Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Single-cell RNA Sequencing Analysis Reveals the Role of Cancer-associated Fibroblasts in Skin Melanoma

In Press, (this is not the final "Version of Record"). Available online 03 January, 2024
Author(s): Wenqin Lian, Pan Xiang, Chunjiang Ye* and Jian Xiong*
Published on: 03 January, 2024

DOI: 10.2174/0109298673282799231211113347

Price: $95

Abstract

Aims: Mechanism of fibroblasts in skin melanoma (SKME) revealed by single-cell RNA sequencing data.

Background: SKME is responsible for more than 80% of skin-related cancer deaths. Cancer-associated fibroblasts (CAFs) generate inflammatory factors, growth factors and extracellular matrix proteins to facilitate cancer cell growth, metastasis, drug resistance and immune exclusion. However, molecular mechanisms of CAFs in SKME are still lacking.

Objective: Our goal was to reveal the role of CAFs in SKME.

Methods: We downloaded the single-cell RNA sequencing (scRNA-seq) dataset from the Gene Expression Omnibus (GSE215120) database. Then, the Seurat package was applied to analyze the single-cell atlas of SKME data, and cell subsets were annotated with the CellMarker database. The molecular mechanisms of CAFs in SKME were disclosed via differential gene expression and enrichment analysis, Cellchat and SCENIC methods.

Results: Using scRNA-seq data, three SKME cases were used and downscaled and clustered to identify 11 cell subgroups and 5 CAF subsets. The enrichment of highly expressed genes among the 5 CAF subsets suggests that cell migration-inducing hyaluronan-binding protein (CEMIP) + fibroblasts and naked cuticle homolog 1 (NKD1) + fibroblasts were closely associated with epithelial to mesenchymal transition. Cellchat analysis revealed that CAF subpopulations promoted melanocyte proliferation through Jagged1 (JAG1)-Notch homolog 1 (NOTCH1), JAG1-NOTCH3 and migration through pleiotrophin (PTN)-syndecan-3 (SDC3) receptor-ligand pairs. The SCENIC analysis identified that most of the transcription factors in each CAF subpopulation played a certain role in the metastasis of melanoma and were highly expressed in metastatic SKME samples. Specifically, we observed that CEMIP+ fibroblasts and NKD1+ fibroblasts had potential roles in participating in immune therapy resistance. Collectively, we uncovered a single-- cell atlas of SKME and revealed the molecular mechanisms of CAFs in SKME development, providing a base for immune therapy and prognosis assessment.

Conclusion: Our study reveals that 5 CAFs in SKME have a promoting effect on melanocyte proliferation and metastasis. More importantly, CEMIP+ fibroblasts and NKD1+ fibroblasts displayed close connections with immune therapy resistance. These findings help provide a good basis for future immune therapy and prognosis assessment targeting CAFs in SKME.

[1]
Guy, G.P., Jr; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Morb. Mortal. Wkly. Rep., 2015, 64(21), 591-596.
[PMID: 26042651]
[2]
Bolick, N.L.; Geller, A.C. Epidemiology of melanoma. Hematol. Oncol. Clin. North Am., 2021, 35(1), 57-72.
[http://dx.doi.org/10.1016/j.hoc.2020.08.011] [PMID: 33759773]
[3]
Bozkurt, I.; Yasar, B.; Baran Uslu, M.; Bozdogan, N. A primary sacral melanoma of unknown origin: A case report. Oncologie, 2022, 24(1), 163-171.
[http://dx.doi.org/10.32604/oncologie.2022.019263]
[4]
Costanzo, R.; Parmar, V.; Marrone, S.; Gerardo Iacopino, D.; Federico Nicoletti, G.; Emmanuele Umana, G.; Scalia, G. Differential diagnosis between primary intracranial melanoma and cerebral cavernoma in crohn’s disease: A case report and literature review. Oncologie, 2022, 24(4), 937-942.
[http://dx.doi.org/10.32604/oncologie.2022.027155]
[5]
Rashid, S.; Shaughnessy, M.; Tsao, H. Melanoma classification and management in the era of molecular medicine. Dermatol. Clin., 2023, 41(1), 49-63.
[http://dx.doi.org/10.1016/j.det.2022.07.017] [PMID: 36410983]
[6]
Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; del Marmol, V.; Dréno, B.; Fargnoli, M.C.; Forsea, A.M.; Grob, J.J.; Hoeller, C.; Kaufmann, R.; Kelleners-Smeets, N.; Lallas, A.; Lebbé, C.; Lytvynenko, B.; Malvehy, J.; Moreno-Ramirez, D.; Nathan, P.; Pellacani, G.; Saiag, P.; Stratigos, A.J.; Van Akkooi, A.C.J.; Vieira, R.; Zalaudek, I.; Lorigan, P. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2022. Eur. J. Cancer, 2022, 170, 256-284.
[http://dx.doi.org/10.1016/j.ejca.2022.04.018] [PMID: 35623961]
[7]
Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol., 2018, 52(4), 1071-1080.
[http://dx.doi.org/10.3892/ijo.2018.4287] [PMID: 29532857]
[8]
Gao, L.; Gui, R.; Zheng, X.; Wang, Y.; Gong, Y.; Hua Wang, T.; Wang, J.; Huang, J.; Liao, X. Topical application of houttuynia cordata thunb ethanol extracts increases tumor infiltrating cd8+ /treg cells ratio and inhibits cutaneous squamous cell carcinoma in vivo. Oncologie, 2022, 24(3), 565-577.
[http://dx.doi.org/10.32604/oncologie.2022.022454]
[9]
Arslanbaeva, L.R.; Santoro, M.M. Adaptive redox homeostasis in cutaneous melanoma. Redox Biol., 2020, 37, 101753.
[http://dx.doi.org/10.1016/j.redox.2020.101753] [PMID: 33091721]
[10]
Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; Hynes, R.O.; Jain, R.K.; Janowitz, T.; Jorgensen, C.; Kimmelman, A.C.; Kolonin, M.G.; Maki, R.G.; Powers, R.S.; Puré, E.; Ramirez, D.C.; Scherz-Shouval, R.; Sherman, M.H.; Stewart, S.; Tlsty, T.D.; Tuveson, D.A.; Watt, F.M.; Weaver, V.; Weeraratna, A.T.; Werb, Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer, 2020, 20(3), 174-186.
[http://dx.doi.org/10.1038/s41568-019-0238-1] [PMID: 31980749]
[11]
Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers, 2022, 14(16), 3906.
[http://dx.doi.org/10.3390/cancers14163906] [PMID: 36010899]
[12]
Monteran, L.; Erez, N. The dark side of fibroblasts: Cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol., 2019, 10, 1835.
[http://dx.doi.org/10.3389/fimmu.2019.01835] [PMID: 31428105]
[13]
Bellei, B.; Migliano, E.; Picardo, M. A framework of major tumor-promoting signal transduction pathways implicated in melanoma-fibroblast dialogue. Cancers, 2020, 12(11), 3400.
[http://dx.doi.org/10.3390/cancers12113400] [PMID: 33212834]
[14]
Morales, D.; Vigneron, P.; Ferreira, I.; Hamitou, W.; Magnano, M.; Mahenthiran, L.; Lok, C.; Vayssade, M. Fibroblasts influence metastatic melanoma cell sensitivity to combined BRAF and MEK inhibition. Cancers, 2021, 13(19), 4761.
[http://dx.doi.org/10.3390/cancers13194761] [PMID: 34638245]
[15]
Papalexi, E.; Satija, R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol., 2018, 18(1), 35-45.
[http://dx.doi.org/10.1038/nri.2017.76] [PMID: 28787399]
[16]
Joanito, I.; Wirapati, P.; Zhao, N.; Nawaz, Z.; Yeo, G.; Lee, F.; Eng, C.L.P.; Macalinao, D.C.; Kahraman, M.; Srinivasan, H.; Lakshmanan, V.; Verbandt, S.; Tsantoulis, P.; Gunn, N.; Venkatesh, P.N.; Poh, Z.W.; Nahar, R.; Oh, H.L.J.; Loo, J.M.; Chia, S.; Cheow, L.F.; Cheruba, E.; Wong, M.T.; Kua, L.; Chua, C.; Nguyen, A.; Golovan, J.; Gan, A.; Lim, W.J.; Guo, Y.A.; Yap, C.K.; Tay, B.; Hong, Y.; Chong, D.Q.; Chok, A.Y.; Park, W.Y.; Han, S.; Chang, M.H.; Seow-En, I.; Fu, C.; Mathew, R.; Toh, E.L.; Hong, L.Z.; Skanderup, A.J.; DasGupta, R.; Ong, C.A.J.; Lim, K.H.; Tan, E.K.W.; Koo, S.L.; Leow, W.Q.; Tejpar, S.; Prabhakar, S.; Tan, I.B. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat. Genet., 2022, 54(7), 963-975.
[http://dx.doi.org/10.1038/s41588-022-01100-4] [PMID: 35773407]
[17]
Gong, L.; Kwong, D.L.W.; Dai, W.; Wu, P.; Li, S.; Yan, Q.; Zhang, Y.; Zhang, B.; Fang, X.; Liu, L.; Luo, M.; Liu, B.; Chow, L.K.Y.; Chen, Q.; Huang, J.; Lee, V.H.F.; Lam, K.O.; Lo, A.W.I.; Chen, Z.; Wang, Y.; Lee, A.W.M.; Guan, X.Y. Comprehensive single-cell sequencing reveals the stromal dynamics and tumor-specific characteristics in the microenvironment of nasopharyngeal carcinoma. Nat. Commun., 2021, 12(1), 1540.
[http://dx.doi.org/10.1038/s41467-021-21795-z] [PMID: 33750785]
[18]
Liu, Y.; Zhang, H.; Mao, Y.; Shi, Y.; Wang, X.; Shi, S.; Hu, D.; Liu, S. Bulk and single-cell RNA-sequencing analyses along with abundant machine learning methods identify a novel monocyte signature in SKCM. Front. Immunol., 2023, 14, 1094042.
[http://dx.doi.org/10.3389/fimmu.2023.1094042] [PMID: 37304304]
[19]
Zhang, C.; Shen, H.; Yang, T.; Li, T.; Liu, X.; Wang, J.; Liao, Z.; Wei, J.; Lu, J.; Liu, H.; Xiang, L.; Yang, Y.; Yang, M.; Wang, D.; Li, Y.; Xing, R.; Teng, S.; Zhao, J.; Yang, Y.; Zhao, G.; Chen, K.; Li, X.; Yang, J. A single-cell analysis reveals tumor heterogeneity and immune environment of acral melanoma. Nat. Commun., 2022, 13(1), 7250.
[http://dx.doi.org/10.1038/s41467-022-34877-3] [PMID: 36433984]
[20]
Riaz, N.; Havel, J.J.; Makarov, V.; Desrichard, A.; Urba, W.J.; Sims, J.S.; Hodi, F.S.; Martín-Algarra, S.; Mandal, R.; Sharfman, W.H.; Bhatia, S.; Hwu, W.J.; Gajewski, T.F.; Slingluff, C.L., Jr; Chowell, D.; Kendall, S.M.; Chang, H.; Shah, R.; Kuo, F.; Morris, L.G.T.; Sidhom, J.W.; Schneck, J.P.; Horak, C.E.; Weinhold, N.; Chan, T.A. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell, 2017, 171(4), 934-949.e16.
[http://dx.doi.org/10.1016/j.cell.2017.09.028] [PMID: 29033130]
[21]
Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420.
[http://dx.doi.org/10.1038/nbt.4096] [PMID: 29608179]
[22]
Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol., 2019, 20(1), 296.
[http://dx.doi.org/10.1186/s13059-019-1874-1] [PMID: 31870423]
[23]
Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using Cell Chat. Nat. Commun., 2021, 12(1), 1088.
[http://dx.doi.org/10.1038/s41467-021-21246-9] [PMID: 33597522]
[24]
Aibar, S.; González-Blas, C.B.; Moerman, T.; Huynh-Thu, V.A.; Imrichova, H.; Hulselmans, G.; Rambow, F.; Marine, J.C.; Geurts, P.; Aerts, J.; van den Oord, J.; Atak, Z.K.; Wouters, J.; Aerts, S. SCENIC: Single-cell regulatory network inference and clustering. Nat. Methods, 2017, 14(11), 1083-1086.
[http://dx.doi.org/10.1038/nmeth.4463] [PMID: 28991892]
[25]
Qi, X.; Chen, Y.; Liu, S.; Liu, L.; Yu, Z.; Yin, L.; Fu, L.; Deng, M.; Liang, S.; Lü, M. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. Pharm. Biol., 2023, 61(1), 696-709.
[http://dx.doi.org/10.1080/13880209.2023.2200787] [PMID: 37092313]
[26]
Domanegg, K.; Sleeman, J.P.; Schmaus, A. CEMIP, a promising biomarker that promotes the progression and metastasis of colorectal and other types of cancer. Cancers, 2022, 14(20), 5093.
[http://dx.doi.org/10.3390/cancers14205093] [PMID: 36291875]
[27]
Kwa, M.Q.; Herum, K.M.; Brakebusch, C. Cancer-associated fibroblasts: How do they contribute to metastasis? Clin. Exp. Metastasis, 2019, 36(2), 71-86.
[http://dx.doi.org/10.1007/s10585-019-09959-0] [PMID: 30847799]
[28]
Bobos, M. Histopathologic classification and prognostic factors of melanoma: A 2021 update. Ital. J. Dermatol. Venereol., 2021, 156(3), 300-321.
[http://dx.doi.org/10.23736/S2784-8671.21.06958-3] [PMID: 33982546]
[29]
Romano, V.; Belviso, I.; Venuta, A.; Ruocco, M.R.; Masone, S.; Aliotta, F.; Fiume, G.; Montagnani, S.; Avagliano, A.; Arcucci, A. Influence of tumor microenvironment and fibroblast population plasticity on melanoma growth, therapy resistance and immunoescape. Int. J. Mol. Sci., 2021, 22(10), 5283.
[http://dx.doi.org/10.3390/ijms22105283] [PMID: 34067929]
[30]
Sunami, Y.; Rebelo, A.; Kleeff, J. Lipid metabolism and lipid droplets in pancreatic cancer and stellate cells. Cancers, 2017, 10(1), 3.
[http://dx.doi.org/10.3390/cancers10010003] [PMID: 29295482]
[31]
Sunami, Y.; Häußler, J.; Kleeff, J. Cellular heterogeneity of pancreatic stellate cells, mesenchymal stem cells, and cancer-associated fibroblasts in pancreatic cancer. Cancers, 2020, 12(12), 3770.
[http://dx.doi.org/10.3390/cancers12123770] [PMID: 33333727]
[32]
Busch, S.; Andersson, D.; Bom, E.; Walsh, C.; Ståhlberg, A.; Landberg, G. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol. Cancer, 2017, 16(1), 73.
[http://dx.doi.org/10.1186/s12943-017-0642-7] [PMID: 28372546]
[33]
Patel, A.K.; Vipparthi, K.; Thatikonda, V.; Arun, I.; Bhattacharjee, S.; Sharan, R.; Arun, P.; Singh, S. A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma. Oncogenesis, 2018, 7(10), 78.
[http://dx.doi.org/10.1038/s41389-018-0087-x] [PMID: 30287850]
[34]
Su, S.; Chen, J.; Yao, H.; Liu, J.; Yu, S.; Lao, L.; Wang, M.; Luo, M.; Xing, Y.; Chen, F.; Huang, D.; Zhao, J.; Yang, L.; Liao, D.; Su, F.; Li, M.; Liu, Q.; Song, E. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell, 2018, 172(4), 841-856.e16.
[http://dx.doi.org/10.1016/j.cell.2018.01.009] [PMID: 29395328]
[35]
Rigi-Ladiz, M.A. DNA methylation and expression status of glutamate receptor genes in patients with oral squamous cell carcinoma. Meta Gene, 2019, 20.
[36]
Zhang, Q.; Teow, J.Y.; Kerishnan, J.P.; Abd Halim, A.A.; Chen, Y. Clusterin and its isoforms in oral squamous cell carcinoma and their potential as biomarkers: A comprehensive review. Biomedicines, 2023, 11(5), 1458.
[http://dx.doi.org/10.3390/biomedicines11051458] [PMID: 37239129]
[37]
Liu, Q.; Jiang, J.; Zhang, X.; Zhang, M.; Fu, Y. Comprehensive analysis of IGFBPs as biomarkers in gastric cancer. Front. Oncol., 2021, 11, 723131.
[http://dx.doi.org/10.3389/fonc.2021.723131] [PMID: 34745945]
[38]
Dai, Y.; Liu, J.; Li, X.; Deng, J.; Zeng, C.; Lu, W.; Hou, Y.; Sheng, Y.; Wu, H.; Liu, Q. Let-7b-5p inhibits colon cancer progression by prohibiting APC ubiquitination degradation and the Wnt pathway by targeting NKD1. Cancer Sci., 2023, 114(5), 1882-1897.
[http://dx.doi.org/10.1111/cas.15678] [PMID: 36445120]
[39]
Cirri, P.; Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev., 2012, 31(1-2), 195-208.
[http://dx.doi.org/10.1007/s10555-011-9340-x] [PMID: 22101652]
[40]
Duda, D.G.; Duyverman, A.M.M.J.; Kohno, M.; Snuderl, M.; Steller, E.J.A.; Fukumura, D.; Jain, R.K. Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci., 2010, 107(50), 21677-21682.
[http://dx.doi.org/10.1073/pnas.1016234107] [PMID: 21098274]
[41]
Petersen, O.W.; Nielsen, H.L.; Gudjonsson, T.; Villadsen, R.; Rank, F.; Niebuhr, E.; Bissell, M.J.; Rønnov-Jessen, L. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol., 2003, 162(2), 391-402.
[http://dx.doi.org/10.1016/S0002-9440(10)63834-5] [PMID: 12547698]
[42]
Ding, Y.; Tan, X.; Abasi, A.; Dai, Y.; Wu, R.; Zhang, T.; Li, K.; Yan, M.; Huang, X. LncRNA TRPM2-AS promotes ovarian cancer progression and cisplatin resistance by sponging miR-138-5p to release SDC3 mRNA. Aging, 2021, 13(5), 6832-6848.
[http://dx.doi.org/10.18632/aging.202541] [PMID: 33621194]
[43]
Sun, J.; Pan, S.; Cui, H.; Li, H. CircRNA SCARB1 promotes renal cell carcinoma progression via Mir- 510-5p/SDC3 Axis. Curr. Cancer Drug Targets, 2020, 20(6), 461-470.
[http://dx.doi.org/10.2174/1568009620666200409130032] [PMID: 32271695]
[44]
Yao, J.; Li, W.Y.; Li, S.G.; Feng, X.S.; Gao, S.G. Midkine promotes perineural invasion in human pancreatic cancer. World J. Gastroenterol., 2014, 20(11), 3018-3024.
[http://dx.doi.org/10.3748/wjg.v20.i11.3018] [PMID: 24659893]
[45]
Owen, J.S.; Clayton, A.; Pearson, H.B. Cancer-associated fibroblast heterogeneity, activation and function: Implications for prostate cancer. Biomolecules, 2022, 13(1), 67.
[http://dx.doi.org/10.3390/biom13010067] [PMID: 36671452]
[46]
Pancewicz, J.; Nicot, C. Current views on the role of notch signaling and the pathogenesis of human leukemia. BMC Cancer, 2011, 11(1), 502.
[http://dx.doi.org/10.1186/1471-2407-11-502] [PMID: 22128846]
[47]
Kunanopparat, A.; Hirankarn, N.; Issara-Amphorn, J.; Tangkijvanich, P.; Sanpavat, A. The expression profile of Jagged1 and Delta-like 4 in hepatocellular carcinoma. Asian Pac. J. Allergy Immunol., 2021, 39(1), 44-52.
[PMID: 30660174]
[48]
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 2009, 6(7), e1000097.
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[49]
Jubb, A.M.; Browning, L.; Campo, L.; Turley, H.; Steers, G.; Thurston, G.; Harris, A.L.; Ansorge, O. Expression of vascular notch ligands delta-like 4 and Jagged-1 in glioblastoma. Histopathology, 2012, 60(5), 740-747.
[http://dx.doi.org/10.1111/j.1365-2559.2011.04138.x] [PMID: 22296176]
[50]
Pancewicz, J.; Niklinska, W.; Eljaszewicz, A. Anti-Jagged-1 immunotherapy in cancer. Adv. Med. Sci., 2022, 67(2), 196-202.
[http://dx.doi.org/10.1016/j.advms.2022.04.001] [PMID: 35421813]
[51]
Strell, C.; Paulsson, J.; Jin, S.B.; Tobin, N.P.; Mezheyeuski, A.; Roswall, P.; Mutgan, C.; Mitsios, N.; Johansson, H.; Wickberg, S.M.; Svedlund, J.; Nilsson, M.; Hall, P.; Mulder, J.; Radisky, D.C.; Pietras, K.; Bergh, J.; Lendahl, U.; Wärnberg, F.; Östman, A. Impact of epithelial–stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J. Natl. Cancer Inst., 2019, 111(9), 983-995.
[http://dx.doi.org/10.1093/jnci/djy234] [PMID: 30816935]
[52]
Dai, Y.; Wilson, G.; Huang, B.; Peng, M.; Teng, G.; Zhang, D.; Zhang, R.; Ebert, M.P.A.; Chen, J.; Wong, B.C.Y.; Chan, K.W.; George, J.; Qiao, L. Silencing of Jagged1 inhibits cell growth and invasion in colorectal cancer. Cell Death Dis., 2014, 5(4), e1170.
[http://dx.doi.org/10.1038/cddis.2014.137] [PMID: 24722295]
[53]
Huang, B.; Han, W.; Sheng, Z.F.; Shen, G.L. Identification of immune-related biomarkers associated with tumorigenesis and prognosis in cutaneous melanoma patients. Cancer Cell Int., 2020, 20(1), 195.
[http://dx.doi.org/10.1186/s12935-020-01271-2] [PMID: 32508531]
[54]
Hassan, Z.; Schneeweis, C.; Wirth, M.; Müller, S.; Geismann, C.; Neuß, T.; Steiger, K.; Krämer, O.H.; Schmid, R.M.; Rad, R.; Arlt, A.; Reichert, M.; Saur, D.; Schneider, G. Important role of Nfkb2 in the KrasG12D-driven carcinogenesis in the pancreas. Pancreatology, 2021, 21(5), 912-919.
[http://dx.doi.org/10.1016/j.pan.2021.03.012] [PMID: 33824054]
[55]
Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J.; Sato, Y.; Kataoka, M.; Ogawsa, S.; Haga, N.; Kojima, Y. Interleukin-6 induces drug resistance in renal cell carcinoma. Fukushima J. Med. Sci., 2018, 64(3), 103-110.
[http://dx.doi.org/10.5387/fms.2018-15] [PMID: 30369518]
[56]
Wang, T.; Fahrmann, J.F.; Lee, H.; Li, Y.J.; Tripathi, S.C.; Yue, C.; Zhang, C.; Lifshitz, V.; Song, J.; Yuan, Y.; Somlo, G.; Jandial, R.; Ann, D.; Hanash, S.; Jove, R.; Yu, H. JAK/STAT3-Regulated Fatty Acid β-Oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab., 2018, 27(1), 136-150.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.11.001] [PMID: 29249690]
[57]
Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martínez-Saez, E.; Ramón y Cajal, S.; Megías, D.; Hernández-Encinas, E.; Blanco-Aparicio, C.; Martínez, L.; Zarzuela, E.; Muñoz, J.; Fustero-Torre, C.; Piñeiro-Yáñez, E.; Hernández-Laín, A.; Bertero, L.; Poli, V.; Sanchez-Martinez, M.; Menendez, J.A.; Soffietti, R.; Bosch-Barrera, J.; Valiente, M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med., 2018, 24(7), 1024-1035.
[http://dx.doi.org/10.1038/s41591-018-0044-4] [PMID: 29892069]
[58]
Albrengues, J.; Bertero, T.; Grasset, E.; Bonan, S.; Maiel, M.; Bourget, I.; Philippe, C.; Herraiz Serrano, C.; Benamar, S.; Croce, O.; Sanz-Moreno, V.; Meneguzzi, G.; Feral, C.C.; Cristofari, G.; Gaggioli, C. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat. Commun., 2015, 6(1), 10204.
[http://dx.doi.org/10.1038/ncomms10204] [PMID: 26667266]
[59]
Yang, X.; Lin, Y.; Shi, Y.; Li, B.; Liu, W.; Yin, W.; Dang, Y.; Chu, Y.; Fan, J.; He, R. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3–CCL2 signaling. Cancer Res., 2016, 76(14), 4124-4135.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2973] [PMID: 27216177]
[60]
Li, X.; Xu, Q.; Wu, Y.; Li, J.; Tang, D.; Han, L.; Fan, Q. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis, 2014, 35(6), 1362-1370.
[http://dx.doi.org/10.1093/carcin/bgu046] [PMID: 24531940]
[61]
Heichler, C.; Scheibe, K.; Schmied, A.; Geppert, C.I.; Schmid, B.; Wirtz, S.; Thoma, O.M.; Kramer, V.; Waldner, M.J.; Büttner, C.; Farin, H.F.; Pešić, M.; Knieling, F.; Merkel, S.; Grüneboom, A.; Gunzer, M.; Grützmann, R.; Rose-John, S.; Koralov, S.B.; Kollias, G.; Vieth, M.; Hartmann, A.; Greten, F.R.; Neurath, M.F.; Neufert, C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut, 2020, 69(7), 1269-1282.
[http://dx.doi.org/10.1136/gutjnl-2019-319200] [PMID: 31685519]
[62]
Hirata, E.; Girotti, M.R.; Viros, A.; Hooper, S.; Spencer-Dene, B.; Matsuda, M.; Larkin, J.; Marais, R.; Sahai, E. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. Cancer Cell, 2015, 27(4), 574-588.
[http://dx.doi.org/10.1016/j.ccell.2015.03.008] [PMID: 25873177]
[63]
Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet, 2016, 388(10043), 518-529.
[http://dx.doi.org/10.1016/S0140-6736(15)01088-0] [PMID: 26853587]
[64]
Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; Teichmann, S.A.; Janowitz, T.; Jodrell, D.I.; Tuveson, D.A.; Fearon, D.T. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti–PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci., 2013, 110(50), 20212-20217.
[http://dx.doi.org/10.1073/pnas.1320318110] [PMID: 24277834]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy