Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanocomposite Hydrogels-A Promising Approach towards Enhanced Bioavailability and Controlled Drug Delivery

Author(s): Nariman Shahid, Alia Erum*, Sana Hanif, Nadia Shamshad Malik, Ume Ruqia Tulain and Muhammad Ali Syed*

Volume 30, Issue 1, 2024

Published on: 28 December, 2023

Page: [48 - 62] Pages: 15

DOI: 10.2174/0113816128283466231219071151

Price: $65

Abstract

Nanotechnology has emerged as the eminent focus of today’s research to overcome challenges related to conventional drug delivery systems. A wide spectrum of novel delivery systems has been investigated to improve the therapeutic outcomes of drugs. The polymer-based nanocomposite hydrogels (NCHs) that have evolved as efficient carriers for controlled drug delivery are of particular interest in this regard. Nanocomposites amalgamate the properties of both nanoparticles (NPs) as well as hydrogels, exhibiting superior functionalities over conventional hydrogels. This multiple functionality is based upon advanced mechanical, electrical, optical as well as magnetic properties. Here is a brief overview of the various types of nanocomposites, such as NCHs based on Carbon-bearing nanomaterials, polymeric nanoparticles, inorganic nanoparticles, and metal and metal-oxide NPs. Accordingly, this article will review numerous ways of preparing these NCHs with particular emphasis on the vast biomedical applications displayed by them in numerous fields such as tissue engineering, drug delivery, wound healing, bioprinting, biosensing, imaging and gene silencing, cancer therapy, antibacterial therapy, etc. Moreover, various features can be tuned, based on the final application, by controlling the chemical composition of hydrogel network, which may also influence the released conduct. Subsequently, the recent work and future prospects of this newly emerging class of drug delivery system have been enlisted.

[1]
Mostafavi A, Quint J, Russell C, Tamayol A. Nanocomposite hydrogels for tissue engineering applications. In: Biomaterials for Organ and Tissue Regeneration. Elsevier 2020; pp. 499-528.
[http://dx.doi.org/10.1016/B978-0-08-102906-0.00023-4]
[2]
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano 2015; 9(5): 4686-97.
[http://dx.doi.org/10.1021/acsnano.5b01433] [PMID: 25938172]
[3]
Dannert C, Stokke BT, Dias RS. Nanoparticle-hydrogel composites: From molecular interactions to macroscopic behavior. Polymers 2019; 11(2): 275.
[http://dx.doi.org/10.3390/polym11020275] [PMID: 30960260]
[4]
Chai Q, Jiao Y, Yu X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017; 3(1): 6.
[http://dx.doi.org/10.3390/gels3010006] [PMID: 30920503]
[5]
Zhao H, Liu M, Zhang Y, Yin J, Pei R. Nanocomposite hydrogels for tissue engineering applications. Nanoscale 2020; 12(28): 14976-95.
[http://dx.doi.org/10.1039/D0NR03785K] [PMID: 32644089]
[6]
Huang S, Hong X, Zhao M, et al. Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med 2022; 7(3): e10315.
[http://dx.doi.org/10.1002/btm2.10315] [PMID: 36176618]
[7]
Lavrador P, Esteves MR, Gaspar VM, Mano JF. Stimuli‐responsive nanocomposite hydrogels for biomedical applications. Adv Funct Mater 2021; 31(8): 2005941.
[http://dx.doi.org/10.1002/adfm.202005941]
[8]
Sirousazar M, Taleblou N, Roufegari-Nejad E. Hydrogel and nanocomposite hydrogel drug-delivery systems for treatment of cancers. In: Materials for Biomedical Engineering. Elsevier 2019; pp. 293-329.
[9]
Karchoubi F, Ghotli RA, Pahlevani H, Salehi MB. New insights into nanocomposite hydrogels: A review on recent advances in characteristics and applications. Adv Ind Eng Polymer Res 2023.
[http://dx.doi.org/10.1016/j.aiepr.2023.06.002]
[10]
Bhakay A, Rahman M, Dave R, Bilgili E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation-processing aspects and challenges. Pharmaceutics 2018; 10(3): 86.
[http://dx.doi.org/10.3390/pharmaceutics10030086] [PMID: 29986543]
[11]
Khan AD, Singh L. Various techniques of bioavailability enhancement: A review. J Drug Deliv Ther 2016; 6(3): 34-41.
[http://dx.doi.org/10.22270/jddt.v6i3.1228]
[12]
Kale AR, Kakade S, Bhosale A. A review on: Solubility enhancement techniques. Int J Curr Pharm 2020; 10(2): 3630-47.
[13]
Al-Nimry SS, Alkhamis KA, Altaani BM. Solid self-nanoemulsifying drug delivery system filled in enteric coated hard gelatin capsules for enhancing solubility and stability of omeprazole hydrochloride. Pharm Dev Technol 2020; 25(5): 588-600.
[http://dx.doi.org/10.1080/10837450.2020.1721536] [PMID: 31976799]
[14]
Gowda BHJ, Nechipadappu SK, Shankar SJ, et al. Pharmaceutical cocrystals of Efavirenz: Towards the improvement of solubility, dissolution rate and stability. Mater Today Proc 2022; 51: 394-402.
[http://dx.doi.org/10.1016/j.matpr.2021.05.535]
[15]
Gowda BHJ, Ahmed MG, Shankar SJ, et al. Preparation and characterization of efavirenz cocrystals: An endeavor to improve the physicochemical parameters. Mater Today Proc 2022; 57: 878-86.
[http://dx.doi.org/10.1016/j.matpr.2022.02.543]
[16]
Peterson B, Weyers M, Steenekamp J, Steyn J, Gouws C, Hamman J. Drug bioavailability enhancing agents of natural origin (bioenhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics 2019; 11(1): 33.
[http://dx.doi.org/10.3390/pharmaceutics11010033] [PMID: 30654429]
[17]
Thang NH, Chien TB, Cuong DX. Polymer-based hydrogels applied in drug delivery: An overview. Gels 2023; 9(7): 523.
[http://dx.doi.org/10.3390/gels9070523] [PMID: 37504402]
[18]
Ibrahim YHEY, Regdon G Jr, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2020; 28(1): 403-16.
[http://dx.doi.org/10.1007/s40199-019-00316-w] [PMID: 31811628]
[19]
Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal permeation enhancers for oral delivery of macromolecules: A comparison between salcaprozate sodium (SNAC) and sodium caprate (C10). Pharmaceutics 2019; 11(2): 78.
[http://dx.doi.org/10.3390/pharmaceutics11020078] [PMID: 30781867]
[20]
Wen J, Huang Y. Strategies to enhance drug permeability across biological barriers-A summary of this important special issue. Pharmaceutics 2023; 15(4): 1189.
[http://dx.doi.org/10.3390/books978-3-0365-7462-2]
[21]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[22]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[23]
Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines 2022; 10(9): 2055.
[http://dx.doi.org/10.3390/biomedicines10092055] [PMID: 36140156]
[24]
Shahid N, Erum A, Zaman M, et al. pH-Responsive nanocomposite based hydrogels for the controlled delivery of ticagrelor: In vitro and in vivo approaches. Int J Nanomedicine 2021; 16: 6345-66.
[http://dx.doi.org/10.2147/IJN.S330186] [PMID: 34556985]
[25]
Rafieian S, Mirzadeh H, Mahdavi H, Masoumi ME. A review on nanocomposite hydrogels and their biomedical applications. Sci Eng Compos Mater 2019; 26(1): 154-74.
[http://dx.doi.org/10.1515/secm-2017-0161]
[26]
Ho HN, Le TG, Dao TTT, et al. Development of itraconazole-loaded polymeric nanoparticle dermal gel for enhanced antifungal efficacy. J Nanomater 2020; 2020: 1-11.
[http://dx.doi.org/10.1155/2020/8894541]
[27]
Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels: A review. Saudi Pharm J 2016; 24(5): 554-9.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[28]
Mahmoud NN, Hikmat S, Abu Ghith D, et al. Gold nanoparticles loaded into polymeric hydrogel for wound healing in rats: Effect of nanoparticles’ shape and surface modification. Int J Pharm 2019; 565: 174-86.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.079] [PMID: 31075436]
[29]
Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I. Gold nanoparticle/hydrogel composites with solvent‐switchable electronic properties. Adv Mater 2001; 13(17): 1320-3.
[http://dx.doi.org/10.1002/1521-4095(200109)13:17<1320:AID-ADMA1320>3.0.CO;2-8]
[30]
Li L, Wang Z, Ma P, Bai H, Dong W, Chen M. Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 2015; 22(8): 150.
[http://dx.doi.org/10.1007/s10965-015-0794-3]
[31]
Santos TC, Hernández R, Rescignano N, et al. Nanocomposite chitosan hydrogels based on PLGA nanoparticles as potential biomedical materials. Eur Polym J 2018; 99: 456-63.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.039]
[32]
Ko JW, Choi WS, Kim J, Kuk SK, Lee SH, Park CB. Self-assembled peptide-carbon nitride hydrogel as a light-responsive scaffold material. Biomacromolecules 2017; 18(11): 3551-6.
[http://dx.doi.org/10.1021/acs.biomac.7b00889] [PMID: 28825470]
[33]
Wang K, Mosser G, Haye B, et al. Cellulose nanocrystal–fibrin nanocomposite hydrogels promoting myotube formation. Biomacromolecules 2021; 22(6): 2740-53.
[http://dx.doi.org/10.1021/acs.biomac.1c00422] [PMID: 34027656]
[34]
Chen M, Shen Y, Xu L, Xiang G, Ni Z. Synthesis of a super-absorbent nanocomposite hydrogel based on vinyl hybrid silica nanospheres and its properties. RSC Advances 2020; 10(67): 41022-31.
[http://dx.doi.org/10.1039/D0RA07074B] [PMID: 35519214]
[35]
Idrees H, Zaidi SZJ, Sabir A, Khan RU, Zhang X, Hassan S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials 2020; 10(10): 1970.
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[36]
Wang B, Wang S, Zhang Q, et al. Recent advances in polymer-based drug delivery systems for local anesthetics. Acta Biomater 2019; 96: 55-67.
[http://dx.doi.org/10.1016/j.actbio.2019.05.044] [PMID: 31152941]
[37]
Dhaliwal K, Dosanjh P. Biodegradable polymers and their role in drug delivery systems. Biomed J Sci Tech Res 2018; 11(1): 8315-20.
[http://dx.doi.org/10.26717/BJSTR.2018.11.002056]
[38]
Babu A, Ramesh R. Multifaceted applications of chitosan in cancer drug delivery and therapy. Mar Drugs 2017; 15(4): 96.
[http://dx.doi.org/10.3390/md15040096] [PMID: 28346381]
[39]
Esmaeely Neisiany R, Enayati MS, Sajkiewicz P, Pahlevanneshan Z, Ramakrishna S. Insight into the current directions in functionalized nanocomposite hydrogels. Front Mater 2020; 7: 25.
[http://dx.doi.org/10.3389/fmats.2020.00025]
[40]
Sharma G, Thakur B, Naushad M, et al. Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ Chem Lett 2018; 16(1): 113-46.
[http://dx.doi.org/10.1007/s10311-017-0671-x]
[41]
Kouser R, Vashist A, Zafaryab M, Rizvi MA, Ahmad S. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater Sci Eng C 2018; 84: 168-79.
[http://dx.doi.org/10.1016/j.msec.2017.11.018] [PMID: 29519426]
[42]
Kazeminava F, Javanbakht S, Nouri M, et al. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng 2022; 16(1): 36.
[http://dx.doi.org/10.1186/s13036-022-00318-4] [PMID: 36544213]
[43]
Nazir S, Khan UA, Shamsan Al-Arjan W, Razak IAS, Javed A, Kadir RAM. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. Arab J Chem 2021; 14(5): 103120.
[http://dx.doi.org/10.1016/j.arabjc.2021.103120]
[44]
Patarroyo JL, Fonseca E, Cifuentes J, Salcedo F, Cruz JC, Reyes LH. Gelatin-graphene oxide nanocomposite hydrogels for Kluyveromyces lactis encapsulation: Potential applications in probiotics and bioreactor packings. Biomolecules 2021; 11(7): 922.
[http://dx.doi.org/10.3390/biom11070922] [PMID: 34206397]
[45]
Zhong M, Liu YT, Xie XM. Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. J Mater Chem B Mater Biol Med 2015; 3(19): 4001-8.
[http://dx.doi.org/10.1039/C5TB00075K] [PMID: 32262621]
[46]
Dey K, Sandrini E, Gobetti A, et al. Designing biomimetic conductive gelatin-chitosan–carbon black nanocomposite hydrogels for tissue engineering. Biomimetics 2023; 8(6): 473.
[http://dx.doi.org/10.3390/biomimetics8060473] [PMID: 37887604]
[47]
Stocco T, Zhang T, Dimitrov E, et al. Carbon nanomaterial-based hydrogels as scaffolds in tissue engineering: A comprehensive review. Int J Nanomedicine 2023; 18: 6153-83.
[http://dx.doi.org/10.2147/IJN.S436867] [PMID: 37915750]
[48]
Xing W, Ghahfarokhi AJ, Xie C, Naghibi S, Campbell JA, Tang Y. Mechanical properties of a supramolecular nanocomposite hydrogel containing hydroxyl groups enriched hyper-branched polymers. Polymers 2021; 13(5): 805.
[http://dx.doi.org/10.3390/polym13050805] [PMID: 33800715]
[49]
Kadri R, Bacharouch J, Elkhoury K, et al. Role of active nanoliposomes in the surface and bulk mechanical properties of hybrid hydrogels. Mater Today Bio 2020; 6: 100046.
[http://dx.doi.org/10.1016/j.mtbio.2020.100046] [PMID: 32259100]
[50]
Ji L, Zhang F, Zhu L, Jiang J. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int J Biol Macromol 2021; 170: 459-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.139] [PMID: 33359254]
[51]
Butylina S, Geng S, Laatikainen K, Oksman K. Cellulose nanocomposite hydrogels: From formulation to material properties. Front Chem 2020; 8: 655.
[http://dx.doi.org/10.3389/fchem.2020.00655] [PMID: 33062631]
[52]
González K, Guaresti O, Palomares T, Alonso-Varona A, Eceiza A, Gabilondo N. The role of cellulose nanocrystals in biocompatible starch-based clicked nanocomposite hydrogels. Int J Biol Macromol 2020; 143: 265-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.050] [PMID: 31816373]
[53]
Moradi S, Barati A, Salehi E, Tonelli AE, Hamedi H. Preparation and characterization of chitosan based hydrogels containing cyclodextrin inclusion compounds or nanoemulsions of thyme oil. Polym Int 2019; 68(11): 1891-902.
[http://dx.doi.org/10.1002/pi.5899]
[54]
Idumah CI, Nwuzor IC, Odera RS. Recent advances in polymer hydrogel nanoarchitectures and applications. Curr Res Green Sustain Chem 2021; 4: 100143.
[http://dx.doi.org/10.1016/j.crgsc.2021.100143]
[55]
Furlani F, Rossi A, Grimaudo MA, et al. Controlled liposome delivery from chitosan-based thermosensitive hydrogel for regenerative medicine. Int J Mol Sci 2022; 23(2): 894.
[http://dx.doi.org/10.3390/ijms23020894] [PMID: 35055097]
[56]
Huang X, Andina D, Ge J, Labarre A, Leroux JC, Castagner B. Characterization of calcium phosphate nanoparticles based on a PEGylated chelator for gene delivery. ACS Appl Mater Interfaces 2017; 9(12): 10435-45.
[http://dx.doi.org/10.1021/acsami.6b15925] [PMID: 28266206]
[57]
Bhattacharya D, Ray L, Pramanik P, Pandey JK. Recent advances in various inorganic nanoparticle embedded chitosan-based multifunctional materials for wound healing. Curr Nanomed 2023; 13(2): 75-90.
[http://dx.doi.org/10.2174/2468187313666230816095330]
[58]
Wu M, Chen J, Huang W, et al. Injectable and self-healing nanocomposite hydrogels with ultrasensitive ph-responsiveness and tunable mechanical properties: Implications for controlled drug delivery. Biomacromolecules 2020; 21(6): 2409-20.
[http://dx.doi.org/10.1021/acs.biomac.0c00347] [PMID: 32310635]
[59]
Kouser R, Vashist A, Zafaryab M, Rizvi MA, Ahmad S. pH-responsive biocompatible nanocomposite hydrogels for therapeutic drug delivery. ACS Appl Bio Mater 2018; 1(6): 1810-22.
[http://dx.doi.org/10.1021/acsabm.8b00260] [PMID: 34996282]
[60]
Kim JH, Kim H, Choi Y, Lee DS, Kim J, Yi GR. Colloidal mesoporous silica nanoparticles as strong adhesives for hydrogels and biological tissues. ACS Appl Mater Interfaces 2017; 9(37): 31469-77.
[http://dx.doi.org/10.1021/acsami.7b09083] [PMID: 28836756]
[61]
Xiang H, Xia M, Cunningham A, Chen W, Sun B, Zhu M. Mechanical properties of biocompatible clay/P(MEO2MA-co-OEGMA) nanocomposite hydrogels. J Mech Behav Biomed Mater 2017; 72: 74-81.
[http://dx.doi.org/10.1016/j.jmbbm.2017.04.026] [PMID: 28463813]
[62]
Abou Taleb MF, Alkahtani A, Mohamed SK. Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: A drug delivery system for liver cancer. Polym Bull 2015; 72(4): 725-42.
[http://dx.doi.org/10.1007/s00289-015-1301-z]
[63]
Nejadnik MR, Yang X, Bongio M, et al. Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles. Biomaterials 2014; 35(25): 6918-29.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.003] [PMID: 24862440]
[64]
Sikkema R, Keohan B, Zhitomirsky I. Hyaluronic-acid-based organic-inorganic composites for biomedical applications. Materials 2021; 14(17): 4982.
[http://dx.doi.org/10.3390/ma14174982] [PMID: 34501070]
[65]
Prusty K, Swain SK. Polypropylene oxide/polyethylene oxide‐cellulose hybrid nanocomposite hydrogels as drug delivery vehicle. J Appl Polym Sci 2021; 138(9): 49921.
[http://dx.doi.org/10.1002/app.49921]
[66]
Ferreira MI, Cova T, Paixão JA, Pais A, Vitorino C. Coprecipitation synthesis, stabilization, and characterization of oleic acid-coated iron oxide nanoparticles for magnetically oriented hybrid system vectorization Magnetic Nanoparticle-Based Hybrid Materials. Elsevier 2021; pp. 273-301.
[67]
García-Astrain C, Chen C, Burón M, et al. Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 2015; 16(4): 1301-10.
[http://dx.doi.org/10.1021/acs.biomac.5b00101] [PMID: 25785360]
[68]
da Silva EP, Guilherme MR, Garcia FP, et al. Drug release profile and reduction in the in vitro burst release from pectin/HEMA hydrogel nanocomposites crosslinked with titania. RSC Advances 2016; 6(23): 19060-8.
[http://dx.doi.org/10.1039/C5RA27865A]
[69]
Ahmadian Y, Bakravi A, Hashemi H, Namazi H. Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym Bull 2019; 76(4): 1967-83.
[http://dx.doi.org/10.1007/s00289-018-2477-9]
[70]
Eivazzadeh-Keihan R, Radinekiyan F, Maleki A, Salimi Bani M, Hajizadeh Z, Asgharnasl S. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int J Biol Macromol 2019; 140: 407-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.031] [PMID: 31425760]
[71]
Gholamali I, Asnaashariisfahani M, Alipour E. Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen Eng Transl Med 2020; 6(2): 138-53.
[http://dx.doi.org/10.1007/s40883-019-00120-7]
[72]
Navaf M, Sunooj KV, Aaliya B, et al. Impact of metal and metal oxide nanoparticles on functional and antimicrobial activity of starch nanocomposite film: A review. Meas: Food 2023; 100099.
[73]
Erthal LCS, Shi Y, Sweeney KJ, Gobbo OL, Ruiz-Hernandez E. Nanocomposite formulation for a sustained release of free drug and drug-loaded responsive nanoparticles: An approach for a local therapy of glioblastoma multiforme. Sci Rep 2023; 13(1): 5094.
[http://dx.doi.org/10.1038/s41598-023-32257-5] [PMID: 36991081]
[74]
Sanjana A, Ahmed MG, Gowda B, Surya S. Formulation and characteristic evaluation of tacrolimus cubosomal gel for vitiligo. J Dispers Sci Technol 2022.
[75]
Mohanto S, Narayana S, Merai KP, et al. Advancements in gelatin-based hydrogel systems for biomedical applications: A state-of-the-art review. Int J Biol Macromol 2023; 253(Pt 5): 127143.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127143] [PMID: 37793512]
[76]
Gowda BHJ, Ahmed MG, Almoyad MAA, Wahab S, Almalki WH, Kesharwani P. Nanosponges as an emerging platform for cancer treatment and diagnosis. Adv Funct Mater 2023; 2307074.
[http://dx.doi.org/10.1002/adfm.202307074]
[77]
Falcone N, Andoy NMO, Sullan RMA, Kraatz HB. Peptide-polydopamine nanocomposite hydrogel for a laser-controlled hydrophobic drug delivery. ACS Appl Bio Mater 2021; 4(9): 6652-7.
[http://dx.doi.org/10.1021/acsabm.1c00699] [PMID: 35006968]
[78]
Chen Y, Kang S, Yu J, Wang Y, Zhu J, Hu Z. Tough robust dual responsive nanocomposite hydrogel as controlled drug delivery carrier of asprin. J Mech Behav Biomed Mater 2019; 92: 179-87.
[http://dx.doi.org/10.1016/j.jmbbm.2019.01.017] [PMID: 30735979]
[79]
Maiti S, Jana S. Biocomposites in ocular drug delivery Biopolymer-Based Composites. Elsevier 2017; pp. 139-68.
[http://dx.doi.org/10.1016/B978-0-08-101914-6.00006-5]
[80]
Damiri F, Gowda BJ, Andra S, Balu S, Rojekar S, Berrada M. Chitosan nanocomposites as scaffolds for bone tissue regeneration. In: Chitosan Nanocomposites: Bionanomechanical Applications. Springer 2023; pp. 377-94.
[http://dx.doi.org/10.1007/978-981-19-9646-7_16]
[81]
Ryu JH, Kwon JS, Kim KM, et al. Synergistic effect of porous hydroxyapatite scaffolds combined with bioactive glass/poly (lactic-co-glycolic acid) composite fibers promotes osteogenic activity and bioactivity. ACS Omega 2019; 4(1): 2302-10.
[http://dx.doi.org/10.1021/acsomega.8b02898]
[82]
Huang J, Liang Y, Jia Z, et al. Development of magnetic nanocomposite hydrogel with potential cartilage tissue engineering. ACS Omega 2018; 3(6): 6182-9.
[http://dx.doi.org/10.1021/acsomega.8b00291] [PMID: 30023943]
[83]
Nojoomi A, Tamjid E, Simchi A, Bonakdar S, Stroeve P. Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties. Int J Polym Mater 2017; 66(3): 105-14.
[http://dx.doi.org/10.1080/00914037.2016.1182914]
[84]
Yu JR, Varrey P, Liang BJ, Huang HC, Fisher JP. Liposomal SDF-1 alpha delivery in nanocomposite hydrogels promotes macrophage phenotype changes and skin tissue regeneration. ACS Biomater Sci Eng 2021; 7(11): 5230-41.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01140] [PMID: 34699182]
[85]
Rajapaksha R, Hashim U, Gopinath SC, Parmin NA, Fernando C. Nanoparticles in electrochemical bioanalytical analysis. In: Nanoparticles in Analytical and Medical Devices. Elsevier 2021; pp. 83-112.
[http://dx.doi.org/10.1016/B978-0-12-821163-2.00006-6]
[86]
Jafarkhani M, Salehi Z, Nematian T. Preparation and characterization of chitosan/graphene oxide composite hydrogels for nerve tissue engineering. Mater Today Proc 2018; 5(7): 15620-8.
[http://dx.doi.org/10.1016/j.matpr.2018.04.171]
[87]
Vashist A, Kaushik A, Ghosal A, et al. Nanocomposite hydrogels: Advances in nanofillers used for nanomedicine. Gels 2018; 4(3): 75.
[http://dx.doi.org/10.3390/gels4030075] [PMID: 30674851]
[88]
Uz M, Alsoy Altinkaya S, Mallapragada SK. Stimuli responsive polymer-based strategies for polynucleotide delivery. J Mater Res 2017; 32(15): 2930-53.
[http://dx.doi.org/10.1557/jmr.2017.116]
[89]
Rabiee N, Bagherzadeh M, Ghadiri AM, et al. Bio-multifunctional noncovalent porphyrin functionalized carbon-based nanocomposite. Sci Rep 2021; 11(1): 6604.
[http://dx.doi.org/10.1038/s41598-021-86119-z] [PMID: 33758300]
[90]
Miranda B, Moretta R, De Martino S, et al. A PEGDA hydrogel nanocomposite to improve gold nanoparticles stability for novel plasmonic sensing platforms. J Appl Phys 2021; 129(3): 033101.
[http://dx.doi.org/10.1063/5.0033520]
[91]
Rong Q, Han H, Feng F, Ma Z. Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. Sci Rep 2015; 5(1): 11440.
[http://dx.doi.org/10.1038/srep11440] [PMID: 26074185]
[92]
Dai Z, Zhang Y, Chen C, et al. An antifouling and antimicrobial zwitterionic nanocomposite hydrogel dressing for enhanced wound healing. ACS Biomater Sci Eng 2021; 7(4): 1621-30.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00039] [PMID: 33769031]
[93]
Narayana S, Nasrine A, Gulzar Ahmed M, et al. Potential benefits of using chitosan and silk fibroin topical hydrogel for managing wound healing and coagulation. Saudi Pharm J 2023; 31(3): 462-71.
[http://dx.doi.org/10.1016/j.jsps.2023.01.013] [PMID: 37026047]
[94]
Eivazzadeh-Keihan R, Khalili F, Aliabadi HAM, et al. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int J Biol Macromol 2020; 162: 1959-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.090] [PMID: 32814101]
[95]
Gangrade A, Gawali B, Jadi PK, Naidu VGM, Mandal BB. Photo-electro active nanocomposite silk hydrogel for spatiotemporal controlled release of chemotherapeutics: An in vivo approach toward suppressing solid tumor growth. ACS Appl Mater Interfaces 2020; 12(25): 27905-16.
[http://dx.doi.org/10.1021/acsami.0c02470] [PMID: 32469499]
[96]
Cimen Z, Babadag S, Odabas S, Altuntas S, Demirel G, Demirel GB. Injectable and self-healable ph-responsive gelatin-peg/laponite hybrid hydrogels as long-acting implants for local cancer treatment. ACS Appl Polym Mater 2021; 3(7): 3504-18.
[http://dx.doi.org/10.1021/acsapm.1c00419]
[97]
Taleblou N, Sirousazar M, Hassan ZM, Khaligh SG. Capecitabine-loaded anti-cancer nanocomposite hydrogel drug delivery systems: In vitro and in vivo efficacy against the 4T1 murine breast cancer cells. J Biomater Sci Polym Ed 2020; 31(1): 72-92.
[http://dx.doi.org/10.1080/09205063.2019.1675225] [PMID: 31566505]
[98]
Štaka I, Cadete A, Surikutchi BT, et al. A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. Int J Pharm 2019; 565: 151-61.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.070] [PMID: 31029659]
[99]
Yang K, Han Q, Chen B, et al. Antimicrobial hydrogels: Promising materials for medical application. Int J Nanomedicine 2018; 13: 2217-63.
[http://dx.doi.org/10.2147/IJN.S154748] [PMID: 29695904]
[100]
Helmiyati NG, Abbas GH, Budianto E. Nanocomposite hydrogel-based biopolymer modified with silver nanoparticles as an antibacterial material for wound treatment. J Appl Pharm Sci 2019; 9(11): 1-9.
[http://dx.doi.org/10.7324/JAPS.2019.91101]
[101]
Kımna C. Preparation and characterization of polymer based composite nanospheres for bone infection prevention. Izmir Institute of Technology 2018.
[102]
Wei S, Liu X, Zhou J, et al. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int J Biol Macromol 2020; 155: 153-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.182] [PMID: 32224179]
[103]
Kavitha A. Synthesis and characterization of iron oxide-chitosan nano composite. Mech Mater Sci Eng J 2017.
[104]
Fernando MS, Wimalasiri AKDVK, Dziemidowicz K, et al. Biopolymer-based nanohydroxyapatite composites for the removal of fluoride, lead, cadmium, and arsenic from water. ACS Omega 2021; 6(12): 8517-30.
[http://dx.doi.org/10.1021/acsomega.1c00316] [PMID: 33817513]
[105]
Eivazzadeh-Keihan R, Dogari H, Ahmadpour F, et al. Design and synthesis of a novel nanocomposite based on magnetic dopamine nanoparticles for purification of α-amylase from the bovine milk. Sci Rep 2021; 11(1): 13428.
[http://dx.doi.org/10.1038/s41598-021-92919-0] [PMID: 34183749]
[106]
Sapino S, Peira E, Chirio D, et al. Thermosensitive nanocomposite hydrogels for intravitreal delivery of cefuroxime. Nanomaterials 2019; 9(10): 1461.
[http://dx.doi.org/10.3390/nano9101461] [PMID: 31618969]
[107]
Kim JH, Hwang JY, Hwang HR, et al. Simple and cost-effective method of highly conductive and elastic carbon nanotube/polydimethylsiloxane composite for wearable electronics. Sci Rep 2018; 8(1): 1375.
[http://dx.doi.org/10.1038/s41598-017-18209-w] [PMID: 29358581]
[108]
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 2019; 559: 23-36.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.019] [PMID: 30668991]
[109]
Kazimierczak P, Benko A, Nocun M, Przekora A. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: Comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Int J Nanomedicine 2019; 14: 6615-30.
[http://dx.doi.org/10.2147/IJN.S217245] [PMID: 31695360]
[110]
Abd El-Hady MM, Saeed SES. Antibacterial properties and ph sensitive swelling of insitu formed silver-curcumin nanocomposite based chitosan hydrogel. Polymers 2020; 12(11): 2451.
[http://dx.doi.org/10.3390/polym12112451] [PMID: 33114003]
[111]
Bekhouche M, Bolon M, Charriaud F, et al. Development of an antibacterial nanocomposite hydrogel for human dental pulp engineering. J Mater Chem B Mater Biol Med 2020; 8(36): 8422-32.
[http://dx.doi.org/10.1039/D0TB00989J] [PMID: 32804177]
[112]
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A systematic review on in vivo findings. Polymers 2022; 14(5): 1010.
[http://dx.doi.org/10.3390/polym14051010] [PMID: 35267833]
[113]
Deo KA, Lokhande G, Gaharwar AK. Nanostructured hydrogels for tissue engineering and regenerative medicine. In: Encyclopedia of Tissue Engineering and Regenerative Medicine Oxford, Unted Kingdom. Academic Press 2019; p. 21.
[114]
Mellati A, Hasanzadeh E, Gholipourmalekabadi M, Enderami SE. Injectable nanocomposite hydrogels as an emerging platform for biomedical applications: A review. Mater Sci Eng C 2021; 131: 112489.
[http://dx.doi.org/10.1016/j.msec.2021.112489] [PMID: 34857275]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy