Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Research Article

Accumulation of Heavy Metals in Sepia officinalis Extract Aggravate Acute Kidney Injury Induced by a High Folic Acid Dosage in Wistar Rats

Author(s): Salma Hussein Abdel-Fattah Ahmed, Mona Samir Fawzy El-Sayed El-Shehry, Bassant Mohamed Mohamed Lotfy, Sarah Ali Qutb, Aya Ramadan Rashed and Ayman Saber Mohamed*

Volume 17, Issue 4, 2023

Published on: 30 December, 2023

Page: [226 - 236] Pages: 11

DOI: 10.2174/0122127968272527231226114801

Price: $65

Abstract

Background: Seafood is an important source of food for the majority of people. Marine species have a wide spectrum of pharmacological actions, including antibacterial, antiviral, antiparasitic, anti-inflammatory, and anti-diabetic properties.

Objective: The purpose of this study was to examine the effects of Sepia officinalis extract (SoE) on folic acid-induced acute kidney injury in Wistar rats.

Methods: A single dosage of folic acid (250 mg/kg) was injected intraperitoneally to cause kidney injury induced (AKI). The study contained three groups of six rats each: control, folic acid, and folic acid + SoE groups. The SoE group received SoE (45 mg/kg, orally) daily for one week, while the control and folic acid groups were administered distilled water.

Results: The crude extract of Sepia officianlis contains heavy metals such as Fe, Cr, Cd, Pb, and Zn, according to our findings. The LD50 value of SoE was 450 mg/kg. SoE treatment increases creatinine, urea, uric acid, sodium, potassium, chloride, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyltransferase, malondialdehyde, and nitric oxide levels while decreasing total proteins, albumin, glutathione reduced, glutathione-S-transferase, and catalase. Several histological alterations were found in the liver and kidney of the SoE rats.

Conclusion: The heavy metal content of S. officinalis extract has a synergistic effect with folic acid to induce hepatorenal injury. Natural extracts of marine species should be used with caution as a component of medications or natural remedies.

Graphical Abstract

[1]
Massoud, E.; Daniel, M.S.; El-Kott, A.; Ali, S.B.; Morsy, K.; Mohamed, A.S.; Fahmy, S.R. Therapeutic effect of trigonella foenum-graecum l seeds extract on folic acid-induced acute kidney injury. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 2022, 92(3), 701-707.
[http://dx.doi.org/10.1007/s40011-022-01368-w]
[2]
Levey, A.S.; James, M.T. Acute kidney injury. Ann. Intern. Med., 2017, 167(9), ITC66-ITC80.
[http://dx.doi.org/10.7326/AITC201711070] [PMID: 29114754]
[3]
Koura, R.A.A.; Mohamed, H.R.; Ahmed, K.A.; Baiomy, A.A.A.; Bahaaeldine, M.A.; Mohamed, A.S. The therapeutic role of chitosan-saponin-bentonite nanocomposite on acute kidney injury induced by chromium in male wistar rats. Biointerface Res. Appl. Chem., 2023, 13(6), 595.
[4]
Sutherland, S.M.; Kwiatkowski, D.M. Acute kidney injury in children. Adv. Chronic Kidney Dis., 2017, 24(6), 380-387.
[http://dx.doi.org/10.1053/j.ackd.2017.09.007] [PMID: 29229169]
[5]
Hu, M.; An, S. Ruscogenin prevents folic acid-induced acute kidney damage by inhibiting rev-erbα/β-mediated ferroptosis. Comput. Intell. Neurosci., 2022, 2022
[6]
Menon, S.; Symons, J.M.; Selewski, D.T. Acute kidney injury. Pediatr. Rev., 2023, 44(5), 265-279.
[http://dx.doi.org/10.1542/pir.2021-005438] [PMID: 37122039]
[7]
Guo, L.; Zhang, T.; Wang, F.; Chen, X.; Xu, H.; Zhou, C.; Chen, M.; Yu, F.; Wang, S.; Yang, D.; Wu, B. Targeted inhibition of Rev‐erb‐α/β limits ferroptosis to ameliorate folic acid‐induced acute kidney injury. Br. J. Pharmacol., 2021, 178(2), 328-345.
[http://dx.doi.org/10.1111/bph.15283] [PMID: 33068011]
[8]
Basile, D.P.; Bonventre, J.V.; Mehta, R.; Nangaku, M.; Unwin, R.; Rosner, M.H.; Kellum, J.A.; Ronco, C. Progression after AKI. J. Am. Soc. Nephrol., 2016, 27(3), 687-697.
[http://dx.doi.org/10.1681/ASN.2015030309] [PMID: 26519085]
[9]
Madany, N.M.K.; Shehata, M.R.; Mohamed, A.S.; Elbatran, M.M. (Biological, quantum-chemical and molecular docking study). Int. J. Pharmacol., 2022, 18(6), 1210-1218.
[10]
Al Shawoush, A.M.; Said, R.S.; Hassan, F.E.; Ali, S.B.; Mohamed, A.S.; Elbatran, M.M. Therapeutic effect of Nigella sativa extract on folic acid-induced acute hepatorenal injury: Influences and underlying mechanisms. Curr. Top. Pharmacol., 2023, 26, 49-55.
[11]
Abdelmawgood, I.A.; Mahana, N.A.; Badr, A.M.; Mohamed, A.S.; Al Shawoush, A.M.; Atia, T.; Abdelrazak, A.E.; Sakr, H.I. Echinochrome ameliorates physiological, immunological, and histopathological alterations induced by ovalbumin in asthmatic mice by modulating the Keap1/Nrf2 signaling pathway. Mar. Drugs, 2023, 21(8), 455.
[http://dx.doi.org/10.3390/md21080455] [PMID: 37623736]
[12]
Sadek, S.A.; Hassanein, S.S.; Mohamed, A.S.; Soliman, A.M.; Fahmy, S.R. Echinochrome pigment extracted from sea urchin suppress the bacterial activity, inflammation, nociception, and oxidative stress resulted in the inhibition of renal injury in septic rats. J. Food Biochem., 2022, 46(3), e13729.
[http://dx.doi.org/10.1111/jfbc.13729] [PMID: 33871886]
[13]
Mohamed, A.S.; Mahmoud, S.A.; Soliman, A.M.; Fahmy, S.R. Antitumor activity of saponin isolated from the sea cucumber, holothuria arenicola against ehrlich ascites carcinoma cells in swiss albino mice. Nat. Prod. Res., 2021, 35(11), 1928-1932.
[http://dx.doi.org/10.1080/14786419.2019.1644633] [PMID: 31343268]
[14]
Beuerlein, K.; Löhr, S.; Westermann, B.; Ruth, P.; Schipp, R. Components of the cellular defense and detoxification system of the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). Tissue Cell, 2002, 34(6), 390-396.
[http://dx.doi.org/10.1016/S0040816602000708] [PMID: 12441091]
[15]
Elrouby, M.T.; Ali, S.B.; Moftha, N.S.H.; Shawoush, M.A.; Mohamed, A.S. Ameliorative efficacy of Sepia officinalis ink extract on hepatorenal injury-induced following high-dose folic acid supplementation in rats. GSC Biological and Pharmaceutical Sciences, 2021, 17(3), 038-046.
[http://dx.doi.org/10.30574/gscbps.2021.17.3.0347]
[16]
Palumbo, A. Melanogenesis in the ink gland of Sepia officinalis. Pigment Cell Res., 2003, 16(5), 517-522.
[http://dx.doi.org/10.1034/j.1600-0749.2003.00080.x] [PMID: 12950731]
[17]
Soliman, A.M.; Fahmy, S.R.; Sayed, A.A.; Abd El-Latif, A.A. New insights into sepsis therapy using sepia officinalis. Jundishapur J. Microbiol., 2016, 9(1), e29331.
[http://dx.doi.org/10.5812/jjm.29331] [PMID: 27099690]
[18]
Ramasamy, P.; Vino, A.B.; Saravanan, R.; Subhapradha, N.; Shanmugam, V.; Shanmugam, A. Screening of antimicrobial potential of polysaccharide from cuttlebone and methanolic extract from body tissue of Sepia prashadi Winkworth, 1936. Asian Pac. J. Trop. Biomed., 2011, 1(2), S244-S248.
[http://dx.doi.org/10.1016/S2221-1691(11)60163-9]
[19]
Soliman, A.M.; Fahmy, S.R.; El-Abied, S.A. Anti-neoplastic activities of Sepia officinalis ink and Coelatura aegyptiaca extracts against Ehrlich ascites carcinoma in Swiss albino mice. Int. J. Clin. Exp. Pathol., 2015, 8(4), 3543-3555.
[PMID: 26097537]
[20]
Balti, R.; Bougatef, A.; Guillochon, D.; Dhulster, P.; Nasri, M.; Nedjar-Arroume, N. Changes in arterial blood pressure after single oral administration of cuttlefish (Sepia officinalis) muscle derived peptides in spontaneously hypertensive rats. J. Funct. Foods, 2012, 4(3), 611-617.
[http://dx.doi.org/10.1016/j.jff.2012.03.007]
[21]
Besednova, N.N.; Kovalev, N.N.; Zaporozhets, T.S.; Kuznetsova, T.A.; Gazha, A.K. Cephalopods as a source of new antimicrobial substances. Antibiot. Chemother., 2016, 61(1-2), 32-42.
[22]
Ktari, N.; Fakhfakh, N.; Balti, R.; Ben Khaled, H.; Nasri, M.; Bougatef, A. Effect of degree of hydrolysis and protease type on the antioxidant activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products. J. Aquat. Food Prod. Technol., 2013, 22(5), 436-448.
[http://dx.doi.org/10.1080/10498850.2012.658961]
[23]
Pandion, K.; Khalith, S.B.M.; Ravindran, B.; Chandrasekaran, M.; Rajagopal, R.; Alfarhan, A.; Chang, S.W.; Ayyamperumal, R.; Mukherjee, A.; Arunachalam, K.D. Potential health risk caused by heavy metal associated with seafood consumption around coastal area. Environ. Pollut., 2022, 294, 118553.
[http://dx.doi.org/10.1016/j.envpol.2021.118553] [PMID: 34871642]
[24]
Shah, S.B. Heavy metals in the marine environment—an overview. In: Heavy Metals in Scleractinian Corals; Springer International Publishing: Cham, 2021; pp. 1-26.
[http://dx.doi.org/10.1007/978-3-030-73613-2_1]
[25]
Han, J-L.; Pan, X-D.; Chen, Q.; Huang, B-F.J.S.r. Health risk assessment of heavy metals in marine fish to the population in Zhejiang; China, 2021. 11, p. (1)11079.
[26]
Riad, R. Comparative taxonomical studies on the Egyptian Mediterranean octopuses (Octopoda: Cephalopoda). Egypt. J. Aquat. Biol. Fish., 2021, 25(3), 39-61.
[http://dx.doi.org/10.21608/ejabf.2021.172559]
[27]
Keshavarz, M.; Shamsizadeh, F.; Tavakoli, A.; Baghban, N.; Khoradmehr, A.; Kameli, A.; Rasekh, P.; Daneshi, A.; Nabipour, I.; Vahdat, K.; Farrokhnia, M.; Tamadon, A. Chemical compositions and experimental and computational modeling activity of sea cucumber Holothuria parva ethanolic extract against herpes simplex virus type 1. Biomed. Pharmacother., 2021, 141, 111936.
[http://dx.doi.org/10.1016/j.biopha.2021.111936] [PMID: 34328094]
[28]
El-Sayed, E.S.; Khater, Z.; El-Ayyat, M.; Nasr, E.S. Assessment of heavy metals in water, sediment and fish tissues, from, Sharkia province. Egypt. Egypt. J. Aquat. Biol. Fish., 2011, 15(2), 125-144.
[http://dx.doi.org/10.21608/ejabf.2011.2097]
[29]
Mohamed, A.S.; Fahmy, S.R.; Soliman, A.M.; Gaafar, K.M. Effects of 3 rodent beddings on biochemical measures in rats and mice. J. Am. Assoc. Lab. Anim. Sci., 2018, 57(5), 443-446.
[http://dx.doi.org/10.30802/AALAS-JAALAS-18-000023] [PMID: 30012240]
[30]
Chinedu, E.; Arome, D.; Ameh, F. A new method for determining acute toxicity in animal models. Toxicol. Int., 2013, 20(3), 224-226.
[http://dx.doi.org/10.4103/0971-6580.121674] [PMID: 24403732]
[31]
Gupta, A.; Puri, V.; Sharma, R.; Puri, S. Folic acid induces acute renal failure (ARF) by enhancing renal prooxidant state. In: Exp. Toxicol. Pathol; , 2012; 64, p. (3)225-232.
[32]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[33]
Belfield, A.; Goldberg, D.M. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme, 1971, 12(5), 561-573.
[http://dx.doi.org/10.1159/000459586] [PMID: 5169852]
[34]
Szasz, G. New substrates for measuring gamma-glutamyl transpeptidase activity. Z. Klin. Chem. Klin. Biochem., 1974, 12(5), 228.
[PMID: 4155184]
[35]
Tietz, N.J.T.C.C. Specimen collection and processing: Sources of biological variation. In: Textbook of Clinical Chemistry, 2nd ed; WB Saunders: Philadelphia, 1994.
[36]
Tietz, N.J.A. Clinical Guide to Laboratory Tests; Philadelphia, 1990, 204, p. 113-123.
[37]
Schirmeister, J. Determination of creatinine in serum. Dtsch. Med. Wochenschr., 1964, 89, 1940.
[38]
Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol., 1960, 13(2), 156-159.
[http://dx.doi.org/10.1136/jcp.13.2.156] [PMID: 13821779]
[39]
Barham, D.; Trinder, P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst, 1972, 97(1151), 142-145.
[http://dx.doi.org/10.1039/an9729700142] [PMID: 5037807]
[40]
Trinder, P. A rapid method for the determination of sodium in serum. Analyst, 1951, 76(907), 596-599.
[http://dx.doi.org/10.1039/an9517600596]
[41]
Schoenfeld, R.G.; Lewellan, C.J. A colorimetric method for determination of serum chloride. Clin. Chem., 1964, 10(6), 533-539.
[http://dx.doi.org/10.1093/clinchem/10.6.533]
[42]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[43]
Aebi, H. Catalase in vitro. In: Methods in enzymology; Elsevier, 1984; Vol. 105, pp. 121-126. [13]
[44]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. J. Biol. Chem., 1974, 249(22), 7130-7139.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[45]
Montogomery, H.; Dymock, J. J. A. The determination of nitrite in water: Colorimetric method of nitric oxide assay., 1961, 86, 414.
[46]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[47]
Griboff, J.; Wunderlin, D.A.; Monferran, M.V. Metals, As and Se determination by inductively coupled plasma-mass spectrometry (ICP-MS) in edible fish collected from three eutrophic reservoirs. Their consumption represents a risk for human health? Microchem. J., 2017, 130, 236-244.
[http://dx.doi.org/10.1016/j.microc.2016.09.013]
[48]
UNICEF, WFP and WHO The state of food security and nutrition in the world 2019; Safeguarding against economic slowdowns and downturns:. 2019.
[49]
Regional screening levels (RSLs) - Generic tables. 2016.
[50]
Wang, W.X.; Rainbow, P.S. Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2008, 148(4), 315-323.
[http://dx.doi.org/10.1016/j.cbpc.2008.04.003] [PMID: 18502695]
[51]
Ihedioha, J.N.; Okoye, C.O.B.; Onyechi, U.A. Health risk assessment of zinc, chromium, and nickel from cow meat consumption in an urban Nigerian population. Int. J. Occup. Environ. Health, 2014, 20(4), 281-288.
[http://dx.doi.org/10.1179/2049396714Y.0000000075] [PMID: 25078345]
[52]
Patrick-Iwuanyanwu, K.C. Health risk assessment of hazardous metals in seafood from ka-bangha river, Khana, Rivers State, Nigeria. J. Aquat. Biol. Fish., 2022, 26(3), 499-511.
[53]
Saleh, H.; Soliman, A.M.; Mohamed, A.S.; Marie, M.A. Antioxidant effect of sepia ink extract on extrahepatic cholestasis induced by bile duct ligation in rats. Biomed. Environ. Sci., 2015, 28(8), 582-594.
[PMID: 26383596]
[54]
Sangiuliano, D.; Rubio, C.; Gutiérrez, A.J.; González-Weller, D.; Revert, C.; Hardisson, A.; Zanardi, E.; Paz, S. Metal concentrations in samples of frozen cephalopods (Cuttlefish, Octopus, Squid, and Shortfin Squid): An evaluation of dietary intake. J. Food Prot., 2017, 80(11), 1867-1871.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-184] [PMID: 28994612]
[55]
Mamdouh, S.; Mohamed, A.S.; Mohamed, H.A.; Fahmy, W.S. The effect of zinc concentration on physiological, immunological, and histological changes in crayfish (Procambarus clarkii) as bio-indicator for environment quality criteria. Biol. Trace Elem. Res., 2022, 200(1), 375-384.
[http://dx.doi.org/10.1007/s12011-021-02653-x] [PMID: 33641053]
[56]
Bawa-Allah, K.A. Assessment of heavy metal pollution in Nigerian surface freshwaters and sediment: A meta-analysis using ecological and human health risk indices. J. Contam. Hydrol., 2023, 256, 104199.
[http://dx.doi.org/10.1016/j.jconhyd.2023.104199] [PMID: 37172534]
[57]
DRI. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc: A report of the Panel on Micronutrients; National Acad; Press, 2001.
[58]
García-Rico, L.; Leyva-Perez, J.; Jara-Marini, M.E.J.F.; Toxicology, C. Content and daily intake of copper, zinc, lead, cadmium, and mercury from dietary supplements in Mexico. Food Chem. Toxicol., 2007, 45(9), 1599-1605.
[59]
Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press (US) Copyright 2001 by the National Academy of Sciences. All rights reserved: Washington (DC), 2001.
[60]
Adaikpoh, M.; Orhue, N. J. N. J. Cadmium-induced hepatorenaltoxicity in rats: Possible ameliorative effect of Talinum triangulare., 2020, 12(1)
[61]
Johansen, P.; Mulvad, G.; Pedersen, H.S.; Hansen, J.C.; Riget, F. Accumulation of cadmium in livers and kidneys in Greenlanders. Sci. Total Environ., 2006, 372(1), 58-63.
[http://dx.doi.org/10.1016/j.scitotenv.2006.08.005] [PMID: 16970977]
[62]
Shaikh, Z.A.; Lucis, O.J. Biological differences in cadmium and zinc turnover. Arch. Environ. Health, 1972, 24(6), 410-418.
[http://dx.doi.org/10.1080/00039896.1972.10666117] [PMID: 4113258]
[63]
Yan, L.J.; Allen, D.C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism. Biomolecules, 2021, 11(11), 1575.
[http://dx.doi.org/10.3390/biom11111575] [PMID: 34827573]
[64]
Mamdouh, S.; Mohamed, A.S.; Mohamed, H.A.; Fahmy, W.S. Zn contamination stimulate agonistic behavior and oxidative stress of crayfishes (Procambarus clarkii). J. Trace Elem. Med. Biol., 2022, 69, 126895.
[http://dx.doi.org/10.1016/j.jtemb.2021.126895] [PMID: 34785418]
[65]
Abdelaziz, M.H.; El-Dakdoky, M.H.; Ahmed, T.A.; Mohamed, A.S. Biological impacts of the green synthesized silver nanoparticles on the pregnant albino rats and their fetuses. Birth Defects Res., 2023, 115(4), 441-457.
[http://dx.doi.org/10.1002/bdr2.2131] [PMID: 36448314]
[66]
Fu, Z.; Xi, S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods, 2020, 30(3), 167-176.
[http://dx.doi.org/10.1080/15376516.2019.1701594] [PMID: 31818169]
[67]
Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int., 2016, 23(9), 8244-8259.
[http://dx.doi.org/10.1007/s11356-016-6333-x] [PMID: 26965280]
[68]
Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem., 2018, 119(1), 157-184.
[http://dx.doi.org/10.1002/jcb.26234] [PMID: 28643849]
[69]
Guideline for Carcinogenic Risk Assessment. EPA/630/P-03/001B, 2005.
[70]
Yang, X.; Cheng, B.; Gao, Y.; Zhang, H.; Liu, L. Heavy metal contamination assessment and probabilistic health risks in soil and maize near coal mines. Front. Public Health, 2022, 10, 1004579.
[http://dx.doi.org/10.3389/fpubh.2022.1004579] [PMID: 36311573]
[71]
Zulkafflee, N.S.; Mohd Redzuan, N.A.; Nematbakhsh, S.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Yee Lee, S.; Abdull Razis, A.F. Heavy metal contamination in Oryza sativa L. At the eastern region of malaysia and its risk assessment. Int. J. Environ. Res. Public Health, 2022, 19(2), 739.
[http://dx.doi.org/10.3390/ijerph19020739] [PMID: 35055560]
[72]
Li, X.; Zou, Y.; Fu, Y.Y.; Xing, J.; Wang, K.Y.; Wan, P.Z.; Wang, M.; Zhai, X.Y. Ibudilast attenuates folic acid–induced acute kidney injury by blocking pyroptosis through TLR4-mediated NF-κB and MAPK signaling pathways. Front. Pharmacol., 2021, 12, 650283.
[http://dx.doi.org/10.3389/fphar.2021.650283] [PMID: 34025417]
[73]
Yan, L.J. Folic acid‐induced animal model of kidney disease. Animal Model. Exp. Med., 2021, 4(4), 329-342.
[http://dx.doi.org/10.1002/ame2.12194] [PMID: 34977484]
[74]
Watanabe, T. Physiological and pathological interactions between liver and kidney. In: The Liver in Systemic Diseases; Ohira, H., Ed.; Springer Japan: Tokyo, 2016; pp. 221-249.
[http://dx.doi.org/10.1007/978-4-431-55790-6_11]
[75]
Mohamed, A.S.; Ibrahim, W.M.; Zaki, N.I.; Ali, S.B.; Soliman, A.M. Effectiveness of coelatura aegyptiaca extract combination with atorvastatin on experimentally induced hyperlipidemia in rats. Evid. Based Complement. Alternat. Med., 2019, 2019, 9726137.
[76]
Mohamed, A.S.; Sadek, S.A.; Hassanein, S.S.; Soliman, A.M. Hepatoprotective effect of echinochrome pigment in septic rats. J. Surg. Res., 2019, 234, 317-324.
[http://dx.doi.org/10.1016/j.jss.2018.10.004] [PMID: 30527491]
[77]
Fahmy, S.R.; Mohamed, A.S.; Hosney, M.; Issa, H.A.; Hassanein, S.S.; Soliman, A.M. Hepatotoxicity effect of short-term Bradykinin potentiating factor in cholestatic rats. Toxicol. Lett., 2019, 301, 73-78.
[http://dx.doi.org/10.1016/j.toxlet.2018.11.006] [PMID: 30458228]
[78]
Christensen, K.E.; Mikael, L.G.; Leung, K.Y.; Lévesque, N.; Deng, L.; Wu, Q.; Malysheva, O.V.; Best, A.; Caudill, M.A.; Greene, N.D.E.; Rozen, R. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am. J. Clin. Nutr., 2015, 101(3), 646-658.
[http://dx.doi.org/10.3945/ajcn.114.086603] [PMID: 25733650]
[79]
Kumar, D.; Singla, S.K.; Puri, V.; Puri, S. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice. PLoS One, 2015, 10(1), e115947.
[http://dx.doi.org/10.1371/journal.pone.0115947]
[80]
Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. Oxidative stress and acute kidney injury in critical illness: Pathophysiologic mechanisms—biomarkers— interventions, and future perspectives. Oxidative Medicine and Cellular Longevity, 2017, 2017
[81]
Dakrory, A.I.; Fahmy, S.R.; Soliman, A.M.; Mohamed, A.S.; Amer, S.A.M. Protective and curative effects of the sea cucumber Holothuria atra extract against DMBA-induced hepatorenal diseases in rats. BioMed Res. Int., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/563652] [PMID: 25821811]
[82]
Chen, J.; Zeng, L.; Xia, T.; Li, S.; Yan, T.; Wu, S.; Qiu, G.; Liu, Z. Toward a biomarker of oxidative stress: A fluorescent probe for exogenous and endogenous malondialdehyde in living cells. Anal. Chem., 2015, 87(16), 8052-8056.
[http://dx.doi.org/10.1021/acs.analchem.5b02032] [PMID: 26200908]
[83]
Aparicio-Trejo, O.E.; Tapia, E.; Molina-Jijón, E.; Medina-Campos, O.N.; Macías-Ruvalcaba, N.A.; León-Contreras, J.C.; Hernández-Pando, R.; García-Arroyo, F.E.; Cristóbal, M.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. Biofactors, 2017, 43(2), 293-310.
[http://dx.doi.org/10.1002/biof.1338] [PMID: 27801955]
[84]
Aparicio-Trejo, O.E.; Reyes-Fermín, L.M.; Briones-Herrera, A.; Tapia, E.; León-Contreras, J.C.; Hernández-Pando, R.; Sánchez-Lozada, L.G.; Pedraza-Chaverri, J. Protective effects of N-acetyl-cysteine in mitochondria bioenergetics, oxidative stress, dynamics and S-glutathionylation alterations in acute kidney damage induced by folic acid. Free Radic. Biol. Med., 2019, 130, 379-396.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.11.005] [PMID: 30439416]
[85]
Mohammed, E.N.; Soliman, A.M.; Mohamed, A.S. Modulatory effect of OVOTHIOL‐A on myocardial infarction induced by epinephrine in rats. J. Food Biochem., 2022, 46(9), e14296.
[http://dx.doi.org/10.1111/jfbc.14296] [PMID: 35791516]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy