Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Essential Oils of Some Potential Medicinal Plants and their Wound Healing Activities

Author(s): Shiv Bahadur* and Sana Fatima

Volume 25, Issue 14, 2024

Published on: 02 January, 2024

Page: [1818 - 1834] Pages: 17

DOI: 10.2174/0113892010282605231218064053

Price: $65

Abstract

The wound has been recognised as a deep cut or tearing of the epidermis, which is also referred to as trauma and harm to the body tissues. Healing of wounds requires a coordinated series of cellular processes, including cell attraction, proliferation, differentiation, and angiogenesis. These processes involve interactions between various cells, such as macrophages, endothelial cells, keratinocytes, fibroblasts, growth hormones, and proteases. The outcome of wounds can be fatal if not treated properly, resulting in chronic wounds, chronic pain, and even death. Wound healing is replacing missing tissue with tissue repairs and regeneration. Some local variables are the presence of tissue maceration, foreign objects, biofilm, hypoxia, ischemia, and wound infection. Sustained growth factor delivery, siRNA delivery, micro-RNA targeting, and stem cell therapy are all emerging possible therapeutic approaches for wound healing. Traditional approaches, such as Ayurveda, Siddha, and Unani medicines, are also being used for treatment. The therapeutic application of nanoformulations in wound infections has shown various beneficial effects. Several herbal medicines, especially essential oils have shown potential wound healing activities, such as lavender, tea tree, sesame, olive, etc. Various nanoparticles and their nanoformulations have been explored in wound healing therapy. The present review article highlights several aspects of essential oils for wound healing activity through a novel drug delivery system. Further, some patents on wound healing through herbal medicine have been listed.

Graphical Abstract

[1]
Ahmadian, Z. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J. Drug Deliv. Sci. Technol., 2022, 73, 103458.
[2]
Bhatnagar, P. Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. J. Drug Deliv. Sci. Technol., 2022, 71, 103270.
[http://dx.doi.org/10.1016/j.jddst.2022.103270]
[3]
Li, Y. Advanced electrospun hydrogel fibers for wound healing. Composit. Part B: Eng., 2021, 223, 109101.
[http://dx.doi.org/10.1016/j.compositesb.2021.109101]
[4]
Liu, W-S. Biomembrane-based nanostructure- and microstructure-loaded hydrogels for promoting chronic wound healing. Int. J. Nanomedicine, 2023, 18, 385-411.
[http://dx.doi.org/10.2147/IJN.S387382]
[5]
Hazrati, R. Bioactive functional scaffolds for stem cells delivery in wound healing and skin regeneration. React. Funct. Poly., 2022, 174, 105233.
[6]
Luo, M. Bioactive rare earth-based inorganic-organic hybrid biomaterials for wound healing and repair. Appl. Mater., 2022, 26, 101304.
[http://dx.doi.org/10.1016/j.apmt.2021.101304]
[7]
Zhu, J. Smart bioadhesives for wound healing and closure. Bioactive. Mater., 2023, 19, 360-375.
[http://dx.doi.org/10.1016/j.bioactmat.2022.04.020]
[8]
Ullah, S.; Mansoor, S.; Ayub, A.; Ejaz, M.; Zafar, H.; Feroz, F.; Khan, A.; Ali, M. An update on stem cells applications in burn wound healing. Tissue Cell, 2021, 72, 101527.
[http://dx.doi.org/10.1016/j.tice.2021.101527] [PMID: 33756272]
[9]
Prasathkumar, M.; Sadhasivam, S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol., 2021, 186, 656-685.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.067] [PMID: 34271047]
[10]
Pan, L.; Zhang, X.; Gao, Q. Effects and mechanisms of histatins as novel skin wound-healing agents. J. Tissue Viability, 2021, 30(2), 190-195.
[http://dx.doi.org/10.1016/j.jtv.2021.01.005] [PMID: 33551241]
[11]
Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C, 2020, 114, 110994.
[http://dx.doi.org/10.1016/j.msec.2020.110994] [PMID: 32993991]
[12]
Ali-Seyed, M.; Ayesha, S.J.B.; Biotechnology, A. Calotropis-A multi-potential plant to humankind: Special focus on its wound healing efficacy. Biocatal. Agric. Biotechnol., 2020, 28, 101725.
[http://dx.doi.org/10.1016/j.bcab.2020.101725]
[13]
Habibi, Z.; Hoormand, M.; Banimohammad, M.; Ajami, M.; Amin, G.; Amin, M.; Pazoki-Toroudi, H. The Novel Role of Crocus sativus L. in enhancing skin flap survival by affecting apoptosis independent of mTOR: A data-virtualized study. Aesthetic Plast. Surg., 2022, 46(6), 3047-3062.
[http://dx.doi.org/10.1007/s00266-022-03048-6] [PMID: 36044060]
[14]
Menke, N.B.; Cain, J.W.; Reynolds, A.; Chan, D.M.; Segal, R.A.; Witten, T.M.; Bonchev, D.G.; Diegelmann, R.F.; Ward, K.R. An in silico approach to the analysis of acute wound healing. Wound Repair Regen., 2010, 18(1), 105-113.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00549.x] [PMID: 20002899]
[15]
García-Salinas, S.; Evangelopoulos, M.; Gámez-Herrera, E.; Arruebo, M.; Irusta, S.; Taraballi, F.; Mendoza, G.; Tasciotti, E. Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int. J. Pharm., 2020, 577, 119067.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119067] [PMID: 31981705]
[16]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils – A review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[17]
De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology development for formulating essential oils in wound dressing materials to promote the wound-healing process: A review. Appl. Sci. , 2021, 11(4), 1713.
[http://dx.doi.org/10.3390/app11041713]
[18]
Jaramillo, V.; Díaz, E.; Muñoz, L.N.; González-Barrios, A.F.; Rodríguez-Cortina, J.; Cruz, J.C.; Muñoz-Camargo, C. Enhancing wound healing: A novel topical emulsion combining CW49 peptide and lavender essential oil for accelerated regeneration and antibacterial protection. Pharmaceutics, 2023, 15(6), 1739.
[http://dx.doi.org/10.3390/pharmaceutics15061739] [PMID: 37376187]
[19]
Salas-Oropeza, J.; Jimenez-Estrada, M.; Perez-Torres, A.; Castell-Rodriguez, A.E.; Becerril-Millan, R.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Wound healing activity of the essential oil of bursera morelensis, in mice. Molecules, 2020, 25(8), 1795.
[http://dx.doi.org/10.3390/molecules25081795] [PMID: 32295241]
[20]
Woollard, A.C.; Tatham, K.C.; Barker, S. The influence of essential oils on the process of wound healing: A review of the current evidence. J. Wound Care, 2007, 16(6), 255-257.
[http://dx.doi.org/10.12968/jowc.2007.16.6.27064] [PMID: 17722522]
[21]
Pirbalouti, A.G.; Azizi, S.; Koohpayeh, A.J.R.B.d.F. Healing potential of Iranian traditional medicinal plants on burn wounds in alloxan-induced diabetic rats. Rev. Bras. Farmacogn., 2012, 22(2), 397-403.
[http://dx.doi.org/10.1590/S0102-695X2011005000183]
[22]
Ahmad, W.; Alam, S.S.; Aquil, Z.J.T.J.P.S. Herbo-medicinal formulation; Marham-e-raal: A potent ointment for acute and chronic wounds. Review, 2019, 27(2), 77.
[23]
Oryan, A. Effect of aqueous extract of Aloe vera on experimental cutaneous wound healing in rat. Vet. Arch., 2010, 80(4), 509-522.
[24]
Pirbalouti, A.G.; Koohpayeh, A.; Karimi, I. The wound healing activity of flower extracts of Punica granatum and Achillea kellalensis in Wistar rats. Acta Pol. Pharm., 2010, 67(1), 107-110.
[PMID: 20210088]
[25]
Pugalendhi, V. Effect of heritage sanjeevi (a siddha combination drug) on wound healing in Wistar rats. J. Int. Med. Sci. Acad., 2010, 23(4), 233-234.
[26]
Bhat, V. Effect of Kungiliya vennai and Kalchunna thailam on excision wound healing in albino Wistar rats. Int. J. Pharmacol. Clin. Sci., 2015, 4(3), 52-57.
[27]
Rizg, W.Y.; Hosny, K.M.; Eshmawi, B.A.; Alamoudi, A.J.; Safhi, A.Y.; Murshid, S.S.A.; Sabei, F.Y.; Al Fatease, A. Tailoring of geranium oil-based nanoemulsion loaded with pravastatin as a nanoplatform for wound healing. Polymers , 2022, 14(9), 1912.
[http://dx.doi.org/10.3390/polym14091912] [PMID: 35567079]
[28]
Gangopadhyay, K.S.; Khan, M.; Pandit, S.; Chakrabarti, S.; Mondal, T.K.; Biswas, T.K. Pharmacological evaluation and chemical standardization of an ayurvedic formulation for wound healing activity. Int. J. Low. Extrem. Wounds, 2014, 13(1), 41-49.
[http://dx.doi.org/10.1177/1534734614520705] [PMID: 24659625]
[29]
Martin, V.; Hoekman, J.; Aurora, S.K.; Shrewsbury, S.B. Nasal delivery of acute medications for migraine: The upper versuslower nasal space. J. Clin. Med., 2021, 10(11), 2468.
[http://dx.doi.org/10.3390/jcm10112468] [PMID: 34199479]
[30]
Victor, P.; Sarada, D.; Ramkumar, K.M. Pharmacological activation of Nrf2 promotes wound healing. Eur. J. Pharmacol., 2020, 886, 173395.
[http://dx.doi.org/10.1016/j.ejphar.2020.173395] [PMID: 32710954]
[31]
Dubey, S.K. Cold atmospheric plasma therapy in wound healing. Proc. Biochem., 2022, 112, 112-123.
[http://dx.doi.org/10.1016/j.procbio.2021.11.017]
[32]
Abazari, M.; Akbari, T.; Hasani, M.; Sharifikolouei, E.; Raoufi, M.; Foroumadi, A.; Sharifzadeh, M.; Firoozpour, L.; Khoobi, M. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr. Polym., 2022, 294, 119808.
[http://dx.doi.org/10.1016/j.carbpol.2022.119808] [PMID: 35868768]
[33]
Kublik, H.; Vidgren, M.T. Nasal delivery systems and their effect on deposition and absorption. Adv. Drug Deliv. Rev., 1998, 29(1-2), 157-177.
[http://dx.doi.org/10.1016/S0169-409X(97)00067-7] [PMID: 10837586]
[34]
Sinno, H.; Prakash, S. Complements and the wound healing cascade: An updated review. Plast. Surg. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/146764] [PMID: 23984063]
[35]
Romo-Rico, J.; Krishna, S.M.; Bazaka, K.; Golledge, J.; Jacob, M.V. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater., 2022, 147, 34-49.
[http://dx.doi.org/10.1016/j.actbio.2022.05.043] [PMID: 35649506]
[36]
Khanam, S.J. A systematic review on wound healing and its promising medicinal plants. IJCAAP, 2021, 5(4), 170-176.
[http://dx.doi.org/10.18231/j.ijcaap.2020.036]
[37]
Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol., 2021, 192, 298-322.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.013] [PMID: 34634326]
[38]
Zhang, Y. Growth factors, as biological macromolecules in bioactivity enhancing of electrospun wound dressings for diabetic wound healing: A review. Int. J. Biol. Macromol., 2021, 193, 205-218.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.09.210]
[39]
Shamiya, Y.; Ravi, S.P.; Coyle, A.; Chakrabarti, S.; Paul, A. Engineering nanoparticle therapeutics for impaired wound healing in diabetes. Drug Discov. Today, 2022, 27(4), 1156-1166.
[http://dx.doi.org/10.1016/j.drudis.2021.11.024] [PMID: 34839040]
[40]
Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med., 2014, 6(265), 265sr6.
[http://dx.doi.org/10.1126/scitranslmed.3009337] [PMID: 25473038]
[41]
Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[42]
Pastar, I. Physiology and pathophysiology of wound healing in diabetes. In: The Diabetic Foot; Humana: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-89869-8_7]
[43]
Basak, S.; Duttaroy, A.K. Conjugated linoleic acid and its beneficial effects in obesity, cardiovascular disease, and cancer. Nutrients, 2020, 12(7), 1913.
[44]
Javedan, G.; Shidfar, F.; Davoodi, S.H.; Ajami, M.; Gorjipour, F.; Sureda, A.; Nabavi, S.M.; Daglia, M.; Pazoki-Toroudi, H. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol. Nutr. Food Res., 2016, 60(12), 2665-2677.
[http://dx.doi.org/10.1002/mnfr.201600112] [PMID: 27466783]
[45]
Kant, V.; Kumari, P.; Jitendra, D.K.; Ahuja, M.; Kumar, V. Nanomaterials of natural bioactive compounds for wound healing: novel drug delivery approach. Curr. Drug Deliv., 2021, 18(10), 1406-1425.
[http://dx.doi.org/10.2174/1567201818666210729103712] [PMID: 34325636]
[46]
Macwan, S.R. Essential oils of herbs and spices: Their antimicrobial activity and application in preservation of food. Int. J. Curr. Microbiol. Appl. Sci., 2016, 5(5), 885-901.
[http://dx.doi.org/10.20546/ijcmas.2016.505.092]
[47]
Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - A review. Curr. Drug Metab., 2018, 19(13), 1100-1110.
[http://dx.doi.org/10.2174/1389200219666180723144850] [PMID: 30039757]
[48]
Artiga-Artigas, M. Influence of essential oils and pectin on nanoemulsion formulation: A ternary phase experimental approach. Food Hydrocoll., 2018, 81, 209-219.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.001]
[49]
Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals, 2013, 6(12), 1451-1474.
[http://dx.doi.org/10.3390/ph6121451] [PMID: 24287491]
[50]
Dávila-Rodríguez, M. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT, 2019, 112, 108247.
[http://dx.doi.org/10.1016/j.lwt.2019.06.014]
[51]
Nazzaro, F.; Fratianni, F.; Coppola, R.; Feo, V.D. Essential oils and antifungal activity. Pharmaceuticals, 2017, 10(4), 86.
[http://dx.doi.org/10.3390/ph10040086] [PMID: 29099084]
[52]
Dadkhah, A.; Fatemi, F.; Malayeri, M.R.M.; Ashtiyani, M.H.K.; Noureini, S.K.; Rasooli, A. Considering the effect of rosa damascena mill. Essential oil on oxidative stress and cox-2 gene expression in the liver of septic Rats. Turk. J. Pharmaceut. Sci., 2019, 16(4), 416-424.
[http://dx.doi.org/10.4274/tjps.galenos.2018.58815] [PMID: 32454744]
[53]
Jang, M.H.; Piao, X.L.; Kim, J.M.; Kwon, S.W.; Park, J.H. Inhibition of cholinesterase and amyloid‐β aggregation by resveratrol oligomers from Vitis amurensis. Phytother. Res., 2008, 22(4), 544-549.
[http://dx.doi.org/10.1002/ptr.2406] [PMID: 18338769]
[54]
Khezri, K.; Farahpour, M.R.; Mounesi Rad, S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 980-988.
[http://dx.doi.org/10.1080/21691401.2019.1582539] [PMID: 30857435]
[55]
Mori, H.M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med., 2016, 16(1), 144.
[http://dx.doi.org/10.1186/s12906-016-1128-7] [PMID: 27229681]
[56]
Nastiti, C.; Ponto, T.; Abd, E.; Grice, J.; Benson, H.; Roberts, M. Topical nano and microemulsions for skin delivery. Pharmaceutics, 2017, 9(4), 37.
[http://dx.doi.org/10.3390/pharmaceutics9040037] [PMID: 28934172]
[57]
Aljabeili, H.S. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). Food Nutr. Sci., 2018, 9(5), 14.
[58]
Alam, P.; Shakeel, F.; Anwer, M.K.; Foudah, A.I.; Alqarni, M.H. Wound healing study of eucalyptus essential oil containing nanoemulsion in rat model. J. Oleo Sci., 2018, 67(8), 957-968.
[http://dx.doi.org/10.5650/jos.ess18005] [PMID: 30012898]
[59]
Kehili, S. Peppermint (Mentha piperita L.) essential oil as a potent anti-inflammatory, wound healing and anti-nociceptive drug. Europ. J. Biol. Res., 2020, 10(2), 132-149.
[60]
Chin, K.B.; Cordell, B. The effect of tea tree oil (Melaleuca alternifolia) on wound healing using a dressing model. J. Altern. Complement. Med., 2013, 19(12), 942-945.
[http://dx.doi.org/10.1089/acm.2012.0787] [PMID: 23848210]
[61]
Tabatabaei, S.M. The effect of sesame oil and cucurbita on healing wounds caused by third-degree burn; J. Skin Stem Cell, 2017, p. 68333.
[http://dx.doi.org/10.5812/jssc.68333]
[62]
Donato-Trancoso, A.; Monte-Alto-Costa, A.; Romana-Souza, B. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice. J. Dermatol. Sci., 2016, 83(1), 60-69.
[http://dx.doi.org/10.1016/j.jdermsci.2016.03.012] [PMID: 27091748]
[63]
Jena, J.; Gupta, A.K. Ricinus communis Linn: A phytopharmacological review. Int. J. Pharma. Pharmaceut. Sci., 2012, 4(4), 25-29.
[64]
Kappally, S.; Shirwaikar, A.; Shirwaikar, A.J.H.J.M. Coconut oil-A review of potential applications. Hygeia. J. D. Med., 2015, 7(2), 34-41.
[65]
Barua, C. Evaluation of the wound healing activity of methanolic extract of Azadirachta Indica (Neem) and Tinospora cordifolia (Guduchi) in rats. Pharmacologyonline, 2010, 1, 70-77.
[66]
Suliman, R.S.; Alghamdi, S.S.; Ali, R.; Aljatli, D.; Aljammaz, N.A.; Huwaizi, S.; Suliman, R.; Kahtani, K.M.; Albadrani, G.M.; Barhoumi, T.; Altolayyan, A.; Rahman, I. The role of myrrh metabolites in cancer, inflammation, and wound healing: Prospects for a multi-targeted drug therapy. Pharmaceuticals, 2022, 15(8), 944.
[http://dx.doi.org/10.3390/ph15080944] [PMID: 36015092]
[67]
Yulianti, L.; Kelvin, K.J.J.o.F.; Sciences, P. Effectiveness of helichrysum italicum essential oil on wound healing. J. Food Pharmaceut. Sci., 2022, 10(2), 681-697.
[68]
Seyed Ahmadi, S.G.; Farahpour, M.R.; Hamishehkar, H. Topical application of Cinnamon verum essential oil accelerates infected wound healing process by increasing tissue antioxidant capacity and keratin biosynthesis. Kaohsiung J. Med. Sci., 2019, 35(11), 686-694.
[http://dx.doi.org/10.1002/kjm2.12120] [PMID: 31448873]
[69]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[70]
Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech., 2015, 5(2), 123-127.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[71]
Shaker, D.S. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci. Pharm., 2019, 87(3), 17.
[http://dx.doi.org/10.3390/scipharm87030017]
[72]
Mittal, K.L.; Shah, D.O. Adsorption and aggregation of surfactants in solution; CRC Press, 2002.
[http://dx.doi.org/10.1201/9780203910573]
[73]
Li, P.; Ghosh, A.; Wagner, R.F.; Krill, S.; Joshi, Y.M.; Serajuddin, A.T.M. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int. J. Pharm., 2005, 288(1), 27-34.
[http://dx.doi.org/10.1016/j.ijpharm.2004.08.024] [PMID: 15607255]
[74]
Mbela, T.K.M.; Deharo, E.; Haemers, A.; Ludwig, A. Submicron oil-in-water emulsion formulations for mefloquine and halofantrine: effect of electric-charge inducers on antimalarial activity in mice. J. Pharm. Pharmacol., 2011, 50(11), 1221-1225.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb03337.x] [PMID: 9877306]
[75]
Bhalani, V.T.; Patel, S.P. Pharmaceutical composition for cyclosporines; Google Patents, 1999.
[76]
Ghosh, P.; Murthy, R.J. Microemulsions: A potential drug delivery system. Curr. Drug Deliv., 2006, 3(2), 167-180.
[http://dx.doi.org/10.2174/156720106776359168]
[77]
Calvo, P.; Vila-Jato, J.L.; Alonso, M.J. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharmaceut., 1997, 153(1), 41-50.
[http://dx.doi.org/10.1016/S0378-5173(97)00083-5]
[78]
Schwarz, J.S.; Weisspapir, M.R.; Friedman, D.I. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams. Pharm. Res., 1995, 12(5), 687-692.
[http://dx.doi.org/10.1023/A:1016255408348] [PMID: 7479554]
[79]
Ko, K.T.; Needham, T.E.; Zia, H. Emulsion formulations of testosterone for nasal administration. J. Microencapsul., 1998, 15(2), 197-205.
[http://dx.doi.org/10.3109/02652049809006849] [PMID: 9532525]
[80]
Sznitowska, M.; Zurowska-Pryczkowska, K.; Janicki, S.; Järvinen, T. Miotic effect and irritation potential of pilocarpine prodrug incorporated into a submicron emulsion vehicle. Int. J. Pharm., 1999, 184(1), 115-120.
[http://dx.doi.org/10.1016/S0378-5173(99)00106-4] [PMID: 10425357]
[81]
Shinoda, K.; Lindman, B.J.L. Organized surfactant systems: Microemulsions. Langmuir, 1987, 3(2), 135-149.
[http://dx.doi.org/10.1021/la00074a001]
[82]
Wagner, J.G.; Gerard, E.S.; Kaiser, D.G. The effect of the dosage form on serum levels of indoxole. Clin. Pharmacol. Ther., 1966, 7(5), 610-619.
[http://dx.doi.org/10.1002/cpt196675610] [PMID: 5957166]
[83]
Kim, C.K.; Cho, Y.J.; Gao, Z.G. Preparation and evaluation of biphenyl dimethyl dicarboxylate microemulsions for oral delivery. J. Control. Release, 2001, 70(1-2), 149-155.
[http://dx.doi.org/10.1016/S0168-3659(00)00343-6] [PMID: 11166415]
[84]
Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; Gomez d’Ayala, G. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr. Polym., 2020, 233, 115839.
[http://dx.doi.org/10.1016/j.carbpol.2020.115839] [PMID: 32059889]
[85]
Foglio, M.J. Pharmaceutical compositions comprising arrabidaea chica extract in controlled release systems, production process and use thereof. W.O. Patent 2013091056A1, 2013.
[86]
Khan, A. Novel approaches for herbal drug delivery in wound healing. RE:view, 2022, 84(2), 247-260.
[87]
WALIA, P.A. A multifunctional natural wound healing matrix; Google Patents, 2014.
[88]
Al-Mutawaa, M.G.M. Ointment for healing burns and wounds; Google Patents, 2014.
[89]
Mirzaei, E. Electro spun nanofibrous wound dressing and a method of synthesizing the same; Google Patents, 2015.
[90]
Weller, K-A.C.; Weller, K.F.; McLoughlin, N.J. A topical herbal healing formulation; Google Patents, 2020.
[91]
Shraibom, N. Herbal combinations for wound healing in fibroblasts; Google Patents, 2018.
[92]
Tomulewicz, M. Herbal preparation for accelerating wounds and skin inflammations healing and its application; Google Patents, 2019.
[93]
Tomulewicz, M. Herbal preparation for accelerating wounds and skin inflammations healing, especially for treatment of herpes and acne, and its application; Google Patents, 2021.
[94]
Ahn, S. Biomimetic pro-regenerative scaffolds and methods of use thereof; Google Patents, 2020.
[95]
Pandey, P.; Gulati, N.; Makhija, M.; Purohit, D.; Dureja, H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat. Nanotechnol., 2020, 14(4), 276-293.
[http://dx.doi.org/10.2174/1872210514666200604145755] [PMID: 32496999]
[96]
Liubaviciute, A.; Ivaskiene, T.; Biziuleviciene, G.J.B. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals, 2020, 67(1)
[http://dx.doi.org/10.1016/j.biologicals.2020.08.003]
[97]
Zhang, A.; Liu, Y.; Qin, D.; Sun, M.; Wang, T.; Chen, X. Research status of self-healing hydrogel for wound management: A review. Int. J. Biol. Macromol., 2020, 164, 2108-2123.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.109] [PMID: 32798548]
[98]
Xiang, J.; Shen, L.; Hong, Y.J. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur. Polym. J., 2020, 130, 109609.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109609]
[99]
Maurya, A.; Singh, V.K.; Das, S.; Prasad, J.; Kedia, A.; Upadhyay, N.; Dubey, N.K.; Dwivedy, A.K. Essential oil nanoemulsion as eco-friendly and safe preservative: Bioefficacy against microbial food deterioration and toxin secretion, mode of action, and future opportunities. Front. Microbiol., 2021, 12, 751062.
[http://dx.doi.org/10.3389/fmicb.2021.751062] [PMID: 34912311]
[100]
Ahuja, A.; Gupta, J.; Gupta, R. Miracles of herbal phytomedicines in treatment of skin disorders: natural healthcare perspective. Infect. Disord. Drug Targets, 2021, 21(3), 328-338.
[http://dx.doi.org/10.2174/1871526520666200622142710] [PMID: 32568024]
[101]
Garg, A.; Chaturvedi, S. A comprehensive review on chrysin: Emphasis on molecular targets, pharmacological actions and bio-pharmaceutical aspects. Curr. Drug Targets, 2022, 23(4), 420-436.
[http://dx.doi.org/10.2174/1389450122666210824141044] [PMID: 34431464]
[102]
Chaturvedi, S.; Garg, A.; Verma, A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol., 2020, 59(101899), 101899.
[http://dx.doi.org/10.1016/j.jddst.2020.101899]
[103]
Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol., 2021, 62, 102355.
[http://dx.doi.org/10.1016/j.jddst.2021.102355]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy