID: 20199826]
[57]
Fan GJ, Liu XD, Qian YP, et al. 4,4′-Dihydroxy-trans-stilbene, a resveratrol analogue, exhibited enhanced antioxidant activity and cytotoxicity. Bioorg Med Chem 2009; 17(6): 2360-5.
[http://dx.doi.org/10.1016/j.bmc.2009.02.014] [PMID: 19251420]
[58]
Szekeres T, Fritzer-Szekeres M, Saiko P. Jäger W. Resveratrol and resveratrol analogues--structure-activity relationship. Pharm Res 2010; 27(6): 1042-8.
[http://dx.doi.org/10.1007/s11095-010-0090-1] [PMID: 20232118]
[59]
Potter GA, Patterson LH, Wanogho E, et al. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer 2002; 86(5): 774-8.
[http://dx.doi.org/10.1038/sj.bjc.6600197] [PMID: 11875742]
[60]
Catalgol B, Batirel S, Taga Y, Ozer NK. Resveratrol: French paradox revisited. Front Pharmacol 2012; 3: 141.
[http://dx.doi.org/10.3389/fphar.2012.00141] [PMID: 22822401]
[61]
Ko JH, Sethi G, Um JY, et al. The role of resveratrol in cancer therapy. Int J Mol Sci 2017; 18(12): 2589.
[http://dx.doi.org/10.3390/ijms18122589] [PMID: 29194365]
[62]
Wu Y, Hsieh T, Wu JM, et al. Elucidating the inhibitory effect of resveratrol and its structural analogs on selected nucleotide-related enzymes. Biomolecules 2020; 10(9): 1223.
[http://dx.doi.org/10.3390/biom10091223] [PMID: 32842666]
[63]
Li Z, Chen X, Liu G, et al. Antioxidant activity and mechanism of resveratrol and polydatin isolated from mulberry (Morus alba L.). Molecules 2021; 26(24): 7574.
[http://dx.doi.org/10.3390/molecules26247574] [PMID: 34946655]
[64]
Yadav E, Yadav P, Khan MMU, Singh H, Verma A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front Pharmacol 2022; 13: 922232.
[http://dx.doi.org/10.3389/fphar.2022.922232] [PMID: 36188541]
[65]
Gu T, Wang N, Wu T, Ge Q, Chen L. Antioxidative stress mechanisms behind resveratrol: a multidimensional analysis. J Food Qual 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/5571733]
[66]
Aranda-Rivera AK, Cruz-Gregorio A, Arancibia-Hernández YL, Hernández-Cruz EY, Pedraza-Chaverri J. RONS and oxidative stress: An overview of basic concepts. Oxygen 2022; 2(4): 437-78.
[http://dx.doi.org/10.3390/oxygen2040030]
[67]
Sharifi-Rad M, Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front Physiol 2020; 11: 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[68]
Agbadua OG, Kúsz N, Berkecz R, Gáti T, Tóth G, Hunyadi A. Oxidized resveratrol metabolites as potent antioxidants and xanthine oxidase inhibitors. Antioxidants 2022; 11(9): 1832.
[http://dx.doi.org/10.3390/antiox11091832] [PMID: 36139906]
[69]
Khan MA, Chen H, Wan X, et al. Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells. Mol Cells 2013; 35(3): 219-25.
[http://dx.doi.org/10.1007/s10059-013-2259-z] [PMID: 23456297]
[70]
Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol 2017; 174(12): 1633-46.
[http://dx.doi.org/10.1111/bph.13492] [PMID: 27058985]
[71]
Behbahani J, Thandapilly SJ, Louis XL, et al. Resveratrol and small artery compliance and remodeling in the spontaneously hypertensive rat. Am J Hypertens 2010; 23(12): 1273-8.
[http://dx.doi.org/10.1038/ajh.2010.161] [PMID: 20671721]
[72]
Spanier G, Xu H, Xia N, et al. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol 2009; 60 (Suppl. 4): 111-6.
[PMID: 20083859]
[73]
Turkmen R, Birdane YO, Demirel HH, Kabu M, Ince S. Protective effects of resveratrol on biomarkers of oxidative stress, biochemical and histopathological changes induced by sub-chronic oral glyphosate-based herbicide in rats. Toxicol Res 2019; 8(2): 238-45.
[http://dx.doi.org/10.1039/C8TX00287H] [PMID: 30997023]
[74]
Wang XL, Li T, Li JH, Miao SY, Xiao XZ. The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules 2017; 22(9): 1529.
[http://dx.doi.org/10.3390/molecules22091529] [PMID: 28895883]
[75]
Franco JG, Lisboa PC, Lima NS, et al. Resveratrol attenuates oxidative stress and prevents steatosis and hypertension in obese rats programmed by early weaning. J Nutr Biochem 2013; 24(6): 960-6.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.019] [PMID: 22959054]
[76]
Qi B, Shi C, Meng J, Xu S, Liu J. Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: Involvement of TLR2-MyD88-NF-κB pathway. Int J Biochem Cell Biol 2018; 103: 56-64.
[http://dx.doi.org/10.1016/j.biocel.2018.07.007] [PMID: 30107238]
[77]
Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front Immunol 2022; 13: 856376.
[http://dx.doi.org/10.3389/fimmu.2022.856376] [PMID: 35558075]
[78]
Manev H, Chen H, Dzitoyeva S, Manev R. Cyclooxygenases and 5-lipoxygenase in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(2): 315-9.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.032] [PMID: 20691748]
[79]
Khan Z, Khan N, Tiwari RP, Sah NK, Prasad GB, Bisen PS. Biology of Cox-2: An application in cancer therapeutics. Curr Drug Targets 2011; 12(7): 1082-93.
[http://dx.doi.org/10.2174/138945011795677764] [PMID: 21443470]
[80]
Li M, Li P, Tang R, Lu H. Resveratrol and its derivates improve inflammatory bowel disease by targeting gut microbiota and inflammatory signaling pathways. Food Sci Hum Wellness 2022; 11(1): 22-31.
[http://dx.doi.org/10.1016/j.fshw.2021.07.003]
[81]
Poulsen MM, Vestergaard PF, Clasen BF, et al. High-dose resveratrol supplementation in obese men: An investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 2013; 62(4): 1186-95.
[http://dx.doi.org/10.2337/db12-0975] [PMID: 23193181]
[82]
Dyck G, Raj P, Zieroth S, Dyck J, Ezekowitz J. The effects of resveratrol in patients with cardiovascular disease and heart failure: A narrative review. Int J Mol Sci 2019; 20(4): 904.
[http://dx.doi.org/10.3390/ijms20040904] [PMID: 30791450]
[83]
de Sá Coutinho D, Pacheco M, Frozza R, Bernardi A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int J Mol Sci 2018; 19(6): 1812.
[http://dx.doi.org/10.3390/ijms19061812] [PMID: 29925765]
[84]
Meng X, Zhou J, Zhao CN, Gan RY, Li HB. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 2020; 9(3): 340.
[http://dx.doi.org/10.3390/foods9030340] [PMID: 32183376]
[85]
Santana TM, Ogawa LY, Rogero MM, Barroso LP, de Castro I. Effect of resveratrol supplementation on biomarkers associated with atherosclerosis in humans. Complement Ther Clin Pract 2022; 46: 101491.
[http://dx.doi.org/10.1016/j.ctcp.2021.101491] [PMID: 34731768]
[86]
Ramírez-Garza S, Laveriano-Santos E, Marhuenda-Muñoz M, et al. Health effects of resveratrol: Results from human intervention trials. Nutrients 2018; 10(12): 1892.
[http://dx.doi.org/10.3390/nu10121892] [PMID: 30513922]
[87]
Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 2011; 14(5): 612-22.
[http://dx.doi.org/10.1016/j.cmet.2011.10.002] [PMID: 22055504]
[88]
Zhang Y, Liu H, Tang W, Qiu Q, Peng J. Resveratrol prevents TNF- α -induced VCAM-1 and ICAM-1 upregulation in endothelial progenitor cells via reduction of NF- κB activation. J Int Med Res 2020; 48(9)
[http://dx.doi.org/10.1177/0300060520945131] [PMID: 32924701]
[89]
Gal R, Deres L, Toth K, Halmosi R, Habon T. The effect of resveratrol on the cardiovascular system from molecular mechanisms to clinical results. Int J Mol Sci 2021; 22(18): 10152.
[http://dx.doi.org/10.3390/ijms221810152] [PMID: 34576315]
[90]
Pinheiro DML, de Oliveira AHS, Coutinho LG, et al. Resveratrol decreases the expression of genes involved in inflammation through transcriptional regulation. Free Radic Biol Med 2019; 130: 8-22.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.432] [PMID: 30366059]
[91]
Van Brummelen R, Van Brummelen AC. The potential role of resveratrol as supportive antiviral in treating conditions such as COVID-19 – A formulator’s perspective. Biomed Pharmacother 2022; 148: 112767.
[http://dx.doi.org/10.1016/j.biopha.2022.112767] [PMID: 35240527]
[92]
Fioravanti R, Celestino I, Costi R, et al. Effects of polyphenol compounds on influenza A virus replication and definition of their mechanism of action. Bioorg Med Chem 2012; 20(16): 5046-52.
[http://dx.doi.org/10.1016/j.bmc.2012.05.062] [PMID: 22743086]
[93]
Palamara AT, Nencioni L, Aquilano K, et al. Inhibition of influenza A virus replication by resveratrol. J Infect Dis 2005; 191(10): 1719-29.
[http://dx.doi.org/10.1086/429694] [PMID: 15838800]
[94]
Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules 2011; 16(3): 2032-52.
[http://dx.doi.org/10.3390/molecules16032032] [PMID: 21358592]
[95]
Singh G, Pai RS. Recent advances of resveratrol in nanostructured based delivery systems and in the management of HIV/AIDS. J Control Release 2014; 194: 178-88.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.002] [PMID: 25217813]
[96]
Clouser CL, Chauhan J, Bess MA, et al. Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1 by the combination of resveratrol and decitabine. Bioorg Med Chem Lett 2012; 22(21): 6642-6.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.108] [PMID: 23010273]
[97]
Heredia A, Davis C, Amin MN, et al. Targeting host nucleotide biosynthesis with resveratrol inhibits emtricitabine-resistant HIV-1. AIDS 2014; 28(3): 317-23.
[http://dx.doi.org/10.1097/QAD.0000000000000168] [PMID: 24326355]
[98]
Beach LB, Rawson JM, Kim B, Patterson SE, Mansky LM. Novel inhibitors of human immunodeficiency virus type 2 infectivity. J Gen Virol 2014; 95(12): 2778-83.
[http://dx.doi.org/10.1099/vir.0.069864-0] [PMID: 25103850]
[99]
Faith SA, Sweet TJ, Bailey E, Booth T, Docherty JJ. Resveratrol suppresses nuclear factor-κB in herpes simplex virus infected cells. Antiviral Res 2006; 72(3): 242-51.
[http://dx.doi.org/10.1016/j.antiviral.2006.06.011] [PMID: 16876885]
[100]
Abba Y. Antiviral activity of resveratrol against human and animal viruses. Advances in virology 2015; 2015
[http://dx.doi.org/10.1155/2015/184241]
[101]
Chen X, Qiao H, Liu T, et al. Inhibition of herpes simplex virus infection by oligomeric stilbenoids through ROS generation. Antiviral Res 2012; 95(1): 30-6.
[http://dx.doi.org/10.1016/j.antiviral.2012.05.001] [PMID: 22584350]
[102]
Cao S, Realegeno S, Pant A, Satheshkumar PS, Yang Z. Suppression of poxvirus replication by resveratrol. Front Microbiol 2017; 8: 2196.
[http://dx.doi.org/10.3389/fmicb.2017.02196] [PMID: 29204136]
[103]
Espinoza JL, Takami A, Trung LQ, Kato S, Nakao S. Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV-immortalized human B cells. PLoS One 2012; 7(12): e51306.
[http://dx.doi.org/10.1371/journal.pone.0051306] [PMID: 23251493]
[104]
Kapadia GJ, Azuine MA, Tokuda H, et al. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the epstein-barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis. Pharmacol Res 2002; 45(6): 499-505.
[http://dx.doi.org/10.1006/phrs.2002.0992] [PMID: 12162952]
[105]
Liu T, Zang N, Zhou N, et al. Resveratrol inhibits the TRIF-dependent pathway by upregulating sterile alpha and armadillo motif protein, contributing to anti-inflammatory effects after respiratory syncytial virus infection. J Virol 2014; 88(8): 4229-36.
[http://dx.doi.org/10.1128/JVI.03637-13] [PMID: 24478430]
[106]
Docherty JJ, Sweet TJ, Bailey E, Faith SA, Booth T. Resveratrol inhibition of varicella-zoster virus replication in vitro. Antiviral Res 2006; 72(3): 171-7.
[http://dx.doi.org/10.1016/j.antiviral.2006.07.004] [PMID: 16899306]
[107]
Zhang L, Li Y, Gu Z, et al. Resveratrol inhibits enterovirus 71 replication and pro-inflammatory cytokine secretion in rhabdosarcoma cells through blocking IKKs/NF-κB signaling pathway. PLoS One 2015; 10(2): e0116879.
[http://dx.doi.org/10.1371/journal.pone.0116879] [PMID: 25692777]
[108]
Csiszar A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. FASEB J 2011; 25: 1093.13.
[http://dx.doi.org/10.1096/fasebj.25.1_supplement.1093.13]
[109]
Li H, Xia N, Hasselwander S, Daiber A. Resveratrol and vascular function. Int J Mol Sci 2019; 20(9): 2155.
[http://dx.doi.org/10.3390/ijms20092155] [PMID: 31052341]
[110]
Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 2002; 106(13): 1652-8.
[http://dx.doi.org/10.1161/01.CIR.0000029925.18593.5C] [PMID: 12270858]
[111]
Wallerath T, Poleo D, Li H. Förstermann U. Red wine increases the expression of human endothelial nitric oxide synthase. J Am Coll Cardiol 2003; 41(3): 471-8.
[http://dx.doi.org/10.1016/S0735-1097(02)02826-7] [PMID: 12575978]
[112]
Wallerath T, Li H, Gödtel-Ambrust U, Schwarz PM, Förstermann U. A blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide 2005; 12(2): 97-104.
[http://dx.doi.org/10.1016/j.niox.2004.12.004] [PMID: 15740983]
[113]
Jiang J, Gu X, Wang H, Ding S. Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF- β 1/SMAD2 signaling pathway. PeerJ 2021; 9: e11501.
[http://dx.doi.org/10.7717/peerj.11501] [PMID: 34123595]
[114]
Li H, Förstermann U. Prevention of atherosclerosis by interference with the vascular nitric oxide system. Curr Pharm Des 2009; 15(27): 3133-45.
[http://dx.doi.org/10.2174/138161209789058002] [PMID: 19754387]
[115]
Fu S, Lv R, Wang L, Hou H, Liu H, Shao S. Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway. Saudi J Biol Sci 2018; 25(2): 259-66.
[http://dx.doi.org/10.1016/j.sjbs.2016.10.019] [PMID: 29472775]
[116]
Xia N, Förstermann U, Li H. Resveratrol and endothelial nitric oxide. Molecules 2014; 19(10): 16102-21.
[http://dx.doi.org/10.3390/molecules191016102] [PMID: 25302702]
[117]
Zhang Q, Wang Z, Chen H, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 2008; 80(2): 191-9.
[http://dx.doi.org/10.1093/cvr/cvn224] [PMID: 18689793]
[118]
Sin TK, Yu AP, Yung BY, et al. Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol 2014; 592(12): 2535-48.
[http://dx.doi.org/10.1113/jphysiol.2014.271387] [PMID: 24639483]
[119]
Csiszar A, Labinskyy N, Pinto JT, et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 2009; 297(1): H13-20.
[http://dx.doi.org/10.1152/ajpheart.00368.2009] [PMID: 19429820]
[120]
Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 2005; 310(5746): 314-7.
[http://dx.doi.org/10.1126/science.1117728] [PMID: 16224023]
[121]
Duplain H, Burcelin R, Sartori C, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 2001; 104(3): 342-5.
[http://dx.doi.org/10.1161/01.CIR.104.3.342] [PMID: 11457755]
[122]
Sansbury BE, Cummins TD, Tang Y, et al. Overexpression of endothelial nitric oxide synthase prevents diet-induced obesity and regulates adipocyte phenotype. Circ Res 2012; 111(9): 1176-89.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266395] [PMID: 22896587]
[123]
Heiss E, Dirsch V. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 2014; 20(22): 3503-13.
[http://dx.doi.org/10.2174/13816128113196660745] [PMID: 24180389]
[124]
Klinge CM, Wickramasinghe NS, Ivanova MM, Dougherty SM. Resveratrol stimulates nitric oxide production by increasing estrogen receptor αa‐Src‐caveolin‐1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB J 2008; 22(7): 2185-97.
[http://dx.doi.org/10.1096/fj.07-103366] [PMID: 18296501]
[125]
Klinge CM, Blankenship KA, Risinger KE, et al. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem 2005; 280(9): 7460-8.
[http://dx.doi.org/10.1074/jbc.M411565200] [PMID: 15615701]
[126]
Arunachalam G, Yao H, Sundar IK, Caito S, Rahman I. SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem Biophys Res Commun 2010; 393(1): 66-72.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.080] [PMID: 20102704]
[127]
Frombaum M, Therond P, Djelidi R, Beaudeux JL, Bonnefont-Rousselot D, Borderie D. Piceatannol is more effective than resveratrol in restoring endothelial cell dimethylarginine dimethylaminohydrolase expression and activity after high-glucose oxidative stress. Free Radic Res 2011; 45(3): 293-302.
[http://dx.doi.org/10.3109/10715762.2010.527337] [PMID: 21235286]
[128]
Koltai K, Kesmarky G, Feher G, Tibold A, Toth K. Platelet aggregometry testing: Molecular mechanisms, techniques and clinical implications. Int J Mol Sci 2017; 18(8): 1803.
[http://dx.doi.org/10.3390/ijms18081803] [PMID: 28820484]
[129]
Michno A, Grużewska K, Ronowska A, Gul-Hinc S, Zyśk M, Jankowska-Kulawy A. Resveratrol inhibits metabolism and affects blood platelet function in type 2 diabetes. Nutrients 2022; 14(8): 1633.
[http://dx.doi.org/10.3390/nu14081633] [PMID: 35458194]
[130]
Marumo M, Ekawa K, Wakabayashi I. Resveratrol inhibits Ca2+ signals and aggregation of platelets. Environ Health Prev Med 2020; 25(1): 70.
[http://dx.doi.org/10.1186/s12199-020-00905-1] [PMID: 33160329]
[131]
Gresele P, Pignatelli P, Guglielmini G, et al. Resveratrol, at concentrations attainable with moderate wine consumption, stimulates human platelet nitric oxide production. J Nutr 2008; 138(9): 1602-8.
[http://dx.doi.org/10.1093/jn/138.9.1602] [PMID: 18716157]
[132]
Yang YM, Chen JZ, Wang XX, Wang SJ, Hu H, Wang HQ. Resveratrol attenuates thromboxane A2 receptor agonist-induced platelet activation by reducing phospholipase C activity. Eur J Pharmacol 2008; 583(1): 148-55.
[http://dx.doi.org/10.1016/j.ejphar.2008.01.009] [PMID: 18291361]
[133]
Kirk RI, Deitch JA, Wu JM, Lerea KM. Resveratrol decreases early signaling events in washed platelets but has little effect on platelet in whole blood. Blood Cells Mol Dis 2000; 26(2): 144-50.
[http://dx.doi.org/10.1006/bcmd.2000.0289] [PMID: 11001623]
[134]
Wang Z, Zou J, Huang Y, Cao K, Xu Y, Wu JM. Effect of resveratrol on platelet aggregation in vivo and in vitro. Chin Med J 2002; 115(3): 378-80.
[PMID: 11940369]
[135]
Darling AL, Shorter J. Combating deleterious phase transitions in neurodegenerative disease. Biochim Biophys Acta Mol Cell Res 2021; 1868(5): 118984.
[http://dx.doi.org/10.1016/j.bbamcr.2021.118984] [PMID: 33549703]
[136]
Jacobs M, Hart EP, Roos RAC. Driving with a neurodegenerative disorder: An overview of the current literature. J Neurol 2017; 264(8): 1678-96.
[http://dx.doi.org/10.1007/s00415-017-8489-9] [PMID: 28424901]
[137]
Lee KH, Cha M, Lee BH. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci 2020; 21(19): 7152.
[http://dx.doi.org/10.3390/ijms21197152] [PMID: 32998277]
[138]
Shen Y, Cao B, Snyder NR, Woeppel KM, Eles JR, Cui XT. ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood-brain barrier. J Nanobiotechnology 2018; 16(1): 13.
[http://dx.doi.org/10.1186/s12951-018-0340-7] [PMID: 29433522]
[139]
Andrade S, Ramalho MJ, Pereira MC, Loureiro JA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol 2018; 9: 1261.
[http://dx.doi.org/10.3389/fphar.2018.01261] [PMID: 30524273]
[140]
Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144: 104952.
[http://dx.doi.org/10.1016/j.neuint.2020.104952] [PMID: 33400964]
[141]
Rahman MH, Akter R, Bhattacharya T, et al. Resveratrol and neuroprotection: impact and its therapeutic potential in Alzheimer’s disease. Front Pharmacol 2020; 11: 619024.
[http://dx.doi.org/10.3389/fphar.2020.619024] [PMID: 33456444]
[142]
Kulkarni SS. Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1114-23.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.005]
[143]
Ibrahim AM, Chauhan L, Bhardwaj A, et al. Brain-derived neurotropic factor in neurodegenerative disorders. Biomedicines 2022; 10(5): 1143.
[http://dx.doi.org/10.3390/biomedicines10051143] [PMID: 35625880]
[144]
Serra MP, Boi M, Poddighe L, et al. Resveratrol regulates BDNF, trkB, PSA-NCAM, and Arc expression in the rat cerebral cortex after bilateral common carotid artery occlusion and reperfusion. Nutrients 2019; 11(5): 1000.
[http://dx.doi.org/10.3390/nu11051000] [PMID: 31052460]
[145]
Broderick TL, Rasool S, Li R, et al. Neuroprotective effects of chronic resveratrol treatment and exercise training in the 3xTg-AD mouse model of Alzheimer’s disease. Int J Mol Sci 2020; 21(19): 7337.
[http://dx.doi.org/10.3390/ijms21197337] [PMID: 33020412]
[146]
Shojaei S, Panjehshahin MR, Shafiee SM, et al. Differential effects of resveratrol on the expression of brain-derived neurotrophic factor transcripts and protein in the hippocampus of rat brain. Iran J Med Sci 2017; 42(1): 32-9.
[PMID: 28293048]
[147]
Zhao HF, Li N, Wang Q, Cheng XJ, Li XM, Liu TT. Resveratrol decreases the insoluble Aβ1-42 level in hippocampus and protects the integrity of the blood-brain barrier in AD rats. Neuroscience 2015; 310: 641-9.
[http://dx.doi.org/10.1016/j.neuroscience.2015.10.006] [PMID: 26454022]
[148]
Liu J, He J, Huang Y, Hu Z. Resveratrol has an overall neuroprotective role in ischemic stroke: A meta-analysis in rodents. Front Pharmacol 2021; 12: 795409.
[http://dx.doi.org/10.3389/fphar.2021.795409] [PMID: 34987407]
[149]
Chang HC, Tai YT, Cherng YG, et al. Resveratrol attenuates high-fat diet-induced disruption of the blood-brain barrier and protects brain neurons from apoptotic insults. J Agric Food Chem 2014; 62(15): 3466-75.
[http://dx.doi.org/10.1021/jf403286w] [PMID: 24694235]
[150]
Nath J. Resveratrol as a therapeutic choice for traumatic brain injury: An insight into its molecular mechanism of action. Brain Disorders 2022; 6(9): 100038.
[151]
Hu J, Han H, Cao P, et al. Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice. Am J Transl Res 2017; 9(10): 4607-16.
[PMID: 29118921]
[152]
Jeong SI, Shin JA, Cho S, et al. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice. Neurobiol Aging 2016; 44: 74-84.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.04.007] [PMID: 27318135]
[153]
Huang Y, Lu J, Zhan L, et al. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. J Biol Chem 2021; 297(2): 100929.
[http://dx.doi.org/10.1016/j.jbc.2021.100929] [PMID: 34216621]
[154]
Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-β toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280(48): 40364-74.
[http://dx.doi.org/10.1074/jbc.M509329200] [PMID: 16183991]
[155]
Wiciński M, Domanowska A, Wódkiewicz E, Malinowski B. Neuroprotective properties of resveratrol and its derivatives-influence on potential mechanisms leading to the development of alzheimer’s disease. Int J Mol Sci 2020; 21(8): 2749.
[http://dx.doi.org/10.3390/ijms21082749] [PMID: 32326620]
[156]
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of resveratrol and other polyphenols on sirt1: Relevance to brain function during aging. Curr Neuropharmacol 2018; 16(2): 126-36.
[PMID: 28676015]
[157]
Razick DI, Akhtar M, Wen J, et al. The role of sirtuin 1 (SIRT1) in neurodegeneration. Cureus 2023; 15(6): e40463.
[http://dx.doi.org/10.7759/cureus.40463] [PMID: 37456463]
[158]
Xu L, Botchway BOA, Zhang S, Zhou J, Liu X. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury. Front Neurosci 2018; 12: 690.
[http://dx.doi.org/10.3389/fnins.2018.00690] [PMID: 30337851]
[159]
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer’s molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139: 111634.
[http://dx.doi.org/10.1016/j.biopha.2021.111634] [PMID: 33965726]
[160]
Cantó C, Auwerx J. Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab 2009; 20(7): 325-31.
[http://dx.doi.org/10.1016/j.tem.2009.03.008] [PMID: 19713122]
[161]
Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation 2017; 14(1): 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[162]
Chen J, Bai Q, Zhao Z, Sui H, Xie X. Resveratrol improves delayed r-tPA treatment outcome by reducing MMPs. Acta Neurol Scand 2016; 134(1): 54-60.
[http://dx.doi.org/10.1111/ane.12511] [PMID: 26455907]
[163]
Kottaisamy CPD, Raj DS, Kumar V, Sankaran U. Experimental animal models for diabetes and its related complications-a review. Lab Anim Res 2021; 37(1): 23.
[http://dx.doi.org/10.1186/s42826-021-00101-4] [PMID: 34429169]
[164]
Szkudelski T, Szkudelska K. Resveratrol and diabetes: From animal to human studies. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1145-54.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013]
[165]
Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes 2015; 6(3): 456-80.
[http://dx.doi.org/10.4239/wjd.v6.i3.456] [PMID: 25897356]
[166]
Liu K, Zhou R, Wang B, Mi MT. Effect of resveratrol on glucose control and insulin sensitivity: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr 2014; 99(6): 1510-9.
[http://dx.doi.org/10.3945/ajcn.113.082024] [PMID: 24695890]
[167]
Casimir M, Chaffard G, Maechler P. Resveratrol long-term treatment differentiates INS-1E beta-cell towards improved glucose response and insulin secretion. Pflugers Arch 2019; 471(2): 337-45.
[http://dx.doi.org/10.1007/s00424-018-2215-z] [PMID: 30310992]
[168]
Chen WP, Chi TC, Chuang LM, Su MJ. Resveratrol enhances insulin secretion by blocking KATP and KV channels of beta cells. Eur J Pharmacol 2007; 568(1-3): 269-77.
[http://dx.doi.org/10.1016/j.ejphar.2007.04.062] [PMID: 17573071]
[169]
Higashida K, Kim SH, Jung SR, Asaka M, Holloszy JO, Han DH. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation. PLoS Biol 2013; 11(7): e1001603.
[http://dx.doi.org/10.1371/journal.pbio.1001603] [PMID: 23874150]
[170]
Khutami C, Sumiwi SA, Ikram NK, Muchtaridi M. The effects of antioxidants from natural products on obesity, dyslipidemia, diabetes and their molecular signaling mechanism. Int J Mol Sci 2022; 23(4): 2056.
[http://dx.doi.org/10.3390/ijms23042056] [PMID: 35216172]
[171]
Szkudelska K, Deniziak M, Sassek M, Szkudelski I, Noskowiak W, Szkudelski T. Resveratrol affects insulin signaling in type 2 diabetic Goto-Kakizaki rats. Int J Mol Sci 2021; 22(5): 2469.
[http://dx.doi.org/10.3390/ijms22052469] [PMID: 33671110]
[172]
Palsamy P, Subramanian S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β‐cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats. J Cell Physiol 2010; 224(2): 423-32.
[http://dx.doi.org/10.1002/jcp.22138] [PMID: 20333650]
[173]
Su M, Zhao W, Xu S, Weng J. Resveratrol in treating diabetes and its cardiovascular complications: A review of its mechanisms of action. Antioxidants 2022; 11(6): 1085.
[http://dx.doi.org/10.3390/antiox11061085] [PMID: 35739982]
[174]
Wong R, Howe P. Resveratrol counteracts insulin resistance-potential role of the circulation. Nutrients 2018; 10(9): 1160.
[http://dx.doi.org/10.3390/nu10091160] [PMID: 30149556]
[175]
Brasnyó P, Molnár GA, Mohás M, et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011; 106(3): 383-9.
[http://dx.doi.org/10.1017/S0007114511000316] [PMID: 21385509]
[176]
Timmers S, de Ligt M, Phielix E, et al. Resveratrol as add-on therapy in subjects with well-controlled type 2 diabetes: A randomized controlled trial. Diabetes Care 2016; 39(12): 2211-7.
[http://dx.doi.org/10.2337/dc16-0499] [PMID: 27852684]
[177]
Jeyaraman MM, Al-Yousif NSH, Singh Mann A, et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Libr 2020; 2020(1): CD011919.
[http://dx.doi.org/10.1002/14651858.CD011919.pub2] [PMID: 31978258]
[178]
Dludla PV, Silvestri S, Orlando P, et al. Exploring the comparative efficacy of metformin and resveratrol in the management of diabetes-associated complications: A systematic review of preclinical studies. Nutrients 2020; 12(3): 739.
[http://dx.doi.org/10.3390/nu12030739] [PMID: 32168855]
[179]
Rašković A, Ćućuz V, Torović L, et al. Resveratrol supplementation improves metabolic control in rats with induced hyperlipidemia and type 2 diabetes. Saudi Pharm J 2019; 27(7): 1036-43.
[http://dx.doi.org/10.1016/j.jsps.2019.08.006] [PMID: 31997911]
[180]
Milton-Laskibar I, Gómez-Zorita S, Aguirre L, Fernádez-Quintela A, Gonzáez M, Portillo M. Resveratrol-induced effects on body fat differ depending on feeding conditions. Molecules 2017; 22(12): 2091.
[http://dx.doi.org/10.3390/molecules22122091] [PMID: 29186045]
[181]
Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 activation by natural phytochemicals: An overview. Front Pharmacol 2020; 11: 1225.
[http://dx.doi.org/10.3389/fphar.2020.01225] [PMID: 32848804]
[182]
Yun JM, Chien A, Jialal I, Devaraj S. Resveratrol up-regulates SIRT1 and inhibits cellular oxidative stress in the diabetic milieu: Mechanistic insights. J Nutr Biochem 2012; 23(7): 699-705.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.012] [PMID: 21813271]
[183]
Pegah A, Abbasi-Oshaghi E, Khodadadi I, Mirzaei F, Tayebinia H. Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats. Metabolism Open 2021; 10: 100093.
[http://dx.doi.org/10.1016/j.metop.2021.100093] [PMID: 33997755]
[184]
Castaldo L, Narváez A, Izzo L, et al. Red wine consumption and cardiovascular health. Molecules 2019; 24(19): 3626.
[http://dx.doi.org/10.3390/molecules24193626] [PMID: 31597344]
[185]
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127: 110234.
[http://dx.doi.org/10.1016/j.biopha.2020.110234] [PMID: 32559855]
[186]
Ungvari Z, Bagi Z, Feher A, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 2010; 299(1): H18-24.
[http://dx.doi.org/10.1152/ajpheart.00260.2010] [PMID: 20418481]
[187]
Cheng CK, Luo JY, Lau CW, Chen ZY, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol 2020; 177(6): 1258-77.
[http://dx.doi.org/10.1111/bph.14801] [PMID: 31347157]
[188]
Breuss J, Atanasov A, Uhrin P. Resveratrol and its effects on the vascular system. Int J Mol Sci 2019; 20(7): 1523.
[http://dx.doi.org/10.3390/ijms20071523] [PMID: 30934670]
[189]
Rodríguez L, Trostchansky A, Vogel H, et al. A comprehensive literature review on cardioprotective effects of bioactive compounds present in fruits of Aristotelia chilensis stuntz (Maqui). Molecules 2022; 27(19): 6147.
[http://dx.doi.org/10.3390/molecules27196147] [PMID: 36234679]
[190]
Kim EN, Kim MY, Lim JH, et al. The protective effect of resveratrol on vascular aging by modulation of the renin–angiotensin system. Atherosclerosis 2018; 270: 123-31.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.043] [PMID: 29407880]
[191]
Delmas D. Resveratrol: natural properties against atherosclerosis, associated proinflammatory effects and aging. Mol Nutr Food Res 2005; 49: 377-95.
[http://dx.doi.org/10.1002/mnfr.200400098] [PMID: 15830334]
[192]
Gómez MMD. The effects of resveratrol on endothelial function of ageing arteries 2017.
[193]
Teissedre PL, Stockley C, Boban M, et al. The effects of wine consumption on cardiovascular disease and associated risk factors: A narrative review. OENO One 2018; 52(1): 67-79.
[http://dx.doi.org/10.20870/oeno-one.2018.52.1.2129]
[194]
Agarwal B, Campen MJ, Channell MM, et al. Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. Int J Cardiol 2013; 166(1): 246-8.
[http://dx.doi.org/10.1016/j.ijcard.2012.09.027] [PMID: 23098852]
[195]
Domazetovic V, Bonanomi AG, Stio M, Vincenzini MT, Iantomasi T. Resveratrol decreases TNFα-induced ICAM-1 expression and release by Sirt-1-independent mechanism in intestinal myofibroblasts. Exp Cell Res 2019; 382(2): 111479.
[http://dx.doi.org/10.1016/j.yexcr.2019.06.024] [PMID: 31233740]
[196]
Bo S, Ciccone G, Castiglione A, et al. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr Med Chem 2013; 20(10): 1323-31.
[http://dx.doi.org/10.2174/0929867311320100009] [PMID: 23298135]
[197]
Zhou DD, Luo M, Huang SY, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/9932218] [PMID: 34336123]
[198]
Dolinsky VW, Dyck JRB. Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812(11): 1477-89.
[http://dx.doi.org/10.1016/j.bbadis.2011.06.010] [PMID: 21749920]
[199]
Pallauf K, Rimbach G, Rupp PM, Chin D, Wolf IM. Resveratrol and lifespan in model organisms. Curr Med Chem 2016; 23(41): 4639-80.
[http://dx.doi.org/10.2174/0929867323666161024151233] [PMID: 27781945]
[200]
Rascón B, Hubbard BP, Sinclair DA, Amdam GV. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging 2012; 4(7): 499-508.
[http://dx.doi.org/10.18632/aging.100474] [PMID: 22868943]
[201]
Rose S. What is Resveratrol, and is it Good for Longevity? 2022.
[202]
Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: From chemistry to the clinic. Clin Epigenetics 2016; 8(1): 61.
[http://dx.doi.org/10.1186/s13148-016-0224-3] [PMID: 27226812]
[203]
Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 2009; 380(3): 644-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.01.163] [PMID: 19285015]
[204]
Das DK, Mukherjee S, Ray D. Erratum to: Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev 2011; 16(4): 425-35.
[http://dx.doi.org/10.1007/s10741-011-9234-6] [PMID: 21400036]
[205]
Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 2014; 35(3): 146-54.
[http://dx.doi.org/10.1016/j.tips.2013.12.004] [PMID: 24439680]
[206]
Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 2015; 146-148: 28-41.
[http://dx.doi.org/10.1016/j.mad.2015.03.008] [PMID: 25824609]
[207]
Wang C, Wheeler CT, Alberico T, et al. The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. Age 2013; 35(1): 69-81.
[http://dx.doi.org/10.1007/s11357-011-9332-3] [PMID: 22083438]
[208]
Bhullar KS, Hubbard BP. Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852(6): 1209-18.
[http://dx.doi.org/10.1016/j.bbadis.2015.01.012]
[209]
Moraes DS, Moreira DC, Andrade JMO, Santos SHS. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep 2020; 9: 46-51.
[http://dx.doi.org/10.1016/j.ibror.2020.06.004] [PMID: 33336103]
[210]
Santos J. Dietary restriction and nutrient balance in aging. Oxid Med Cell Longev 2016; 2016.
[http://dx.doi.org/10.1155/2016/4010357]
[211]
Pyo IS, Yun S, Yoon YE, Choi JW, Lee SJ. Mechanisms of aging and the preventive effects of resveratrol on age-related diseases. Molecules 2020; 25(20): 4649.
[http://dx.doi.org/10.3390/molecules25204649] [PMID: 33053864]
[212]
Moura C, Lollo P, Morato P, Amaya-Farfan J. Dietary nutrients and bioactive substances modulate heat shock protein (HSP) expression: A review. Nutrients 2018; 10(6): 683.
[http://dx.doi.org/10.3390/nu10060683] [PMID: 29843396]
[213]
Longo VD, Anderson RM. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 2022; 185(9): 1455-70.
[http://dx.doi.org/10.1016/j.cell.2022.04.002] [PMID: 35487190]
[214]
Gerszon J, Rodacka A. Puchała M. Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Medical Journal of Cell Biology 2014; 4(2): 97-117.
[215]
Ren Z, He H, Zuo Z, Xu Z, Wei Z, Deng J. The role of different SIRT1-mediated signaling pathways in toxic injury. Cell Mol Biol Lett 2019; 24(1): 36.
[http://dx.doi.org/10.1186/s11658-019-0158-9] [PMID: 31164908]
[216]
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017; 18(4): 447-76.
[http://dx.doi.org/10.1007/s10522-017-9685-9] [PMID: 28258519]
[217]
Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis 2020; 11(4): 927-45.
[http://dx.doi.org/10.14336/AD.2019.0820] [PMID: 32765955]
[218]
Aggarwal S, Banerjee SK, Talukdar NC, Yadav AK. Post-translational modification crosstalk and hotspots in sirtuin interactors implicated in cardiovascular diseases. Front Genet 2020; 11: 356.
[http://dx.doi.org/10.3389/fgene.2020.00356] [PMID: 32425973]
[219]
Elibol B, Kilic U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions. Front Endocrinol 2018; 9: 614.
[http://dx.doi.org/10.3389/fendo.2018.00614] [PMID: 30374331]
[220]
Fang C, Xu H, Yuan L, et al. Natural compounds for SIRT1-mediated oxidative stress and neuroinflammation in stroke: A potential therapeutic target in the future. Oxid Med Cell Longev 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/1949718] [PMID: 36105479]
[221]
Gomes BAQ, Silva JPB, Romeiro CFR, et al. Neuroprotective mechanisms of resveratrol in alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev 2018; 2018: 1-15.
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[222]
Ma X, Sun Z, Han X, et al. Neuroprotective effect of resveratrol via activation of sirt1 signaling in a rat model of combined diabetes and alzheimer’s disease. Front Neurosci 2020; 13: 1400.
[http://dx.doi.org/10.3389/fnins.2019.01400] [PMID: 32038127]
[223]
Cicero AFG, Ruscica M, Banach M. Resveratrol and cognitive decline: A clinician perspective. Arch Med Sci 2019; 15(4): 936-43.
[http://dx.doi.org/10.5114/aoms.2019.85463] [PMID: 31360188]
[224]
Porquet D, Griñán-Ferré C, Ferrer I, et al. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 2014; 42(4): 1209-20.
[http://dx.doi.org/10.3233/JAD-140444] [PMID: 25024312]
[225]
Rege S, Geetha T, Broderick T, Babu J. Resveratrol protects β amyloid-induced oxidative damage and memory associated proteins in H19-7 hippocampal neuronal cells. Curr Alzheimer Res 2015; 12(2): 147-56.
[http://dx.doi.org/10.2174/1567205012666150204130009] [PMID: 25654502]
[226]
Toth P, Tarantini S, Tucsek Z, et al. Resveratrol treatment rescues neurovascular coupling in aged mice: Role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. Am J Physiol Heart Circ Physiol 2014; 306(3): H299-308.
[http://dx.doi.org/10.1152/ajpheart.00744.2013] [PMID: 24322615]
[227]
Zarzuelo MJ, López-Sepúlveda R, Sánchez M, et al. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: Implications for vascular aging. Biochem Pharmacol 2013; 85(9): 1288-96.
[http://dx.doi.org/10.1016/j.bcp.2013.02.015] [PMID: 23422569]
[228]
Fan D, Liu C, Zhang Z, et al. Progress in the preclinical and clinical study of resveratrol for vascular metabolic disease. Molecules 2022; 27(21): 7524.
[http://dx.doi.org/10.3390/molecules27217524] [PMID: 36364370]
[229]
Stanzione R, Forte M, Cotugno M, et al. Uncoupling protein 2 as a pathogenic determinant and therapeutic target in cardiovascular and metabolic diseases. Curr Neuropharmacol 2022; 20(4): 662-74.
[http://dx.doi.org/10.2174/1570159X19666210421094204] [PMID: 33882809]
[230]
Zou P, Liu X, Li G, Wang Y. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1. Mol Med Rep 2018; 17(2): 3212-7.
[PMID: 29257276]
[231]
Le K, Chibaatar Daliv E, Wu S, et al. SIRT1-regulated HMGB1 release is partially involved in TLR4 signal transduction: A possible anti-neuroinflammatory mechanism of resveratrol in neonatal hypoxic-ischemic brain injury. Int Immunopharmacol 2019; 75: 105779.
[http://dx.doi.org/10.1016/j.intimp.2019.105779] [PMID: 31362164]
[232]
Surya K, Manickam N, Jayachandran KS, Kandasamy M, Anusuyadevi M. Resveratrol mediated regulation of hippocampal neuroregenerative plasticity via sirt1 pathway in synergy with wnt signaling: neurotherapeutic implications to mitigate memory loss in alzheimer’s disease. J Alzheimers Dis 2023; 94(s1): S125-40.
[http://dx.doi.org/10.3233/JAD-220559] [PMID: 36463442]
[233]
Price NL, Gomes AP, Ling AJY, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 2012; 15(5): 675-90.
[http://dx.doi.org/10.1016/j.cmet.2012.04.003] [PMID: 22560220]
[234]
Chang C, Zhao Y, Song G, She K. Resveratrol protects hippocampal neurons against cerebral ischemia-reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats. J Neuroimmunol 2018; 315: 9-14.
[http://dx.doi.org/10.1016/j.jneuroim.2017.11.015] [PMID: 29306408]
[235]
Fang Y, Wang X, Yang D, et al. Relieving cellular energy stress in aging, neurodegenerative, and metabolic diseases, SIRT1 as a therapeutic and promising node. Front Aging Neurosci 2021; 13: 738686.
[http://dx.doi.org/10.3389/fnagi.2021.738686] [PMID: 34616289]
[236]
Zhang T, Chi Y, Ren Y, Du C, Shi Y, Li Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via sir2-related enzymes, sirtuins1 (sirt1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) Axis. Med Sci Monit 2019; 25: 1220-31.
[http://dx.doi.org/10.12659/MSM.911714] [PMID: 30765684]
[237]
Lu C, Zhao H, Liu Y, et al. Novel role of the SIRT1 in endocrine and metabolic diseases. Int J Biol Sci 2023; 19(2): 484-501.
[http://dx.doi.org/10.7150/ijbs.78654] [PMID: 36632457]
[238]
Liu Z, Wu X, Lv J, Sun H, Zhou F. Resveratrol induces p53 in colorectal cancer through SET7/9. Oncol Lett 2019; 17(4): 3783-9.
[http://dx.doi.org/10.3892/ol.2019.10034] [PMID: 30881498]
[239]
Merlin J. Role of dietary antioxidants in p53-mediated cancer chemoprevention and tumor suppression. Oxid Med Cell Longev 2021; 2021.
[http://dx.doi.org/10.1155/2021/9924328]
[240]
da Costa D, Fialho E, Silva J. Cancer chemoprevention by resveratrol: The p53 tumor suppressor protein as a promising molecular target. Molecules 2017; 22(6): 1014.
[http://dx.doi.org/10.3390/molecules22061014] [PMID: 28629161]
[241]
Clément MV, Hirpara JL, Chawdhury SH, Pervaiz S. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 1998; 92(3): 996-1002.
[http://dx.doi.org/10.1182/blood.V92.3.996] [PMID: 9680369]
[242]
Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives. Cancer Lett 2008; 269(2): 243-61.
[http://dx.doi.org/10.1016/j.canlet.2008.03.057] [PMID: 18550275]
[243]
Varoni EM, Lo Faro AF, Sharifi-Rad J, Iriti M. Anticancer molecular mechanisms of resveratrol. Front Nutr 2016; 3: 8.
[http://dx.doi.org/10.3389/fnut.2016.00008] [PMID: 27148534]
[244]
Guthrie AR, Chow HHS, Martinez JA. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol Res Perspect 2017; 5(1): e00294.
[http://dx.doi.org/10.1002/prp2.294] [PMID: 28596842]
[245]
Detampel P, Beck M, Krähenbühl S, Huwyler J. Drug interaction potential of resveratrol. Drug Metab Rev 2012; 44(3): 253-65.
[http://dx.doi.org/10.3109/03602532.2012.700715] [PMID: 22788578]
[246]
Neves AR, Lucio M, Lima JL, Reis S. Resveratrol in medicinal chemistry: A critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Curr Med Chem 2012; 19(11): 1663-81.
[http://dx.doi.org/10.2174/092986712799945085] [PMID: 22257059]
[247]
Shaito A, Posadino AM, Younes N, et al. Potential adverse effects of resveratrol: A literature review. Int J Mol Sci 2020; 21(6): 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[248]
National Toxicology Program. Toxicity studies of trans-resveratrol administered by gavage for two weeks or three months to F344/NTac rats, Wistar Han (Crl: WI (Han)) rats, and B6C3F1/N mice. Toxicity Report Series 2021; (102):
[249]
Jawad RA, Sahib HB. Estimation the safety of parenteral resveratrol in mice. Iraqi J Pharm Sci 2022; 31(1): 167-75.
[250]
Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci 2011; 1215(1): 161-9.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05853.x] [PMID: 21261655]
[251]
Paller CJ, Rudek MA, Zhou XC, et al. A phase I study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: Safety, tolerability, and dose determination. Prostate 2015; 75(14): 1518-25.
[http://dx.doi.org/10.1002/pros.23024] [PMID: 26012728]
[252]
Patel KR, Brown VA, Jones DJL, et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 2010; 70(19): 7392-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[253]
Zhu W, Qin W, Zhang K, et al. Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer 2012; 64(3): 393-400.
[http://dx.doi.org/10.1080/01635581.2012.654926] [PMID: 22332908]
[254]
Magyar K, Halmosi R, Palfi A, et al. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 2012; 50(3): 179-87.
[http://dx.doi.org/10.3233/CH-2011-1424] [PMID: 22240353]
[255]
Hoseini A, Namazi G, Farrokhian A, et al. The effects of resveratrol on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Food Funct 2019; 10(9): 6042-51.
[http://dx.doi.org/10.1039/C9FO01075K] [PMID: 31486447]
[256]
Biesinger S, Michaels HA, Quadros AS, et al. A combination of isolated phytochemicals and botanical extracts lowers diastolic blood pressure in a randomized controlled trial of hypertensive subjects. Eur J Clin Nutr 2016; 70(1): 10-6.
[http://dx.doi.org/10.1038/ejcn.2015.88] [PMID: 26059745]
[257]
Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res 2012; 32(7): 537-41.
[http://dx.doi.org/10.1016/j.nutres.2012.06.003] [PMID: 22901562]
[258]
Crandall JP, Oram V, Trandafirescu G, et al. Pilot study of resveratrol in older adults with impaired glucose tolerance. J Gerontol A Biol Sci Med Sci 2012; 67(12): 1307-12.
[http://dx.doi.org/10.1093/gerona/glr235] [PMID: 22219517]
[259]
Chen S, Zhao X, Ran L, et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig Liver Dis 2015; 47(3): 226-32.
[http://dx.doi.org/10.1016/j.dld.2014.11.015] [PMID: 25577300]
[260]
Yoshino J, Conte C, Fontana L, et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab 2012; 16(5): 658-64.
[http://dx.doi.org/10.1016/j.cmet.2012.09.015] [PMID: 23102619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy