Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In-silico Binding, Stability, Pharmacokinetics, and Toxicity Studies on Natural (-)-ambrox Metabolites as Binding Ligands to Luminal B and Triple-negative/basal-like Proteins for Breast Cancer Therapy

Author(s): Abdullah Haikal*, Neelaveni Thangavel, Mohammed Albratty, Asim Najmi, Hassan Ahmed Al Hazmi, Durgaramani Sivadasan, Gulrana Khuwaja and Israa M. Shamkh*

Volume 21, Issue 9, 2024

Published on: 04 January, 2024

Page: [1569 - 1581] Pages: 13

DOI: 10.2174/0115701808253017231016041343

Price: $65

Abstract

Background: Breast cancer is the most prevalent malignant tumour in women of all races and is the second largest cause of cancer-related death in the majority of races. Based on the pattern of gene expression, five intrinsic or molecular classifications for breast tumours are frequently used. Our research, which is presently being utilized to treat breast cancer and has the potential to significantly change the course of the illness, is focused on two of them: luminal B breast cancer and triplenegative/ basal-like breast cancer.

Methods: Screening a database containing millions of drug molecules or phytochemicals has become rapid and simple due to computer-aided drug design (CADD) techniques. In the current work, nine natural compounds were screened for ambrox from a sperm whale using docking research.

Results: Following docking studies, nine substances were discovered to interact with basal-like and luminal B breast cancer proteins. All nine metabolites, however, adhered to Lipinski's rule of five and had sufficient oral bioavailability. The greatest binding affinities were demonstrated by 13,14,15,16-tetranorlabdane-3-oxo-8,12-diol, 6-β-hydroxy ambrox, 1-α-hydroxy-3-oxoambrox, and 2-α-3-β-dihydroxy ambrox.

Conclusion: Therefore, it can be concluded that research on molecular docking and pharmacological mimics may hasten the discovery of new medications. The use of ambrox metabolites in the treatment of breast cancer also requires future perspectives on their therapeutic use.

Graphical Abstract

[1]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer Statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[2]
Reedijk, M.; Odorcic, S.; Chang, L.; Zhang, H.; Miller, N.; McCready, D.R.; Lockwood, G.; Egan, S.E. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res., 2005, 65(18), 8530-8537.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1069] [PMID: 16166334]
[3]
Pandya, K.; Meeke, K.; Clementz, A.G.; Rogowski, A.; Roberts, J.; Miele, L.; Albain, K.S.; Osipo, C. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br. J. Cancer, 2011, 105(6), 796-806.
[http://dx.doi.org/10.1038/bjc.2011.321] [PMID: 21847123]
[4]
Veronesi, U.; Boyle, P.; Goldhirsch, A.; Orecchia, R.; Viale, G. Breast cancer. Lancet, 2005, 365(9472), 1727-1741.
[5]
Collaborative Group on Hormonal Factors in Breast C. Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet, 2001, 358(9291), 1389-1399.
[6]
Hulka, B.S. Epidemiology of susceptibility to breast cancer. Prog. Clin. Biol. Res., 1996, 395, 159-174.
[7]
Colditz, G.A.; Kaphingst, K.A.; Hankinson, S.E.; Rosner, B. Breast cancer: origins and evolution. Breast Cancer Res. Treat., 2012, 133(3), 1097-1104.
[8]
Polyak, K. Breast cancer: origins and evolution. J. Clin. Invest., 2007, 117(11), 3155-3163.
[http://dx.doi.org/10.1172/JCI33295]
[9]
Allison, K.H. Molecular pathology of breast cancer: what a pathologist needs to know. Am. J. Clin. Pathol., 2012, 138(6), 770-780.
[http://dx.doi.org/10.1309/AJCPIV9IQ1MRQMOO]
[10]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[11]
Tanimoto, H.; Oritani, T. Synthesis of (+)-Ambrein. Tetrahedron, 1997, 53(10), 3527-3536.
[http://dx.doi.org/10.1016/S0040-4020(97)00103-8]
[12]
Mori, K.; Tamura, H. Triterpenoid total synthesis, I. Synthesis of ambrein and AmbroxW. Eur. J. Org. Chem., 1990, 4, 361-368.
[13]
Musharraf, S.G.; Naz, S.; Najeeb, A.; Khan, S.; Choudhary, M.I. Biotransformation of perfumery terpenoids, (−)-ambrox® by a fungal culture Macrophomina phaseolina and a plant cell suspension culture of Peganum harmala. Chem. Cent. J., 2012, 6(1), 82.
[http://dx.doi.org/10.1186/1752-153X-6-82]
[14]
Hamdi, A.; Elhusseiny, W.M.; Othman, D.I.A.; Haikal, A.; Bakheit, A.H.; El-Azab, A.S.; Al-Agamy, M.H.M.; Abdel-Aziz, A.A.M. Synthesis, antitumor, and apoptosis-inducing activities of novel 5-arylidenethiazolidine-2,4-dione derivatives: Histone deacetylases inhibitory activity and molecular docking study. Eur. J. Med. Chem., 2022, 244, 114827.
[http://dx.doi.org/10.1016/j.ejmech.2022.114827] [PMID: 36242988]
[15]
Elkazzaz, M.; Ahmed, A.; Abo-Amer, Y.E.E.; Hydara, T.; Haikal, A.; Razek, D.N.A.E.; Eltayb, W.A.; Wang, X.; Karpiński, T.M.; Hamza, D.; Jabbar, B.; Shamkh, I.M. In silico discovery of gpcrs and gnrhrs as novel binding receptors of SARS-CoV-2 spike protein could explain neuroendocrine disorders in COVID-19. Vaccines (Basel), 2022, 10(9), 1500.
[http://dx.doi.org/10.3390/vaccines10091500] [PMID: 36146578]
[16]
Hamdi, A.; Yaseen, M.; Ewes, W.A.; Bhat, M.A.; Ziedan, N.I.; El-Shafey, H.W.; Mohamed, A.A.B.; Elnagar, M.R.; Haikal, A.; Othman, D.I.A.; Elgazar, A.A.; Abusabaa, A.H.A.; Abdelrahman, K.S.; Soltan, O.M.; Elbadawi, M.M. Development of new thiazolidine-2,4-dione hybrids as aldose reductase inhibitors endowed with antihyperglycaemic activity: design, synthesis, biological investigations, and in silico insights. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2231170.
[http://dx.doi.org/10.1080/14756366.2023.2231170] [PMID: 37470409]
[17]
Shamkh, I.M.; Al-Majidi, M.; Shntaif, A.H.; Deng Kai, P.T.; Nh-Pham, N.; Rahman, I.; Hamza, D.; Khan, M.S.; Elsharayidi, M.S.; Salah, E.T.; Haikal, A.; Omoniyi, M.A.; Abdalrahman, M.A.; Karpinski, T.M. Nontoxic and naturally occurring active compounds as potential inhibitors of biological targets in Liriomyza trifolii. Int. J. Mol. Sci., 2022, 23(21), 12791.
[http://dx.doi.org/10.3390/ijms232112791] [PMID: 36361586]
[18]
Davies, M.; Jones, R.D.O.; Grime, K.; Jansson-Löfmark, R.; Fretland, A.J.; Winiwarter, S.; Morgan, P.; McGinnity, D.F. Improving the accuracy of predicted human pharmacokinetics: lessons learned from the astrazeneca drug pipeline over two decades. Trends Pharmacol. Sci., 2020, 41(6), 390-408.
[http://dx.doi.org/10.1016/j.tips.2020.03.004] [PMID: 32359836]
[19]
Mitra, A.K.; Kwatra, D.; Vadlapudi, A.D. Drug Delivery; Jones and Bartlett Learning: Burlington, MA, 2015.
[20]
Abdalla, M.; Eltayb, W.A.; El-Arabey, A.A.; Singh, K.; Jiang, X. Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Comput. Biol. Med., 2022, 141, 105025.
[http://dx.doi.org/10.1016/j.compbiomed.2021.105025] [PMID: 34772510]
[21]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]

© 2025 Bentham Science Publishers | Privacy Policy