Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update

Author(s): Sonia Singh*, Shiwangi Sharma and Himanshu Sharma

Volume 25, Issue 13, 2024

Published on: 01 January, 2024

Page: [1719 - 1746] Pages: 28

DOI: 10.2174/0113892010276859231125165251

Price: $65

Abstract

The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.

Graphical Abstract

[1]
Fan, J.; Ren, M.; Adhikari, B.K.; Wang, H.; He, Y. The NLRP3 inflammasome as a novel therapeutic target for cardiac fibrosis. J. Inflamm. Res., 2022, 15, 3847-3858.
[http://dx.doi.org/10.2147/JIR.S370483] [PMID: 35836721]
[2]
Özenver, N.; Efferth, T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol. Res., 2021, 170, 105710.
[http://dx.doi.org/10.1016/j.phrs.2021.105710] [PMID: 34089866]
[3]
Bagherniya, M.; Khedmatgozar, H.; Fakheran, O.; Xu, S.; Johnston, T.P.; Sahebkar, A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother. Res., 2021, 35(9), 4804-4833.
[http://dx.doi.org/10.1002/ptr.7118] [PMID: 33856730]
[4]
Wang, Y.; Liu, X.; Shi, H.; Yu, Y.; Yu, Y.; Li, M.; Chen, R. NLRP3 inflammasome, an immune‐inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin. Transl. Med., 2020, 10(1), 91-106.
[http://dx.doi.org/10.1002/ctm2.13] [PMID: 32508013]
[5]
Sandanger, Ø.; Gao, E.; Ranheim, T.; Bliksøen, M.; Kaasbøll, O.J.; Alfsnes, K.; Nymo, S.H.; Rashidi, A.; Ohm, I.K.; Attramadal, H.; Aukrust, P.; Vinge, L.E.; Yndestad, A. NLRP3 inflammasome activation during myocardial ischemia reperfusion is cardioprotective. Biochem. Biophys. Res. Commun., 2016, 469(4), 1012-1020.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.051] [PMID: 26706279]
[6]
Pinar, A.A.; Scott, T.E.; Huuskes, B.M.; Tapia Cáceres, F.E.; Kemp-Harper, B.K.; Samuel, C.S. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol. Ther., 2020, 209, 107511.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107511] [PMID: 32097669]
[7]
Louwe, M.C.; Olsen, M.B.; Kaasbøll, O.J.; Yang, K.; Fosshaug, L.E.; Alfsnes, K.; Øgaard, J.D.S.; Rashidi, A.; Skulberg, V.M.; Yang, M.; de Miranda Fonseca, D.; Sharma, A.; Aronsen, J.M.; Schrumpf, E.; Ahmed, M.S.; Dahl, C.P.; Nyman, T.A.; Ueland, T.; Melum, E.; Halvorsen, B.E.; Bjørås, M.; Attramadal, H.; Sjaastad, I.; Aukrust, P.; Yndestad, A. Absence of NLRP3 inflammasome in hematopoietic cells reduces adverse remodeling after experimental myocardial infarction. JACC Basic Transl. Sci., 2020, 5(12), 1210-1224.
[http://dx.doi.org/10.1016/j.jacbts.2020.09.013] [PMID: 33426377]
[8]
Bracey, N.A.; Gershkovich, B.; Chun, J.; Vilaysane, A.; Meijndert, H.C.; Wright, J.R., Jr; Fedak, P.W.; Beck, P.L.; Muruve, D.A.; Duff, H.J. Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome. J. Biol. Chem., 2014, 289(28), 19571-19584.
[http://dx.doi.org/10.1074/jbc.M114.550624] [PMID: 24841199]
[9]
Díaz-Araya, G.; Vivar, R.; Humeres, C.; Boza, P.; Bolivar, S.; Muñoz, C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol. Res., 2015, 101, 30-40.
[http://dx.doi.org/10.1016/j.phrs.2015.07.001] [PMID: 26151416]
[10]
Lv, S.; Zeng, Z.; Gan, W.; Wang, W.; Li, T.; Hou, Y.; Yan, Z.; Zhang, R.; Yang, M. Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol. Sin., 2021, 42(12), 2016-2032.
[http://dx.doi.org/10.1038/s41401-021-00703-7] [PMID: 34226664]
[11]
Pan, X.C.; Liu, Y.; Cen, Y.Y.; Xiong, Y.L.; Li, J.M.; Ding, Y.Y.; Tong, Y.F.; Liu, T.; Chen, X.H.; Zhang, H.G. Dual role of triptolide in interrupting the NLRP3 inflammasome pathway to attenuate cardiac fibrosis. Int. J. Mol. Sci., 2019, 20(2), 360.
[http://dx.doi.org/10.3390/ijms20020360] [PMID: 30654511]
[12]
Baman, J.R.; Cox, J.L.; McCarthy, P.M.; Kim, D.; Patel, R.B.; Passman, R.S.; Wilcox, J.E. Atrial fibrillation and atrial cardiomyopathies. J. Cardiovasc. Electrophysiol., 2021, 32(10), 2845-2853.
[http://dx.doi.org/10.1111/jce.15083] [PMID: 33993617]
[13]
Hu, Y.F.; Chen, Y.J.; Lin, Y.J.; Chen, S.A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol., 2015, 12(4), 230-243.
[http://dx.doi.org/10.1038/nrcardio.2015.2] [PMID: 25622848]
[14]
Ihara, K.; Sasano, T. Role of inflammation in the pathogenesis of atrial fibrillation. Front. Physiol., 2022, 13, 862164.
[http://dx.doi.org/10.3389/fphys.2022.862164] [PMID: 35492601]
[15]
Qiu, H.; Liu, W.; Lan, T.; Pan, W.; Chen, X.; Wu, H.; Xu, D. Salvianolate reduces atrial fibrillation through suppressing atrial interstitial fibrosis by inhibiting TGF-β1/Smad2/3 and TXNIP/NLRP3 inflammasome signaling pathways in post-MI rats. Phytomedicine, 2018, 51, 255-265.
[http://dx.doi.org/10.1016/j.phymed.2018.09.238] [PMID: 30466624]
[16]
Yao, C.; Veleva, T.; Scott, L., Jr; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Taha, I.; Ghezelbash, S.; Reynolds, C.L.; Shen, Y.H.; LeMaire, S.A.; Schmitz, W.; Müller, F.U.; El-Armouche, A.; Tony Eissa, N.; Beeton, C.; Nattel, S.; Wehrens, X.H.T.; Dobrev, D.; Li, N. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation, 2018, 138(20), 2227-2242.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035202] [PMID: 29802206]
[17]
Cheng, T.; Wang, X.F.; Hou, Y.T.; Zhang, L. Correlation between atrial fibrillation, serum amyloid protein A and other inflammatory cytokines. Mol. Med. Rep., 2012, 6(3), 581-584.
[http://dx.doi.org/10.3892/mmr.2012.934] [PMID: 22684635]
[18]
Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; St-Onge, M.P. Obesity and cardiovascular disease: A scientific statement from the American Heart Association. Circulation, 2021, 143(21), e984-e1010.
[http://dx.doi.org/10.1161/CIR.0000000000000973] [PMID: 33882682]
[19]
Groenewegen, A.; Zwartkruis, V.W.; Cekic, B.; de Boer, R.A.; Rienstra, M.; Hoes, A.W.; Rutten, F.H.; Hollander, M. Incidence of atrial fibrillation, ischaemic heart disease and heart failure in patients with diabetes. Cardiovasc. Diabetol., 2021, 20(1), 123.
[http://dx.doi.org/10.1186/s12933-021-01313-7] [PMID: 34134731]
[20]
Scott, L., Jr; Fender, A.C.; Saljic, A.; Li, L.; Chen, X.; Wang, X.; Linz, D.; Lang, J.; Hohl, M.; Twomey, D.; Pham, T.T.; Diaz-Lankenau, R.; Chelu, M.G.; Kamler, M.; Entman, M.L.; Taffet, G.E.; Sanders, P.; Dobrev, D.; Li, N. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc. Res., 2021, 117(7), 1746-1759.
[http://dx.doi.org/10.1093/cvr/cvab024] [PMID: 33523143]
[21]
Lewis, J.D.; Abreu, M.T. Diet as a trigger or therapy for inflammatory bowel diseases. Gastroenterology, 2017, 152(2), 398-414.e6.
[http://dx.doi.org/10.1053/j.gastro.2016.10.019] [PMID: 27793606]
[22]
Hanaei, S.; Sadr, M.; Rezaei, A.; Shahkarami, S.; Ebrahimi Daryani, N.; Bidoki, A.Z.; Rezaei, N. Association of NLRP3 single nucleotide polymorphisms with ulcerative colitis: A case-control study. Clin. Res. Hepatol. Gastroenterol., 2018, 42(3), 269-275.
[http://dx.doi.org/10.1016/j.clinre.2017.09.003] [PMID: 29102545]
[23]
Zhou, L.; Liu, T.; Huang, B.; Luo, M.; Chen, Z.; Zhao, Z.; Wang, J.; Leung, D.; Yang, X.; Chan, K.W.; Liu, Y.; Xiong, L.; Chen, P.; Wang, H.; Ye, L.; Liang, H.; Masters, S.L.; Lew, A.M.; Gong, S.; Bai, F.; Yang, J.; Pui-Wah Lee, P.; Yang, W.; Zhang, Y.; Lau, Y.L.; Geng, L.; Zhang, Y.; Cui, J. Excessive deubiquitination of NLRP3-R779C variant contributes to very-early-onset inflammatory bowel disease development. J. Allergy Clin. Immunol., 2021, 147(1), 267-279.
[http://dx.doi.org/10.1016/j.jaci.2020.09.003] [PMID: 32941940]
[24]
Tapia-Abellán, A.; Angosto-Bazarra, D.; Martínez-Banaclocha, H.; de Torre-Minguela, C.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H.; Arostegui, J.I.; Pelegrin, P. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat. Chem. Biol., 2019, 15(6), 560-564.
[http://dx.doi.org/10.1038/s41589-019-0278-6] [PMID: 31086329]
[25]
Christ, A.; Günther, P.; Lauterbach, M.A.R.; Duewell, P.; Biswas, D.; Pelka, K.; Scholz, C.J.; Oosting, M.; Haendler, K.; Baßler, K.; Klee, K.; Schulte-Schrepping, J.; Ulas, T.; Moorlag, S.J.C.F.M.; Kumar, V.; Park, M.H.; Joosten, L.A.B.; Groh, L.A.; Riksen, N.P.; Espevik, T.; Schlitzer, A.; Li, Y.; Fitzgerald, M.L.; Netea, M.G.; Schultze, J.L.; Latz, E. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell, 2018, 172(1-2), 162-175.e14.
[http://dx.doi.org/10.1016/j.cell.2017.12.013] [PMID: 29328911]
[26]
Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.H.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; Barrett, K.J.; Davies, R.J.; Bennett, C.; Gittens, S.; Dunlop, M.G.; Faiz, O.; Fraser, A.; Garrick, V.; Johnston, P.D.; Parkes, M.; Sanderson, J.; Terry, H.; Gaya, D.R.; Iqbal, T.H.; Taylor, S.A.; Smith, M.; Brookes, M.; Hansen, R.; Hawthorne, A.B. British Society of gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut, 2019, 68(S3), s1-s106.
[http://dx.doi.org/10.1136/gutjnl-2019-318484] [PMID: 31562236]
[27]
Sun, M.; Wu, W.; Liu, Z.; Cong, Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol., 2017, 52(1), 1-8.
[http://dx.doi.org/10.1007/s00535-016-1242-9] [PMID: 27448578]
[28]
Zuo, T.; Kamm, M.A.; Colombel, J.F.; Ng, S.C. Urbanization and the gut microbiota in health and inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(7), 440-452.
[http://dx.doi.org/10.1038/s41575-018-0003-z] [PMID: 29670252]
[29]
Liao, L.; Schneider, K.M.; Galvez, E.J.C.; Frissen, M.; Marschall, H.U.; Su, H.; Hatting, M.; Wahlström, A.; Haybaeck, J.; Puchas, P.; Mohs, A.; Peng, J.; Bergheim, I.; Nier, A.; Hennings, J.; Reißing, J.; Zimmermann, H.W.; Longerich, T.; Strowig, T.; Liedtke, C.; Cubero, F.J.; Trautwein, C. Intestinal dysbiosis augments liver disease progression via NLRP3 in a murine model of primary sclerosing cholangitis. Gut, 2019, 68(8), 1477-1492.
[http://dx.doi.org/10.1136/gutjnl-2018-316670] [PMID: 30872395]
[30]
Dror, E.; Dalmas, E.; Meier, D.T.; Wueest, S.; Thévenet, J.; Thienel, C.; Timper, K.; Nordmann, T.M.; Traub, S.; Schulze, F.; Item, F.; Vallois, D.; Pattou, F.; Kerr-Conte, J.; Lavallard, V.; Berney, T.; Thorens, B.; Konrad, D.; Böni-Schnetzler, M.; Donath, M.Y. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol., 2017, 18(3), 283-292.
[http://dx.doi.org/10.1038/ni.3659] [PMID: 28092375]
[31]
Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; Gu, Y.; Xu, Q. Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 2014, 10(6), 972-985.
[http://dx.doi.org/10.4161/auto.28374] [PMID: 24879148]
[32]
Huber, S.; Gagliani, N.; Zenewicz, L.A.; Huber, F.J.; Bosurgi, L.; Hu, B.; Hedl, M.; Zhang, W.; O’Connor, W., Jr; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Booth, C.J.; Cho, J.H.; Ouyang, W.; Abraham, C.; Flavell, R.A. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature, 2012, 491(7423), 259-263.
[http://dx.doi.org/10.1038/nature11535] [PMID: 23075849]
[33]
Bauernfeind, F.G.; Horvath, G.; Stutz, A.; Alnemri, E.S.; MacDonald, K.; Speert, D.; Fernandes-Alnemri, T.; Wu, J.; Monks, B.G.; Fitzgerald, K.A.; Hornung, V.; Latz, E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, 183(2), 787-791.
[http://dx.doi.org/10.4049/jimmunol.0901363] [PMID: 19570822]
[34]
Franchi, L.; Eigenbrod, T.; Núñez, G. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol., 2009, 183(2), 792-796.
[http://dx.doi.org/10.4049/jimmunol.0900173] [PMID: 19542372]
[35]
Lemmers, B.; Salmena, L.; Bidère, N.; Su, H.; Matysiak-Zablocki, E.; Murakami, K.; Ohashi, P.S.; Jurisicova, A.; Lenardo, M.; Hakem, R.; Hakem, A. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J. Biol. Chem., 2007, 282(10), 7416-7423.
[http://dx.doi.org/10.1074/jbc.M606721200] [PMID: 17213198]
[36]
Juliana, C.; Fernandes-Alnemri, T.; Kang, S.; Farias, A.; Qin, F.; Alnemri, E.S. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem., 2012, 287(43), 36617-36622.
[http://dx.doi.org/10.1074/jbc.M112.407130] [PMID: 22948162]
[37]
Schroder, K.; Sagulenko, V.; Zamoshnikova, A.; Richards, A.A.; Cridland, J.A.; Irvine, K.M.; Stacey, K.J.; Sweet, M.J. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology, 2012, 217(12), 1325-1329.
[http://dx.doi.org/10.1016/j.imbio.2012.07.020] [PMID: 22898390]
[38]
Kim, S.J.; Cha, J.Y.; Kang, H.S.; Lee, J.H.; Lee, J.Y.; Park, J.H.; Bae, J.H.; Song, D.K.; Im, S.S. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages. BMB Rep., 2016, 49(5), 276-281.
[http://dx.doi.org/10.5483/BMBRep.2016.49.5.241] [PMID: 26615974]
[39]
Song, N.; Liu, Z.S.; Xue, W.; Bai, Z.F.; Wang, Q.Y.; Dai, J.; Liu, X.; Huang, Y.J.; Cai, H.; Zhan, X.Y.; Han, Q.Y.; Wang, H.; Chen, Y.; Li, H.Y.; Li, A.L.; Zhang, X.M.; Zhou, T.; Li, T. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol. Cell, 2017, 68(1), 185-197.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.08.017] [PMID: 28943315]
[40]
Mariathasan, S.; Weiss, D.S.; Newton, K.; McBride, J.; O’Rourke, K.; Roose-Girma, M.; Lee, W.P.; Weinrauch, Y.; Monack, D.M.; Dixit, V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440(7081), 228-232.
[http://dx.doi.org/10.1038/nature04515] [PMID: 16407890]
[41]
Kanneganti, T.D.; Özören, N.; Body-Malapel, M.; Amer, A.; Park, J.H.; Franchi, L.; Whitfield, J.; Barchet, W.; Colonna, M.; Vandenabeele, P.; Bertin, J.; Coyle, A.; Grant, E.P.; Akira, S.; Núñez, G. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 2006, 440(7081), 233-236.
[http://dx.doi.org/10.1038/nature04517] [PMID: 16407888]
[42]
Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008, 320(5876), 674-677.
[http://dx.doi.org/10.1126/science.1156995] [PMID: 18403674]
[43]
Gupta, R.; Ghosh, S.; Monks, B.; DeOliveira, R.B.; Tzeng, T.C.; Kalantari, P.; Nandy, A.; Bhattacharjee, B.; Chan, J.; Ferreira, F.; Rathinam, V.; Sharma, S.; Lien, E.; Silverman, N.; Fitzgerald, K.; Firon, A.; Trieu-Cuot, P.; Henneke, P.; Golenbock, D.T. RNA and β-hemolysin of group B Streptococcus induce interleukin-1β (IL-1β) by activating NLRP3 inflammasomes in mouse macrophages. J. Biol. Chem., 2014, 289(20), 13701-13705.
[http://dx.doi.org/10.1074/jbc.C114.548982] [PMID: 24692555]
[44]
Sha, W.; Mitoma, H.; Hanabuchi, S.; Bao, M.; Weng, L.; Sugimoto, N.; Liu, Y.; Zhang, Z.; Zhong, J.; Sun, B.; Liu, Y.J. Human NLRP3 inflammasome senses multiple types of bacterial RNAs. Proc. Natl. Acad. Sci., 2014, 111(45), 16059-16064.
[http://dx.doi.org/10.1073/pnas.1412487111] [PMID: 25355909]
[45]
Skeldon, A.; Saleh, M. The inflammasomes: Molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front. Microbiol., 2011, 2, 15.
[http://dx.doi.org/10.3389/fmicb.2011.00015] [PMID: 21716947]
[46]
Lee, M.S.; Kwon, H.; Lee, E.Y.; Kim, D.J.; Park, J.H.; Tesh, V.L.; Oh, T.K.; Kim, M.H. Shiga toxins activate the NLRP3 inflammasome pathway to promote both production of the proinflammatory cytokine interleukin-1β and apoptotic cell death. Infect. Immun., 2016, 84(1), 172-186.
[http://dx.doi.org/10.1128/IAI.01095-15] [PMID: 26502906]
[47]
Kasper, L.; König, A.; Koenig, P.A.; Gresnigt, M.S.; Westman, J.; Drummond, R.A.; Lionakis, M.S.; Groß, O.; Ruland, J.; Naglik, J.R.; Hube, B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun., 2018, 9(1), 4260.
[http://dx.doi.org/10.1038/s41467-018-06607-1] [PMID: 30323213]
[48]
Rogiers, O.; Frising, U.C.; Kucharíková, S.; Jabra-Rizk, M.A.; van Loo, G.; Van Dijck, P.; Wullaert, A. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. MBio, 2019, 10(1), e02221-e18.
[http://dx.doi.org/10.1128/mBio.02221-18] [PMID: 30622184]
[49]
Mathur, A.; Feng, S.; Hayward, J.A.; Ngo, C.; Fox, D.; Atmosukarto, I.I.; Price, J.D.; Schauer, K.; Märtlbauer, E.; Robertson, A.A.B.; Burgio, G.; Fox, E.M.; Leppla, S.H.; Kaakoush, N.O.; Man, S.M. A multicomponent toxin from Bacillus cereus incites inflammation and shapes host outcome via the NLRP3 inflammasome. Nat. Microbiol., 2018, 4(2), 362-374.
[http://dx.doi.org/10.1038/s41564-018-0318-0] [PMID: 30531979]
[50]
Perregaux, D.; Gabel, C.A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem., 1994, 269(21), 15195-15203.
[http://dx.doi.org/10.1016/S0021-9258(17)36591-2] [PMID: 8195155]
[51]
Walev, I.; Reske, K.; Palmer, M.; Valeva, A.; Bhakdi, S. Potassium-inhibited processing of IL-1 beta in human monocytes. EMBO J., 1995, 14(8), 1607-1614.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07149.x] [PMID: 7737113]
[52]
Walev, I.; Klein, J.; Husmann, M.; Valeva, A.; Strauch, S.; Wirtz, H.; Weichel, O.; Bhakdi, S. Potassium regulates IL-1 β processing via calcium-independent phospholipase A2. J. Immunol., 2000, 164(10), 5120-5124.
[http://dx.doi.org/10.4049/jimmunol.164.10.5120] [PMID: 10799869]
[53]
Muñoz-Planillo, R.; Kuffa, P.; Martínez-Colón, G.; Smith, B.L.; Rajendiran, T.M. Núñez, G.K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153.
[http://dx.doi.org/10.1016/j.immuni.2013.05.016] [PMID: 23809161]
[54]
Pétrilli, V.; Papin, S.; Dostert, C.; Mayor, A.; Martinon, F.; Tschopp, J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ., 2007, 14(9), 1583-1589.
[http://dx.doi.org/10.1038/sj.cdd.4402195] [PMID: 17599094]
[55]
Rühl, S.; Broz, P. Caspase‐11 activates a canonical NLRP3 inflammasome by promoting K + efflux. Eur. J. Immunol., 2015, 45(10), 2927-2936.
[http://dx.doi.org/10.1002/eji.201545772] [PMID: 26173909]
[56]
Yang, D.; He, Y.; Muñoz-Planillo, R.; Liu, Q.; Núñez, G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity, 2015, 43(5), 923-932.
[http://dx.doi.org/10.1016/j.immuni.2015.10.009] [PMID: 26572062]
[57]
Groß, C.J.; Mishra, R.; Schneider, K.S.; Médard, G.; Wettmarshausen, J.; Dittlein, D.C.; Shi, H.; Gorka, O.; Koenig, P.A.; Fromm, S.; Magnani, G.; Ćiković, T.; Hartjes, L.; Smollich, J.; Robertson, A.A.B.; Cooper, M.A.; Schmidt-Supprian, M.; Schuster, M.; Schroder, K.; Broz, P.; Traidl-Hoffmann, C.; Beutler, B.; Kuster, B.; Ruland, J.; Schneider, S.; Perocchi, F.; Groß, O. + efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity, 2016, 45(4), 761-773.
[http://dx.doi.org/10.1016/j.immuni.2016.08.010] [PMID: 27692612]
[58]
Sanman, L.E.; Qian, Y.; Eisele, N.A.; Ng, T.M.; van der Linden, W.A.; Monack, D.M.; Weerapana, E.; Bogyo, M. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. eLife, 2016, 5, e13663.
[http://dx.doi.org/10.7554/eLife.13663] [PMID: 27011353]
[59]
Verhoef, P.A.; Kertesy, S.B.; Lundberg, K.; Kahlenberg, J.M.; Dubyak, G.R. Inhibitory effects of chloride on the activation of caspase-1, IL-1β secretion, and cytolysis by the P2X7 receptor. J. Immunol., 2005, 175(11), 7623-7634.
[http://dx.doi.org/10.4049/jimmunol.175.11.7623] [PMID: 16301672]
[60]
Perregaux, D.G.; Laliberte, R.E.; Gabel, C.A. Human monocyte interleukin-1β posttranslational processing. Evidence of a volume-regulated response. J. Biol. Chem., 1996, 271(47), 29830-29838.
[http://dx.doi.org/10.1074/jbc.271.47.29830] [PMID: 8939922]
[61]
Tang, T.; Lang, X.; Xu, C.; Wang, X.; Gong, T.; Yang, Y.; Cui, J.; Bai, L.; Wang, J.; Jiang, W.; Zhou, R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat. Commun., 2017, 8(1), 202.
[http://dx.doi.org/10.1038/s41467-017-00227-x] [PMID: 28779175]
[62]
Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; Wong, R.; Latta, C.; Yu, S.; Jackson, J.; Fischer, N.; Koziel, V.; Pillot, T.; Bagnall, J.; Allan, S.M.; Paszek, P.; Galea, J.; Harte, M.K.; Eder, C.; Lawrence, C.B.; Brough, D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, 7(1), 12504.
[http://dx.doi.org/10.1038/ncomms12504] [PMID: 27509875]
[63]
Domingo-Fernández, R.; Coll, R.C.; Kearney, J.; Breit, S.; O’Neill, L.A.J. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J. Biol. Chem., 2017, 292(29), 12077-12087.
[http://dx.doi.org/10.1074/jbc.M117.797126] [PMID: 28576828]
[64]
Green, J.P.; Yu, S.; Martín-Sánchez, F.; Pelegrin, P.; Lopez-Castejon, G.; Lawrence, C.B.; Brough, D. Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9371-E9380.
[http://dx.doi.org/10.1073/pnas.1812744115] [PMID: 30232264]
[65]
Parys, J.B.; De Smedt, H. Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp. Med. Biol., 2012, 740, 255-279.
[http://dx.doi.org/10.1007/978-94-007-2888-2_11] [PMID: 22453946]
[66]
Murakami, T.; Ockinger, J.; Yu, J.; Byles, V.; McColl, A.; Hofer, A.M.; Horng, T. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci., 2012, 109(28), 11282-11287.
[http://dx.doi.org/10.1073/pnas.1117765109] [PMID: 22733741]
[67]
Lee, G.S.; Subramanian, N.; Kim, A.I.; Aksentijevich, I.; Goldbach-Mansky, R.; Sacks, D.B.; Germain, R.N.; Kastner, D.L.; Chae, J.J. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature, 2012, 492(7427), 123-127.
[http://dx.doi.org/10.1038/nature11588] [PMID: 23143333]
[68]
Katsnelson, M.A.; Rucker, L.G.; Russo, H.M.; Dubyak, G.R. K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J. Immunol., 2015, 194(8), 3937-3952.
[http://dx.doi.org/10.4049/jimmunol.1402658] [PMID: 25762778]
[69]
Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.011] [PMID: 28943355]
[70]
Weber, K.; Schilling, J.D. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J. Biol. Chem., 2014, 289(13), 9158-9171.
[http://dx.doi.org/10.1074/jbc.M113.531202] [PMID: 24532802]
[71]
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 2006, 440(7081), 237-241.
[http://dx.doi.org/10.1038/nature04516] [PMID: 16407889]
[72]
Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol., 2008, 9(8), 847-856.
[http://dx.doi.org/10.1038/ni.1631] [PMID: 18604214]
[73]
Halle, A.; Hornung, V.; Petzold, G.C.; Stewart, C.R.; Monks, B.G.; Reinheckel, T.; Fitzgerald, K.A.; Latz, E.; Moore, K.J.; Golenbock, D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-β. Nat. Immunol., 2008, 9(8), 857-865.
[http://dx.doi.org/10.1038/ni.1636] [PMID: 18604209]
[74]
Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; Espevik, T.; Lien, E.; Fitzgerald, K.A.; Rock, K.L.; Moore, K.J.; Wright, S.D.; Hornung, V.; Latz, E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, 464(7293), 1357-1361.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[75]
Cassel, S.L.; Eisenbarth, S.C.; Iyer, S.S.; Sadler, J.J.; Colegio, O.R.; Tephly, L.A.; Carter, A.B.; Rothman, P.B.; Flavell, R.A.; Sutterwala, F.S. The Nalp3 inflammasome is essential for the development of silicosis. Proc. Natl. Acad. Sci., 2008, 105(26), 9035-9040.
[http://dx.doi.org/10.1073/pnas.0803933105] [PMID: 18577586]
[76]
Kool, M.; Pétrilli, V.; De Smedt, T.; Rolaz, A.; Hammad, H.; van Nimwegen, M.; Bergen, I.M.; Castillo, R.; Lambrecht, B.N.; Tschopp, J. Cutting edge: Alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol., 2008, 181(6), 3755-3759.
[http://dx.doi.org/10.4049/jimmunol.181.6.3755] [PMID: 18768827]
[77]
Schorn, C.; Frey, B.; Lauber, K.; Janko, C.; Strysio, M.; Keppeler, H.; Gaipl, U.S.; Voll, R.E.; Springer, E.; Munoz, L.E.; Schett, G.; Herrmann, M. Sodium overload and water influx activate the NALP3 inflammasome. J. Biol. Chem., 2011, 286(1), 35-41.
[http://dx.doi.org/10.1074/jbc.M110.139048] [PMID: 21051542]
[78]
Codolo, G.; Plotegher, N.; Pozzobon, T.; Brucale, M.; Tessari, I.; Bubacco, L.; de Bernard, M. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One, 2013, 8(1), e55375.
[http://dx.doi.org/10.1371/journal.pone.0055375] [PMID: 23383169]
[79]
Ruiz-Miyazawa, K.W.; Pinho-Ribeiro, F.A.; Borghi, S.M.; Staurengo-Ferrari, L.; Fattori, V.; Amaral, F.A.; Teixeira, M.M.; Alves-Filho, J.C.; Cunha, T.M.; Cunha, F.Q.; Casagrande, R.; Verri, W.A. Jr Hesperidin methylchalcone suppresses experimental gout arthritis in mice by inhibiting NF-κB activation. J. Agric. Food Chem., 2018, 66(25), 6269-6280.
[http://dx.doi.org/10.1021/acs.jafc.8b00959] [PMID: 29852732]
[80]
Guo, C.; Fu, R.; Wang, S.; Huang, Y.; Li, X.; Zhou, M.; Zhao, J.; Yang, N. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin. Exp. Immunol., 2018, 194(2), 231-243.
[http://dx.doi.org/10.1111/cei.13167] [PMID: 30277570]
[81]
Ruscitti, P.; Cipriani, P.; Di Benedetto, P.; Liakouli, V.; Berardicurti, O.; Carubbi, F.; Ciccia, F.; Alvaro, S.; Triolo, G.; Giacomelli, R. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1 βvia the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: A possible implication for therapeutic decision in these patients. Clin. Exp. Immunol., 2015, 182(1), 35-44.
[http://dx.doi.org/10.1111/cei.12667] [PMID: 26095630]
[82]
Cruz, C.M.; Rinna, A.; Forman, H.J.; Ventura, A.L.M.; Persechini, P.M.; Ojcius, D.M. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem., 2007, 282(5), 2871-2879.
[http://dx.doi.org/10.1074/jbc.M608083200] [PMID: 17132626]
[83]
Zhong, Z.; Zhai, Y.; Liang, S.; Mori, Y.; Han, R.; Sutterwala, F.S.; Qiao, L. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat. Commun., 2013, 4(1), 1611.
[http://dx.doi.org/10.1038/ncomms2608] [PMID: 23511475]
[84]
van Bruggen, R.; Köker, M.Y.; Jansen, M.; van Houdt, M.; Roos, D.; Kuijpers, T.W.; van den Berg, T.K. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood, 2010, 115(26), 5398-5400.
[http://dx.doi.org/10.1182/blood-2009-10-250803] [PMID: 20407038]
[85]
Ma, MW.; Wang, J.; Dhandapani, KM.; Brann, DW. NADPH oxidase 2 regulates NLRP3 inflammasome activation in the brain after traumatic brain injury. Oxid. Med. Cell. Longev., 2017, 2017, 6057609.
[http://dx.doi.org/10.1155/2017/6057609]
[86]
Moon, J.S.; Nakahira, K.; Chung, K.P.; DeNicola, G.M.; Koo, M.J.; Pabón, M.A.; Rooney, K.T.; Yoon, J.H.; Ryter, S.W.; Stout-Delgado, H.; Choi, A.M.K. NOX4-dependent fatty acid oxidation promotes NLRP3 inflammasome activation in macrophages. Nat. Med., 2016, 22(9), 1002-1012.
[http://dx.doi.org/10.1038/nm.4153] [PMID: 27455510]
[87]
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[88]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.K.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M.K. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[89]
Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; Rentsendorj, A.; Vargas, M.; Guerrero, C.; Wang, Y.; Fitzgerald, K.A.; Underhill, D.M.; Town, T.; Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[90]
Zhong, Z.; Liang, S.; Sanchez-Lopez, E.; He, F.; Shalapour, S.; Lin, X.; Wong, J.; Ding, S.; Seki, E.; Schnabl, B.; Hevener, A.L.; Greenberg, H.B.; Kisseleva, T.; Karin, M. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560(7717), 198-203.
[http://dx.doi.org/10.1038/s41586-018-0372-z] [PMID: 30046112]
[91]
Gurung, P.; Anand, P.K.; Malireddi, R.K.S.; Vande Walle, L.; Van Opdenbosch, N.; Dillon, C.P.; Weinlich, R.; Green, D.R.; Lamkanfi, M.; Kanneganti, T.D. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol., 2014, 192(4), 1835-1846.
[http://dx.doi.org/10.4049/jimmunol.1302839] [PMID: 24453255]
[92]
Orlowski, G.M.; Colbert, J.D.; Sharma, S.; Bogyo, M.; Robertson, S.A.; Rock, K.L. Multiple cathepsins promote pro–IL-1β synthesis and NLRP3-mediated IL-1β activation. J. Immunol., 2015, 195(4), 1685-1697.
[http://dx.doi.org/10.4049/jimmunol.1500509] [PMID: 26195813]
[93]
Barlan, A.U.; Griffin, T.M.; Mcguire, K.A.; Wiethoff, C.M. Adenovirus membrane penetration activates the NLRP3 inflammasome. J. Virol., 2011, 85(1), 146-155.
[http://dx.doi.org/10.1128/JVI.01265-10] [PMID: 20980503]
[94]
Shin, H.J.; Kim, S.H.; Park, H.J.; Shin, M.S.; Kang, I.; Kang, M.J. Nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation, and cellular senescence and accelerates aging lung‐like changes. Aging Cell, 2021, 20(7), e13410.
[http://dx.doi.org/10.1111/acel.13410] [PMID: 34087956]
[95]
Awad, F.; Assrawi, E.; Jumeau, C.; Georgin-Lavialle, S.; Cobret, L.; Duquesnoy, P.; Piterboth, W.; Thomas, L.; Stankovic-Stojanovic, K.; Louvrier, C.; Giurgea, I.; Grateau, G.; Amselem, S.; Karabina, S.A. Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One, 2017, 12(4), e0175336.
[http://dx.doi.org/10.1371/journal.pone.0175336] [PMID: 28403163]
[96]
Li, Z.; Guo, J.; Bi, L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother., 2020, 130, 110542.
[http://dx.doi.org/10.1016/j.biopha.2020.110542] [PMID: 32738636]
[97]
Fresneda Alarcon, M.; McLaren, Z.; Wright, H.L. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: Same foe different MO. Front. Immunol., 2021, 12, 649693.
[http://dx.doi.org/10.3389/fimmu.2021.649693] [PMID: 33746988]
[98]
Kolly, L.; Busso, N.; Palmer, G.; Talabot-Ayer, D.; Chobaz, V.; So, A. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology, 2010, 129(2), 178-185.
[http://dx.doi.org/10.1111/j.1365-2567.2009.03174.x] [PMID: 19824913]
[99]
Lee, H.M.; Kim, J.J.; Kim, H.J.; Shong, M.; Ku, B.J.; Jo, E.K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes, 2013, 62(1), 194-204.
[http://dx.doi.org/10.2337/db12-0420] [PMID: 23086037]
[100]
Stutz, A.; Golenbock, D.T.; Latz, E. Inflammasomes: Too big to miss. J. Clin. Invest., 2009, 119(12), 3502-3511.
[http://dx.doi.org/10.1172/JCI40599] [PMID: 19955661]
[101]
Shaw, P.J.; McDermott, M.F.; Kanneganti, T.D. Inflammasomes and autoimmunity. Trends Mol. Med., 2011, 17(2), 57-64.
[http://dx.doi.org/10.1016/j.molmed.2010.11.001] [PMID: 21163704]
[102]
Biasizzo, M.; Kopitar-Jerala, N. Interplay between NLRP3 inflammasome and autophagy. Front. Immunol., 2020, 11, 591803.
[http://dx.doi.org/10.3389/fimmu.2020.591803] [PMID: 33163006]
[103]
Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801.
[http://dx.doi.org/10.1172/JCI29069] [PMID: 16823477]
[104]
Ceriello, A.; Motz, E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol., 2004, 24(5), 816-823.
[http://dx.doi.org/10.1161/01.ATV.0000122852.22604.78] [PMID: 14976002]
[105]
De Nardo, D.; Latz, E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol., 2011, 32(8), 373-379.
[http://dx.doi.org/10.1016/j.it.2011.05.004] [PMID: 21733753]
[106]
Perwez Hussain, S.; Harris, C.C. Inflammation and cancer: An ancient link with novel potentials. Int. J. Cancer, 2007, 121(11), 2373-2380.
[http://dx.doi.org/10.1002/ijc.23173] [PMID: 17893866]
[107]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[108]
Berraondo, P.; Minute, L.; Ajona, D.; Corrales, L.; Melero, I.; Pio, R. Innate immune mediators in cancer: Between defense and resistance. Immunol. Rev., 2016, 274(1), 290-306.
[http://dx.doi.org/10.1111/imr.12464] [PMID: 27782320]
[109]
de Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer, 2006, 6(1), 24-37.
[http://dx.doi.org/10.1038/nrc1782] [PMID: 16397525]
[110]
Broz, P.; Monack, D.M. Molecular mechanisms of inflammasome activation during microbial infections. Immunol. Rev., 2011, 243(1), 174-190.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01041.x] [PMID: 21884176]
[111]
Jo, E.K.; Kim, J.K.; Shin, D.M.; Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell. Mol. Immunol., 2016, 13(2), 148-159.
[http://dx.doi.org/10.1038/cmi.2015.95] [PMID: 26549800]
[112]
Bae, J.Y.; Lee, S.W.; Shin, Y.H.; Lee, J.H.; Jahng, J.W.; Park, K. P2X7 receptor and NLRP3 inflammasome activation in head and neck cancer. Oncotarget, 2017, 8(30), 48972-48982.
[http://dx.doi.org/10.18632/oncotarget.16903] [PMID: 28430665]
[113]
Huang, C.F.; Chen, L.; Li, Y.C.; Wu, L.; Yu, G.T.; Zhang, W.F.; Sun, Z.J. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res., 2017, 36(1), 116.
[http://dx.doi.org/10.1186/s13046-017-0589-y] [PMID: 28865486]
[114]
Markopoulos, A.K. Current aspects on oral squamous cell carcinoma. Open Dent. J., 2012, 6(1), 126-130.
[http://dx.doi.org/10.2174/1874210601206010126] [PMID: 22930665]
[115]
Massano, J.; Regateiro, FS.; Januário, G. Ferreira, A Oral squamous cell carcinoma: Review of prognostic and predictive factors. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006, 102(1), 67-76.
[http://dx.doi.org/10.1016/j.tripleo.2005.07.038]
[116]
Moossavi, M.; Parsamanesh, N.; Bahrami, A.; Atkin, S.L.; Sahebkar, A. Role of the NLRP3 inflammasome in cancer. Mol. Cancer, 2018, 17(1), 158.
[http://dx.doi.org/10.1186/s12943-018-0900-3] [PMID: 30447690]
[117]
Kumar, A; Sarode, SC; Sarode, GS; Majumdar, B; Patil, S; Sharma, NK Beyond gene dictation in oral squamous cell carcinoma progression and its therapeutic implications. Translat. Res. Oral. Oncol., 2017, (2), 2057178X17701463.
[http://dx.doi.org/10.1177/2057178X17701463]
[118]
Nagata, M.; Nakayama, H.; Tanaka, T.; Yoshida, R.; Yoshitake, Y.; Fukuma, D.; Kawahara, K.; Nakagawa, Y.; Ota, K.; Hiraki, A.; Shinohara, M. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer, 2011, 105(9), 1322-1330.
[http://dx.doi.org/10.1038/bjc.2011.387] [PMID: 21952624]
[119]
Wong, M.C.S.; Lao, X.Q.; Ho, K.F.; Goggins, W.B.; Tse, S.L.A. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Sci. Rep., 2017, 7(1), 14300.
[http://dx.doi.org/10.1038/s41598-017-14513-7] [PMID: 29085026]
[120]
Gwyer, F.E.; Hussell, T. Macrophage-mediated inflammation and disease: A focus on the lung. Mediators Inflamm., 2012, 2012, 140937.
[http://dx.doi.org/10.1155/2012/140937]
[121]
Lin, Y.F.; Lee, Y.H.; Hsu, Y.H.; Chen, Y.J.; Lin, Y.F.; Cheng, F.Y.; Chiu, H.W. Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine, 2017, 12(22), 2741-2756.
[http://dx.doi.org/10.2217/nnm-2017-0256] [PMID: 28884615]
[122]
Zhang, L.; Chu, W.; Zheng, L.; Li, J.; Ren, Y.; Xue, L.; Duan, W.; Wang, Q.; Li, H. Zinc oxide nanoparticles from Cyperus rotundus attenuates diabetic retinopathy by inhibiting NLRP3 inflammasome activation in STZ‐induced diabetic rats. J. Biochem. Mol. Toxicol., 2020, 34(12), e22583.
[http://dx.doi.org/10.1002/jbt.22583] [PMID: 32692483]
[123]
Jabir, M.S.; Saleh, Y.M.; Sulaiman, G.M.; Yaseen, N.Y.; Sahib, U.I.; Dewir, Y.H.; Alwahibi, M.S.; Soliman, D.A. Green synthesis of silver nanoparticles using Annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy. Nanomaterials, 2021, 11(2), 384.
[http://dx.doi.org/10.3390/nano11020384] [PMID: 33546151]
[124]
Diez-Echave, P.; Ruiz-Malagón, A.J.; Molina-Tijeras, J.A.; Hidalgo-García, L.; Vezza, T.; Cenis-Cifuentes, L.; Rodríguez-Sojo, M.J.; Cenis, J.L.; Rodríguez-Cabezas, M.E.; Rodríguez-Nogales, A.; Gálvez, J.; Lozano-Pérez, A.A. Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. Int. J. Pharm., 2021, 606, 120935.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120935] [PMID: 34310954]
[125]
Chen, X.; Zhou, Y.; Yu, J. Exosome-like nanoparticles from ginger rhizomes inhibited NLRP3 inflammasome activation. Mol. Pharm., 2019, 16(6), 2690-2699.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00246] [PMID: 31038962]
[126]
Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 inflammasome activation in obesity-mediated metabolic disorders. Int. J. Environ. Res. Public Health, 2021, 18(2), 511.
[http://dx.doi.org/10.3390/ijerph18020511] [PMID: 33435142]
[127]
Sanna, S.; van Zuydam, N.R.; Mahajan, A.; Kurilshikov, A.; Vich Vila, A.; Võsa, U.; Mujagic, Z.; Masclee, A.A.M.; Jonkers, D.M.A.E.; Oosting, M.; Joosten, L.A.B.; Netea, M.G.; Franke, L.; Zhernakova, A.; Fu, J.; Wijmenga, C.; McCarthy, M.I. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet., 2019, 51(4), 600-605.
[http://dx.doi.org/10.1038/s41588-019-0350-x] [PMID: 30778224]
[128]
Ding, S.; Xu, S.; Ma, Y.; Liu, G.; Jang, H.; Fang, J. Modulatory mechanisms of the NLRP3 inflammasomes in diabetes. Biomolecules, 2019, 9(12), 850.
[http://dx.doi.org/10.3390/biom9120850] [PMID: 31835423]
[129]
Aruna, R.; Geetha, A.; Suguna, P. Rutin modulates ASC expression in NLRP3 inflammasome: A study in alcohol and cerulein-induced rat model of pancreatitis. Mol. Cell. Biochem., 2014, 396(1-2), 269-280.
[http://dx.doi.org/10.1007/s11010-014-2162-8] [PMID: 25060908]
[130]
Gong, Z.; Zhou, J.; Li, H.; Gao, Y.; Xu, C.; Zhao, S.; Chen, Y.; Cai, W.; Wu, J. Curcumin suppresses NLRP3 inflammasome activation and protects against LPS‐induced septic shock. Mol. Nutr. Food Res., 2015, 59(11), 2132-2142.
[http://dx.doi.org/10.1002/mnfr.201500316] [PMID: 26250869]
[131]
Gousiadou, C.; Kokubun, T.; Gotfredsen, C.H.; Jensen, S.R. Further iridoid glucosides in the genus Manulea (Scrophulariaceae). Phytochemistry, 2015, 109, 43-48.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.004] [PMID: 25457503]
[132]
Cabrera, D.; Wree, A.; Povero, D.; Solís, N.; Hernandez, A.; Pizarro, M.; Moshage, H.; Torres, J.; Feldstein, A.E.; Cabello-Verrugio, C.; Brandan, E.; Barrera, F.; Arab, J.P.; Arrese, M. Andrographolide ameliorates inflammation and fibrogenesis and attenuates inflammasome activation in experimental non-alcoholic steatohepatitis. Sci. Rep., 2017, 7(1), 3491.
[http://dx.doi.org/10.1038/s41598-017-03675-z] [PMID: 28615649]
[133]
Wen, Y.; Pan, M.M.; Lv, L.L.; Tang, T.T.; Zhou, L.T.; Wang, B.; Liu, H.; Wang, F.M.; Ma, K.L.; Tang, R.N.; Liu, B.C. Artemisinin attenuates tubulointerstitial inflammation and fibrosis via the NF‐κB/NLRP3 pathway in rats with 5/6 subtotal nephrectomy. J. Cell. Biochem., 2019, 120(3), 4291-4300.
[http://dx.doi.org/10.1002/jcb.27714] [PMID: 30260039]
[134]
Shen, J.; Ma, H.; Wang, C. Triptolide improves myocardial fibrosis in rats through inhibition of nuclear factor kappa B and NLR family pyrin domain containing 3 inflammasome pathway. Korean J. Physiol. Pharmacol., 2021, 25(6), 533-543.
[http://dx.doi.org/10.4196/kjpp.2021.25.6.533] [PMID: 34697264]
[135]
Li, R.; Lu, K.; Wang, Y.; Chen, M.; Zhang, F.; Shen, H.; Yao, D.; Gong, K.; Zhang, Z. Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem. Biophys. Res. Commun., 2017, 485(1), 69-75.
[http://dx.doi.org/10.1016/j.bbrc.2017.02.021] [PMID: 28202417]
[136]
Zhang, Y.; Qu, X.; Gao, H.; Zhai, J.; Tao, L.; Sun, J.; Song, Y.; Zhang, J. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. Int. Immunopharmacol., 2020, 85, 106634.
[http://dx.doi.org/10.1016/j.intimp.2020.106634] [PMID: 32492628]
[137]
Li, A.; Zhang, S.; Li, J.; Liu, K.; Huang, F.; Liu, B. Metformin and resveratrol inhibit Drp1-mediated mitochondrial fission and prevent ER stress-associated NLRP3 inflammasome activation in the adipose tissue of diabetic mice. Mol. Cell. Endocrinol., 2016, 434, 36-47.
[http://dx.doi.org/10.1016/j.mce.2016.06.008] [PMID: 27276511]
[138]
Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem., 2002, 50(11), 3337-3340.
[http://dx.doi.org/10.1021/jf0112973] [PMID: 12010007]
[139]
Cui, L.; Li, C.; Zhuo, Y.; Yang, L.; Cui, N.; Li, Y.; Zhang, S. Saikosaponin A inhibits the activation of pancreatic stellate cells by suppressing autophagy and the NLRP3 inflammasome via the AMPK/mTOR pathway. Biomed. Pharmacother., 2020, 128, 110216.
[http://dx.doi.org/10.1016/j.biopha.2020.110216] [PMID: 32497863]
[140]
Yan, T.; Wang, H.; Cao, L.; Wang, Q.; Takahashi, S.; Yagai, T.; Li, G.; Krausz, K.W.; Wang, G.; Gonzalez, F.J.; Hao, H. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab. Dispos., 2018, 46(9), 1310-1319.
[http://dx.doi.org/10.1124/dmd.118.082008] [PMID: 29959134]
[141]
He, H.; Jiang, H.; Chen, Y.; Ye, J.; Wang, A.; Wang, C.; Liu, Q.; Liang, G.; Deng, X.; Jiang, W.; Zhou, R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat. Commun., 2018, 9(1), 2550.
[http://dx.doi.org/10.1038/s41467-018-04947-6] [PMID: 29959312]
[142]
Shen, X.; Dong, X.; Han, Y.; Li, Y.; Ding, S.; Zhang, H.; Sun, Z.; Yin, Y.; Li, W.; Li, W. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. Int. Immunopharmacol., 2020, 82, 106339.
[http://dx.doi.org/10.1016/j.intimp.2020.106339] [PMID: 32114413]
[143]
Ding, T.; Wang, S.; Zhang, X.; Zai, W.; Fan, J.; Chen, W.; Bian, Q.; Luan, J.; Shen, Y.; Zhang, Y.; Ju, D.; Mei, X. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine, 2018, 41, 45-53.
[http://dx.doi.org/10.1016/j.phymed.2018.01.026] [PMID: 29519318]
[144]
Zhang, L.; Wang, X.Z.; Li, Y.S.; Zhang, L.; Hao, L.R. Icariin ameliorates IgA nephropathy by inhibition of nuclear factor kappa b/Nlrp3 pathway. FEBS Open Bio, 2017, 7(1), 54-63.
[http://dx.doi.org/10.1002/2211-5463.12161] [PMID: 28097088]
[145]
Shi, Y.S.; Li, X.X.; Li, H.T.; Zhang, Y. Pelargonidin ameliorates CCl 4 -induced liver fibrosis by suppressing the ROS-NLRP3-IL-1β axis via activating the Nrf2 pathway. Food Funct., 2020, 11(6), 5156-5165.
[http://dx.doi.org/10.1039/D0FO00660B] [PMID: 32432601]
[146]
Li, X.; Mei, W.; Huang, Z.; Zhang, L.; Zhang, L.; Xu, B.; Shi, X.; Xiao, Y.; Ma, Z.; Liao, T.; Zhang, H.; Wang, P. Casticin suppresses monoiodoacetic acid-induced knee osteoarthritis through inhibiting HIF-1α/NLRP3 inflammasome signaling. Int. Immunopharmacol., 2020, 86, 106745.
[http://dx.doi.org/10.1016/j.intimp.2020.106745] [PMID: 32622201]
[147]
Liu, P.; Wang, J.; Wen, W.; Pan, T.; Chen, H.; Fu, Y.; Wang, F.; Huang, J.H.; Xu, S. Cinnamaldehyde suppresses NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. Int. Immunopharmacol., 2020, 84, 106570.
[http://dx.doi.org/10.1016/j.intimp.2020.106570] [PMID: 32413739]
[148]
Mahzari, A.; Li, S.; Zhou, X.; Li, D.; Fouda, S.; Alhomrani, M.; Alzahrani, W.; Robinson, S.R.; Ye, J.M. Matrine protects against MCD-induced development of NASH via upregulating HSP72 and downregulating mTOR in a manner distinctive from metformin. Front. Pharmacol., 2019, 10, 405.
[http://dx.doi.org/10.3389/fphar.2019.00405] [PMID: 31068812]
[149]
Liu, G.; Shi, Y.; Peng, X.; Liu, H.; Peng, Y.; He, L. Astaxanthin attenuates adriamycin-induced focal segmental glomerulosclerosis. Pharmacology, 2015, 95(3-4), 193-200.
[http://dx.doi.org/10.1159/000381314] [PMID: 25924598]
[150]
Zhang, X.; Zhang, F.; Kong, D.; Wu, X.; Lian, N.; Chen, L.; Lu, Y.; Zheng, S. Tetramethylpyrazine inhibits angiotensin II‐induced activation of hepatic stellate cells associated with interference of platelet‐derived growth factor β receptor pathways. FEBS J., 2014, 281(12), 2754-2768.
[http://dx.doi.org/10.1111/febs.12818] [PMID: 24725506]
[151]
Liang, Q.; Cai, W.; Zhao, Y.; Xu, H.; Tang, H.; Chen, D.; Qian, F.; Sun, L. Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol. Res., 2020, 158, 104884.
[http://dx.doi.org/10.1016/j.phrs.2020.104884] [PMID: 32428667]
[152]
Xin, R.; Sun, X.; Wang, Z.; Yuan, W.; Jiang, W.; Wang, L.; Xiang, Y.; Zhang, H.; Li, X.; Hou, Y.; Sun, W.; Du, P. Apocynin inhibited NLRP3/XIAP signalling to alleviate renal fibrotic injury in rat diabetic nephropathy. Biomed. Pharmacother., 2018, 106, 1325-1331.
[http://dx.doi.org/10.1016/j.biopha.2018.07.036] [PMID: 30119203]
[153]
Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; Pan, H. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front. Immunol., 2020, 11, 580593.
[http://dx.doi.org/10.3389/fimmu.2020.580593] [PMID: 33365024]
[154]
Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother., 2021, 133, 110985.
[http://dx.doi.org/10.1016/j.biopha.2020.110985] [PMID: 33212373]
[155]
Shan, Q.; Zheng, G.; Han, X.; Wen, X.; Wang, S.; Li, M.; Zhuang, J.; Zhang, Z.F.; Hu, B.; Zhang, Y.; Zheng, Y.L. Troxerutin protects kidney tissue against BDE-47-induced inflammatory damage through CXCR4-TXNIP/NLRP3 signaling. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/9865495] [PMID: 29849929]
[156]
de Miranda, J.A.L.; Martins, C.S.; Fideles, L.S.; Barbosa, M.L.L.; Barreto, J.E.F.; Pimenta, H.B.; Freitas, F.O.R.; Pimentel, P.V.S.; Teixeira, C.S.; Scafuri, A.G.; dos Santos Luciano, M.C.; Araújo, J.L.; Rocha, J.A.; Vieira, I.G.P.; Ricardo, N.M.P.S.; da Silva Campelo, M.; Ribeiro, M.E.N.P.; de Castro Brito, G.A.; Cerqueira, G.S. Troxerutin prevents 5-fluorouracil induced morphological changes in the intestinal mucosa: Role of cyclooxygenase-2 pathway. Pharmaceuticals, 2020, 13(1), 10.
[http://dx.doi.org/10.3390/ph13010010] [PMID: 31936203]
[157]
Lu, Y.; Yu, T.; Liu, J.; Gu, L. Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One, 2018, 13(4), e0196405.
[http://dx.doi.org/10.1371/journal.pone.0196405] [PMID: 29694408]
[158]
Kalinová, J.P.; Vrchotová, N.; Tříska, J. Vitexin and isovitexin levels in sprouts of selected plants. J. Food Compos. Anal., 2021, 100, 103895.
[http://dx.doi.org/10.1016/j.jfca.2021.103895]
[159]
Lee, J.; Kim, C.; Um, J.Y.; Sethi, G.; Ahn, K. Casticin-induced inhibition of cell growth and survival are mediated through the dual modulation of Akt/mTOR signaling cascade. Cancers, 2019, 11(2), 254.
[http://dx.doi.org/10.3390/cancers11020254] [PMID: 30813295]
[160]
Mu, Y.; Hao, W.; Li, S. Casticin protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes. Eur. J. Pharmacol., 2019, 842, 314-320.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.051] [PMID: 30391743]
[161]
Wu, X.L.; Deng, M.Z.; Gao, Z.J.; Dang, Y.Y.; Li, Y.C.; Li, C.W. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress. Int. Immunopharmacol., 2020, 84, 106559.
[http://dx.doi.org/10.1016/j.intimp.2020.106559] [PMID: 32402951]
[162]
Wu, M.; Xu, H.; Liu, J.; Tan, X.; Wan, S.; Guo, M.; Long, Y.; Xu, Y. Metformin and fibrosis: A review of existing evidence and mechanisms. J. Diabetes Res., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6673525] [PMID: 34007848]
[163]
Ding, N.; Wei, B.; Fu, X.; Wang, C.; Wu, Y. Natural products that target the NLRP3 inflammasome to treat fibrosis. Front. Pharmacol., 2020, 11, 591393.
[http://dx.doi.org/10.3389/fphar.2020.591393] [PMID: 33390969]
[164]
Zhou, R.N.; Song, Y.L.; Ruan, J.Q.; Wang, Y.T.; Yan, R. Pharmacokinetic evidence on the contribution of intestinal bacterial conversion to beneficial effects of astragaloside IV, a marker compound of astragali radix, in traditional oral use of the herb. Drug Metab. Pharmacokinet., 2012, 27(6), 586-597.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-160] [PMID: 22673033]
[165]
Wan, Y.; Xu, L.; Wang, Y.; Tuerdi, N.; Ye, M.; Qi, R. Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur. J. Pharmacol., 2018, 833, 545-554.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.016] [PMID: 29913124]
[166]
Chen, J.; Wu, W.; Zhang, M.; Chen, C. Taraxasterol suppresses inflammation in IL-1β-induced rheumatoid arthritis fibroblast-like synoviocytes and rheumatoid arthritis progression in mice. Int. Immunopharmacol., 2019, 70, 274-283.
[http://dx.doi.org/10.1016/j.intimp.2019.02.029] [PMID: 30851708]
[167]
Jiang, J.; Zhang, N.; Song, H.; Yang, Y.; Li, J.; Hu, X. Oridonin alleviates the inhibitory effect of lipopolysaccharide on the proliferation and osteogenic potential of periodontal ligament stem cells by inhibiting endoplasmic reticulum stress and NF-κB/NLRP3 inflammasome signaling. BMC Oral Health, 2023, 23(1), 137.
[http://dx.doi.org/10.1186/s12903-023-02827-0] [PMID: 36593449]
[168]
Pu, D.B.; Zhang, X.J.; Bi, D.W.; Gao, J.B.; Yang, Y.; Li, X.L.; Lin, J.; Li, X.N.; Zhang, R.H.; Xiao, W.L. Callicarpins, two classes of rearranged ent-clerodane diterpenoids from Callicarpa plants blocking NLRP3 inflammasome-induced pyroptosis. J. Nat. Prod., 2020, 83(7), 2191-2199.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00288] [PMID: 32628479]
[169]
Fu, K; Chen, M; Zheng, H; Li, C; Yang, F; Niu, Q. Pelargonidin ameliorates MCAO-induced cerebral ischemia/reperfusion injury in rats by the action on the Nrf2/HO-1 pathway. Transl. Neurosci., 2021, 12(1), 020-031.
[170]
He, B.; Zhang, B.; Wu, F.; Wang, L.; Shi, X.; Qin, W.; Lin, Y.; Ma, S.; Liang, J. Homoplantaginin inhibits palmitic acid-induced endothelial cells inflammation by suppressing TLR4 and NLRP3 inflammasome. J. Cardiovasc. Pharmacol., 2016, 67(1), 93-101.
[http://dx.doi.org/10.1097/FJC.0000000000000318] [PMID: 26355761]
[171]
Fan, S.; Wang, Y.; Lu, J.; Zheng, Y.; Wu, D.; Li, M.; Hu, B.; Zhang, Z.; Cheng, W.; Shan, Q. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One, 2014, 9(2), e89961.
[http://dx.doi.org/10.1371/journal.pone.0089961] [PMID: 24587153]
[172]
liang, H.; Cheng, R.; Wang, J.; Xie, H.; Li, R.; Shimizu, K.; Zhang, C. Mogrol, an aglycone of mogrosides, attenuates ulcerative colitis by promoting AMPK activation. Phytomedicine, 2021, 81, 153427.
[http://dx.doi.org/10.1016/j.phymed.2020.153427] [PMID: 33296813]
[173]
Liu, C.; Dai, L.; Liu, Y.; Dou, D.; Sun, Y.; Ma, L. Pharmacological activities of mogrosides. Future Med. Chem., 2018, 10(8), 845-850.
[http://dx.doi.org/10.4155/fmc-2017-0255] [PMID: 29432030]
[174]
Sousa, L.F.B.; Oliveira, H.B.M.; das Neves Selis, N.; Morbeck, L.L.B.; Santos, T.C.; da Silva, L.S.C.; Viana, J.C.S.; Reis, M.M.; Sampaio, B.A.; Campos, G.B.; Timenetsky, J.; Yatsuda, R.; Marques, L.M. β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci. Rep., 2022, 12(1), 19199.
[http://dx.doi.org/10.1038/s41598-022-23842-1] [PMID: 36357780]
[175]
Meeran, M.F.N.; Laham, F.; Azimullah, S.; Sharma, C.; Al Kaabi, A.J.; Tariq, S.; Adeghate, E.; Goyal, S.N.; Ojha, S. β-Caryophyllene, a natural bicyclic sesquiterpene attenuates β-adrenergic agonist-induced myocardial injury in a cannabinoid receptor-2 dependent and independent manner. Free Radic. Biol. Med., 2021, 167, 348-366.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.01.046] [PMID: 33588052]
[176]
Jiang, J.; Liu, D.; Wang, Y.; Li, W.; Hong, Z.; An, J.; Qiao, S.; Xie, Z. Glaucocalyxin a protect liver function via inhibiting platelet over-activation during sepsis. Phytomedicine, 2022, 100, 154089.
[http://dx.doi.org/10.1016/j.phymed.2022.154089] [PMID: 35398736]
[177]
Wang, X.; Yin, H.; Fan, L.; Zhou, Y.; Tang, X.; Fei, X.; Tang, H.; Peng, J.; Zhang, J.; Xue, Y.; Luo, J.; Jin, Q.; Jin, Q. Shionone alleviates NLRP3 inflammasome mediated pyroptosis in interstitial cystitis injury. Int. Immunopharmacol., 2021, 90, 107132.
[http://dx.doi.org/10.1016/j.intimp.2020.107132] [PMID: 33223465]
[178]
Xu, G.; Fu, S.; Zhan, X.; Wang, Z.; Zhang, P.; Shi, W.; Qin, N.; Chen, Y.; Wang, C.; Niu, M.; Guo, Y.; Wang, J.; Bai, Z.; Xiao, X. Echinatin effectively protects against NLRP3 inflammasome–driven diseases by targeting HSP90. JCI Insight, 2021, 6(2), e134601.
[http://dx.doi.org/10.1172/jci.insight.134601] [PMID: 33350984]
[179]
Ma, X.; Zhao, M.; Tang, M.H.; Xue, L.L.; Zhang, R.J.; Liu, L.; Ni, H.F.; Cai, X.Y.; Kuang, S.; Hong, F.; Wang, L.; Chen, K.; Tang, H.; Li, Y.; Peng, A.H.; Yang, J.H.; Pei, H.Y.; Ye, H.Y.; Chen, L.J. Flavonoids with inhibitory effects on NLRP3 inflammasome activation from Millettia velutina. J. Nat. Prod., 2020, 83(10), 2950-2959.
[http://dx.doi.org/10.1021/acs.jnatprod.0c00478] [PMID: 32989985]
[180]
Lim, H.; Min, D.S.; Park, H.; Kim, H.P. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol. Appl. Pharmacol., 2018, 355, 93-102.
[http://dx.doi.org/10.1016/j.taap.2018.06.022] [PMID: 29960001]
[181]
Huang, Q.; Ye, X.; Wang, L.; Pan, J. Salvianolic acid B abolished chronic mild stress-induced depression through suppressing oxidative stress and neuro-inflammation via regulating NLRP3 inflammasome activation. J. Food Biochem., 2019, 43(3), e12742.
[PMID: 31353549]
[182]
Ye, T.; Meng, X.; Zhai, Y.; Xie, W.; Wang, R.; Sun, G.; Sun, X. Gastrodin ameliorates cognitive dysfunction in diabetes rat model via the suppression of endoplasmic reticulum stress and NLRP3 inflammasome activation. Front. Pharmacol., 2018, 9, 1346.
[http://dx.doi.org/10.3389/fphar.2018.01346] [PMID: 30524286]
[183]
Jiang, Y.; Yang, W.; Gui, S. Procyanidin B2 protects rats from paraquat-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Immunobiology, 2018, 223(10), 555-561.
[http://dx.doi.org/10.1016/j.imbio.2018.07.001] [PMID: 30025709]
[184]
Ho, S.C.; Chang, Y.H. Comparison of inhibitory capacities of 6-, 8-and 10-gingerols/shogaols on the canonical NLRP3 inflammasome-mediated IL-1β secretion. Molecules, 2018, 23(2), 466.
[http://dx.doi.org/10.3390/molecules23020466] [PMID: 29466287]
[185]
Yang, G.; Jang, J.H.; Kim, S.W.; Han, S.H.; Ma, K.H.; Jang, J.K.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Lee, J.Y. Sweroside prevents non-alcoholic steatohepatitis by suppressing activation of the NLRP3 inflammasome. Int. J. Mol. Sci., 2020, 21(8), 2790.
[http://dx.doi.org/10.3390/ijms21082790] [PMID: 32316419]
[186]
Wang, W.; Ma, B.; Xu, C.; Zhou, X. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway. Phytomedicine, 2020, 69, 153185.
[http://dx.doi.org/10.1016/j.phymed.2020.153185] [PMID: 32120244]
[187]
Rui, W.; Li, S.; Xiao, H.; Xiao, M.; Shi, J. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinson’s disease. Int. J. Neuropsychopharmacol., 2020, 23(11), 762-773.
[http://dx.doi.org/10.1093/ijnp/pyaa060] [PMID: 32761175]
[188]
Shi, H.; Zhang, Y.; Xing, J.; Liu, L.; Qiao, F.; Li, J.; Chen, Y. Baicalin attenuates hepatic injury in non-alcoholic steatohepatitis cell model by suppressing inflammasome-dependent GSDMD-mediated cell pyroptosis. Int. Immunopharmacol., 2020, 81, 106195.
[http://dx.doi.org/10.1016/j.intimp.2020.106195] [PMID: 32028242]
[189]
Wei, W.; Wang, L.; Zhou, K.; Xie, H.; Zhang, M.; Zhang, C. Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int. Immunopharmacol., 2017, 42, 185-194.
[http://dx.doi.org/10.1016/j.intimp.2016.11.024] [PMID: 27930969]
[190]
Kosuru, R.; Kandula, V.; Rai, U.; Prakash, S.; Xia, Z.; Singh, S. Pterostilbene decreases cardiac oxidative stress and inflammation via activation of AMPK/Nrf2/HO-1 pathway in fructose-fed diabetic rats. Cardiovasc. Drugs Ther., 2018, 32(2), 147-163.
[http://dx.doi.org/10.1007/s10557-018-6780-3] [PMID: 29556862]
[191]
Liu, H.; Zhao, L.; Yue, L.; Wang, B.; Li, X.; Guo, H.; Ma, Y.; Yao, C.; Gao, L.; Deng, J.; Li, L.; Feng, D.; Qu, Y. Pterostilbene attenuates early brain injury following subarachnoid hemorrhage via inhibition of the NLRP3 inflammasome and Nox2-related oxidative stress. Mol. Neurobiol., 2017, 54(8), 5928-5940.
[http://dx.doi.org/10.1007/s12035-016-0108-8] [PMID: 27665283]
[192]
Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Polydatin alleviates traumatic spinal cord injury by reducing microglial inflammation via regulation of iNOS and NLRP3 inflammasome pathway. Int. Immunopharmacol., 2019, 70, 28-36.
[http://dx.doi.org/10.1016/j.intimp.2019.02.006] [PMID: 30785088]
[193]
Tang, J.; Li, Y.; Wang, J.; Wu, Q.; Yan, H. Polydatin suppresses the development of lung inflammation and fibrosis by inhibiting activation of the NACHT domain‐, leucine‐rich repeat‐, and pyd‐containing protein 3 inflammasome and the nuclear factor‐κB pathway after Mycoplasma pneumoniae infection. J. Cell. Biochem., 2019, 120(6), 10137-10144.
[http://dx.doi.org/10.1002/jcb.28297] [PMID: 30548648]
[194]
Zhao, X.J.; Yu, H.W.; Yang, Y.Z.; Wu, W.Y.; Chen, T.Y.; Jia, K.K.; Kang, L.L.; Jiao, R.Q.; Kong, L.D. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol., 2018, 18, 124-137.
[http://dx.doi.org/10.1016/j.redox.2018.07.002] [PMID: 30014902]
[195]
Chen, C.Y.; Liaw, C.C.; Chen, Y.H.; Chang, W.Y.; Chung, P.J.; Hwang, T.L. A novel immunomodulatory effect of ugonin U in human neutrophils via stimulation of phospholipase C. Free Radic. Biol. Med., 2014, 72, 222-231.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.018] [PMID: 24747490]
[196]
Zhang, Z.; Li, S.; Cao, H.; Shen, P.; Liu, J.; Fu, Y.; Cao, Y.; Zhang, N. The protective role of phloretin against dextran sulfate sodium-induced ulcerative colitis in mice. Food Funct., 2019, 10(1), 422-431.
[http://dx.doi.org/10.1039/C8FO01699B] [PMID: 30604787]
[197]
Qu, S.; Wang, W.; Li, D.; Li, S.; Zhang, L.; Fu, Y.; Zhang, N. Mangiferin inhibits mastitis induced by LPS via suppressing NF-ĸB and NLRP3 signaling pathways. Int. Immunopharmacol., 2017, 43, 85-90.
[http://dx.doi.org/10.1016/j.intimp.2016.11.036] [PMID: 27984712]
[198]
Yang, G.; Lee, H.E.; Yeon, S.H.; Kang, H.C.; Cho, Y.Y.; Lee, H.S.; Zouboulis, C.C.; Han, S.H.; Lee, J.H.; Lee, J.Y. Licochalcone A attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytother. Res., 2018, 32(12), 2551-2559.
[http://dx.doi.org/10.1002/ptr.6195] [PMID: 30281174]
[199]
Sharath Babu, G.R.; Anand, T.; Ilaiyaraja, N.; Khanum, F.; Gopalan, N. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells. Front. Pharmacol., 2017, 8, 868.
[http://dx.doi.org/10.3389/fphar.2017.00868] [PMID: 29230174]
[200]
Lv, Q.; Wang, K.; Qiao, S.M.; Dai, Y.; Wei, Z.F. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chin. J. Nat. Med., 2018, 16(3), 161-174.
[http://dx.doi.org/10.1016/S1875-5364(18)30044-X] [PMID: 29576052]
[201]
Lin, C.Y.; Hsieh, Y.T.; Chan, L.Y.; Yang, T.Y.; Maeda, T.; Chang, T.M.; Huang, H.C. Dictamnine delivered by PLGA nanocarriers ameliorated inflammation in an oxazolone-induced dermatitis mouse model. J. Control. Release, 2021, 329, 731-742.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.007] [PMID: 33031879]
[202]
Wang, Z.; Xu, G.; Wang, H.; Zhan, X.; Gao, Y.; Chen, N.; Li, R.; Song, X.; Guo, Y.; Yang, R.; Niu, M.; Wang, J.; Liu, Y.; Xiao, X.; Bai, Z. Icariside II, a main compound in Epimedii Folium, induces idiosyncratic hepatotoxicity by enhancing NLRP3 inflammasome activation. Acta Pharm. Sin. B, 2020, 10(9), 1619-1633.
[http://dx.doi.org/10.1016/j.apsb.2020.03.006] [PMID: 33088683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy