Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Synthesis and Applications of Phenylquinoline-4-carboxylic Acid Derivatives: A Comprehensive Review

Author(s): Sunam Saha, Devender Pathak and Kamal Shah*

Volume 28, Issue 1, 2024

Published on: 04 January, 2024

Page: [9 - 20] Pages: 12

DOI: 10.2174/0113852728279082231226061243

Price: $65

Abstract

Phenylquinoline-4-carboxylic acid derivatives have garnered significant attention in recent years due to their diverse pharmacological and industrial applications. This comprehensive review summarizes the latest advancements in the synthesis and diverse range of applications of phenylquinoline-4-carboxylic acid derivatives. This review provides a brief overview of the significance of phenylquinoline-4-carboxylic acid derivatives in medicinal chemistry. It also explores the structural diversity achievable through modifications at various positions of the phenylquinoline-4-carboxylic acid scaffold. The pharmacological applications of phenylquinoline-4-carboxylic acid derivatives, such as anticancer, antimicrobial, anti-inflammatory, and antiviral activities, are highlighted, underscoring their potential as promising drug candidates. This comprehensive review provides a thorough overview of the recent advances in the synthesis and applications of phenylquinoline-4-carboxylic acid derivatives. The integration of synthetic methodologies, structural modifications and diverse applications makes this review a valuable resource for researchers, scientists and professionals working in the fields of medicinal chemistry.

Graphical Abstract

[1]
Hui, Q.; Zhang, L.; Feng, J.; Zhang, L. Discovery of 2-phenylquinoline-4-carboxylic acid derivatives as novel histone deacetylase inhibitors. Front. Chem., 2022, 10, 937225.
[http://dx.doi.org/10.3389/fchem.2022.937225] [PMID: 35910736]
[2]
Makukhin, N.; Ciulli, A. Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Med. Chem., 2021, 12(1), 8-23.
[http://dx.doi.org/10.1039/D0MD00272K] [PMID: 34041480]
[3]
Zayed, J.M.; Nouvel, N.; Rauwald, U.; Scherman, O.A. Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water. Chem. Soc. Rev., 2010, 39(8), 2806-2816.
[http://dx.doi.org/10.1039/b922348g] [PMID: 20589265]
[4]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[5]
Carmona, M.; Zamarro, M.T.; Blázquez, B.; Durante-Rodríguez, G.; Juárez, J.F.; Valderrama, J.A.; Barragán, M.J.L.; García, J.L.; Díaz, E. Anaerobic catabolism of aromatic compounds: A genetic and genomic view. Microbiol. Mol. Biol. Rev., 2009, 73(1), 71-133.
[http://dx.doi.org/10.1128/MMBR.00021-08] [PMID: 19258534]
[6]
Roy, N.; Das, R.; Paira, R.; Paira, P. Different routes for the construction of biologically active diversely functionalized bicyclo[3.3.1]nonanes: An exploration of new perspectives for anticancer chemotherapeutics. RSC Advances, 2023, 13(32), 22389-22480.
[http://dx.doi.org/10.1039/D3RA02003G] [PMID: 37501776]
[7]
Wilson, E.O.; Peter, F.M. Challenges to biological diversity in urban areas., 1988. Available from: https://www.ncbi.nlm.nih.gov/books/NBK219328/ (Accessed Aug 04 2023).
[8]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 2017, 4(3), 58.
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[9]
Bhat, A.; Ray, B.; Mahalakshmi, A.M.; Tuladhar, S.; Nandakumar, D.N.; Srinivasan, M.; Essa, M.M.; Chidambaram, S.B.; Guillemin, G.J.; Sakharkar, M.K. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol. Res., 2020, 160, 105078.
[http://dx.doi.org/10.1016/j.phrs.2020.105078] [PMID: 32673703]
[10]
Mager, D.E. Quantitative structure–pharmacokinetic/pharmacodynamic relationships. Adv. Drug Deliv. Rev., 2006, 58(12-13), 1326-1356.
[http://dx.doi.org/10.1016/j.addr.2006.08.002] [PMID: 17092600]
[11]
Nagano, T. Development of fluorescent probes for bioimaging applications. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(8), 837-847.
[http://dx.doi.org/10.2183/pjab.86.837] [PMID: 20948177]
[12]
Hickey, S.M.; Ung, B.; Bader, C.; Brooks, R.; Lazniewska, J.; Johnson, I.R.D.; Sorvina, A.; Logan, J.; Martini, C.; Moore, C.R.; Karageorgos, L.; Sweetman, M.J.; Brooks, D.A. Fluorescence microscopy-an outline of hardware, biological handling, and fluorophore considerations. Cells, 2021, 11(1), 35.
[http://dx.doi.org/10.3390/cells11010035] [PMID: 35011596]
[13]
Katti, P.; Love-Rutledge, S.; Murray, S.A.; Hinton, A., Jr Editorial: The role of mitochondrial endoplasmic reticulum contact sites in human health and disease. Front. Mol. Biosci., 2023, 10, 1223354.
[http://dx.doi.org/10.3389/fmolb.2023.1223354] [PMID: 37287753]
[14]
Zhang, Y.Q.; Paszkiewicz, M.; Du, P.; Zhang, L.; Lin, T.; Chen, Z.; Klyatskaya, S.; Ruben, M.; Seitsonen, A.P.; Barth, J.V.; Klappenberger, F. Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nat. Chem., 2018, 10(3), 296-304.
[http://dx.doi.org/10.1038/nchem.2924] [PMID: 29461526]
[15]
Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules, 2020, 25(3), 505.
[http://dx.doi.org/10.3390/molecules25030505] [PMID: 31991635]
[16]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – A review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[17]
Fenton, O.S.; Olafson, K.N.; Pillai, P.S.; Mitchell, M.J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater., 2018, 30(29), 1705328.
[http://dx.doi.org/10.1002/adma.201705328] [PMID: 29736981]
[18]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[19]
Francis, J.; Abraham, S. Clinical pharmacists: Bridging the gap between patients and physicians. Saudi Pharm. J., 2014, 22(6), 600-602.
[http://dx.doi.org/10.1016/j.jsps.2014.02.011] [PMID: 25561874]
[20]
Faruk Khan, M.O.; Deimling, M.J.; Philip, A. Medicinal chemistry and the pharmacy curriculum. Am. J. Pharm. Educ., 2011, 75(8), 161.
[http://dx.doi.org/10.5688/ajpe758161] [PMID: 22102751]
[21]
Wang, X.; Xie, X.; Cai, Y.; Yang, X.; Li, J.; Li, Y.; Chen, W.; He, M. Design, synthesis and antibacterial evaluation of some new 2-phenyl-quinoline-4-carboxylic acid derivatives. Molecules, 2016, 21(3), 340.
[http://dx.doi.org/10.3390/molecules21030340] [PMID: 26978336]
[22]
Jensen, G.; Morrill, C.; Huang, Y. 3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharm. Sin. B, 2018, 8(5), 756-766.
[http://dx.doi.org/10.1016/j.apsb.2018.03.006] [PMID: 30258764]
[23]
Yu, L.; Chen, X.; Liu, D.; Hu, L.; Yu, Y.; Huang, H.; Tan, Z.; Gui, Q. Direct synthesis of primary anilines via nickel‐mediated C(sp2)‐H aminations. Adv. Synth. Catal., 2018, 360(7), 1346-1351.
[http://dx.doi.org/10.1002/adsc.201701371]
[24]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[25]
Yu, L.; Yang, C.; Yu, Y.; Liu, D.; Hu, L.; Xiao, Y.; Song, Z.N.; Tan, Z. Ammonia as ultimate amino source in synthesis of primary amines via nickel-promoted C–H bond amination. Org. Lett., 2019, 21(14), 5634-5638.
[http://dx.doi.org/10.1021/acs.orglett.9b01968] [PMID: 31251641]
[26]
Yu, L.; Chen, X.; Song, Z.N.; Liu, D.; Hu, L.; Yu, Y.; Tan, Z.; Gui, Q. Selective synthesis of aryl nitriles and 3-imino-1-oxoisoindolines via nickel-promoted C(sp2)–H Cyanations. Org. Lett., 2018, 20(11), 3206-3210.
[http://dx.doi.org/10.1021/acs.orglett.8b01056] [PMID: 29787284]
[27]
Corio, A.; Gravier-Pelletier, C.; Busca, P. Regioselective functionalization of quinolines through C-H activation: A comprehensive review. Molecules, 2021, 26(18), 5467.
[http://dx.doi.org/10.3390/molecules26185467] [PMID: 34576936]
[28]
Yu, L.; Huang, H.; Chen, X.; Hu, L.; Yu, Y.; Tan, Z. Efficient syntheses of 3-hydroxyimino-1-isoindolinones and 3-methylene-1-isoindolinones via Cu-promoted C–H activation–nitroalkylation–intramolecular cyclization tandem processes. Chem. Commun., 2017, 53(33), 4597-4600.
[http://dx.doi.org/10.1039/C7CC01097D] [PMID: 28394390]
[29]
Nainwal, L.M.; Tasneem, S.; Akhtar, W.; Verma, G.; Khan, M.F.; Parvez, S.; Shaquiquzzaman, M.; Akhter, M.; Alam, M.M. Green recipes to quinoline: A review. Eur. J. Med. Chem., 2019, 164, 121-170.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.026] [PMID: 30594028]
[30]
Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; Ibrahim, T.S.; Panda, S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem., 2022, 119, 105557.
[http://dx.doi.org/10.1016/j.bioorg.2021.105557] [PMID: 34952242]
[31]
Amer, A.M.; El-Eraky, W.I.; Mahgoub, S. Synthesis, characterization and antimicrobial activity of some novel quinoline derivatives bearing pyrazole and pyridine moieties. Egypt. J. Chem., 2018, 1-8.
[http://dx.doi.org/10.21608/ejchem.2018.3941.1345]
[32]
Ramprasad, J.; Kumar Sthalam, V.; Linga Murthy Thampunuri, R.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29(20), 126671.
[http://dx.doi.org/10.1016/j.bmcl.2019.126671] [PMID: 31526604]
[33]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/1324096]
[34]
Li, X.Y.; Liu, Y.; Chen, X-L.; Lu, X-Y.; Liang, X-X.; Zhu, S-S.; Wei, C-W.; Qu, L-B.; Yu, B. 6π-Electrocyclization in water: Microwave-assisted synthesis of polyheterocyclic-fused quinoline-2-thiones. Green Chem., 2020, 22(14), 4445-4449.
[http://dx.doi.org/10.1039/C9GC04445K]
[35]
Ajani, O.O.; Iyaye, K.T.; Audu, O.Y.; Olorunshola, S.J.; Kuye, A.O.; Olanrewaju, I.O. Microwave assisted synthesis and antimicrobial potential of quinoline‐based 4‐hydrazide‐hydrazone derivatives. J. Heterocycl. Chem., 2018, 55(1), 302-312.
[http://dx.doi.org/10.1002/jhet.3050]
[36]
Diaconu, D.; Amăriucăi-Mantu, D.; Mangalagiu, V.; Antoci, V.; Zbancioc, G.; Mangalagiu, I.I. Ultrasound assisted synthesis of hybrid quinoline-imidazole derivatives: A green synthetic approach. RSC Advances, 2021, 11(60), 38297-38301.
[http://dx.doi.org/10.1039/D1RA07484A] [PMID: 35498117]
[37]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[38]
Angajala, G.; Aruna, V.; Subashini, R. An efficient nano-copper catalyzed base-free Knoevenagel condensation: A facile synthesis, molecular modelling simulations, SAR and hypoglycemic studies of new quinoline tethered acridine analogues as PPARγ agonists. J. Mol. Struct., 2020, 1220, 128601.
[http://dx.doi.org/10.1016/j.molstruc.2020.128601]
[39]
T G, S.; Subramanian, S.; Eswaran, S. Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids. Heterocycl. Commun., 2020, 26(1), 137-147.
[http://dx.doi.org/10.1515/hc-2020-0109]
[40]
Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ., 1999, 6(2), 99-104.
[http://dx.doi.org/10.1038/sj.cdd.4400476] [PMID: 10200555]
[41]
Abdelbaset, M.S.; Abdel-Aziz, M.; Abuo-Rahma, G.E.D.A.; Abdelrahman, M.H.; Ramadan, M.; Youssif, B.G.M. Novel quinoline derivatives carrying nitrones/oximes nitric oxide donors: Design, synthesis, antiproliferative and caspase-3 activation activities. Arch. Pharm., 2018, 352(1), 1800270.
[http://dx.doi.org/10.1002/ardp.201800270] [PMID: 30500087]
[42]
Li, S.; Hu, L.; Li, J.; Zhu, J.; Zeng, F.; Huang, Q.; Qiu, L.; Du, R.; Cao, R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 162, 666-678.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.048] [PMID: 30496987]
[43]
Muálem de Moraes Alves, M.; Arcanjo, D.D.R.; Carvalho, R.C.V.; Amorim, L.V.; Santos, I.L.; Santos, R.R.L.; Figueiredo, K.A.; Figueiredo, J.F.S.; Sobrinho-Júnior, E.P.C.; Cruz, L.P.L.; Sousa, V.C.; Dos Santos, L.P.; Gonçalves, J.C.R.; Carneiro, S.M.P. Methods of macrophages activation and their modulation for the prospection of new antileishmania drugs: A review. Biosci. J., 2021, 37, e37077-e37077.
[http://dx.doi.org/10.14393/BJ-v37n0a2021-53770]
[44]
Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; de Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; Rodrigues, T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem., 2020, 28(11), 115511.
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[45]
Taha, M.; Sultan, S.; Imran, S.; Rahim, F.; Zaman, K.; Wadood, A.; Ur Rehman, A.; Uddin, N.; Mohammed Khan, K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem., 2019, 27(18), 4081-4088.
[http://dx.doi.org/10.1016/j.bmc.2019.07.035] [PMID: 31378594]
[46]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[47]
Douadi, K.; Chafaa, S.; Douadi, T.; Al-Noaimi, M.; Kaabi, I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA/BSA binding. J. Mol. Struct., 2020, 1217, 128305.
[http://dx.doi.org/10.1016/j.molstruc.2020.128305]
[48]
Van de Walle, T.; Boone, M.; Van Puyvelde, J.; Combrinck, J.; Smith, P.J.; Chibale, K.; Mangelinckx, S.; D’hooghe, M. Synthesis and biological evaluation of novel quinoline-piperidine scaffolds as antiplasmodium agents. Eur. J. Med. Chem., 2020, 198, 112330.
[http://dx.doi.org/10.1016/j.ejmech.2020.112330] [PMID: 32408064]
[49]
Johnson, J.D.; Dennull, R.A.; Gerena, L.; Lopez-Sanchez, M.; Roncal, N.E.; Waters, N.C. Assessment and continued validation of the malaria SYBR green I-based fluorescence assay for use in malaria drug screening. Antimicrob. Agents Chemother., 2007, 51(6), 1926-1933.
[http://dx.doi.org/10.1128/AAC.01607-06] [PMID: 17371812]
[50]
Roy, D.; Anas, M.; Manhas, A.; Saha, S.; Kumar, N.; Panda, G. Synthesis, biological evaluation, structure − activity relationship studies of quinoline-imidazole derivatives as potent antimalarial agents. Bioorg. Chem., 2022, 121, 105671.
[http://dx.doi.org/10.1016/j.bioorg.2022.105671] [PMID: 35168120]
[51]
Khan, I.; Rehman, W.; Rahim, F.; Hussain, R.; Khan, S.; Fazil, S.; Rasheed, L.; Taha, M.; Shah, S.A.A.; Abdellattif, M.H.; Farghaly, T.A. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking study of new benzotriazole-based bis-schiff base derivatives. Pharmaceuticals, 2022, 16(1), 17.
[http://dx.doi.org/10.3390/ph16010017] [PMID: 36678514]
[52]
Moghadam Farid, S.; Noori, M.; Nazari Montazer, M.; Khalili Ghomi, M.; Mollazadeh, M.; Dastyafteh, N.; Irajie, C.; Zomorodian, K.; Mirfazli, S.S.; Mojtabavi, S.; Faramarzi, M.A.; Larijani, B.; Iraji, A.; Mahdavi, M. Synthesis and structure–activity relationship studies of benzimidazole-thioquinoline derivatives as α-glucosidase inhibitors. Sci. Rep., 2023, 13(1), 4392.
[http://dx.doi.org/10.1038/s41598-023-31080-2] [PMID: 36928433]
[53]
Almandil, N.B.; Taha, M.; Rahim, F.; Wadood, A.; Imran, S.; Alqahtani, M.A.; Bamarouf, Y.A.; Ibrahim, M.; Mosaddik, A.; Gollapalli, M. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg. Chem., 2019, 85, 109-116.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.025] [PMID: 30605884]
[54]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[55]
El-Gamal, K.M.; El-Morsy, A.M.; Saad, A.M.; Eissa, I.H.; Alswah, M. Synthesis, docking, QSAR, ADMET and antimicrobial evaluation of new quinoline-3-carbonitrile derivatives as potential DNA-gyrase inhibitors. J. Mol. Struct., 2018, 1166, 15-33.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.010]
[56]
Khan, S.A.; Asiri, A.M.; Basisi, H.M.; Asad, M.; Zayed, M.E.M.; Sharma, K.; Wani, M.Y. Synthesis and evaluation of Quinoline-3-carbonitrile derivatives as potential antibacterial agents. Bioorg. Chem., 2019, 88, 102968.
[http://dx.doi.org/10.1016/j.bioorg.2019.102968] [PMID: 31075745]
[57]
Rani, A.; Sharma, A.; Legac, J.; Rosenthal, P.J.; Singh, P.; Kumar, V. A trio of quinoline-isoniazid-phthalimide with promising antiplasmodial potential: Synthesis, in-vitro evaluation and heme-polymerization inhibition studies. Bioorg. Med. Chem., 2021, 39, 116159.
[http://dx.doi.org/10.1016/j.bmc.2021.116159] [PMID: 33895706]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy