Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Bioengineering

Computer Modeling of the Thoracic Spine in Children: Assessment of the Contribution of Rectified Kyphosis in the Possible Development of Adolescent Idiopathic Scoliosis

Author(s): Tainan Medeiros Brandão, Marcelo Greco* and Rozilene Maria Cota Aroeira

Volume 4, Issue 2, 2024

Published on: 22 December, 2023

Page: [106 - 113] Pages: 8

DOI: 10.2174/0122102981274799231208064753

Price: $65

Abstract

Introduction: Adolescent Idiopathic Scoliosis is a spinal deformity. Its development can be linked to hypokyphosis in the thoracic region.

Objective: The present study proposed to investigate, through the finite element method, the biomechanics of the immature thoracic spine segment T5-T10 in normal and rectified kyphosis under axial load, flexion and extension.

Materials and Methods: Intervertebral discs were modeled as hyperelastic material and vertebral bone as elastic linear material. The bone was divided into trabecular and cortical regions. Furthermore, discs were divided into nucleus pulposus and annulus fibrous.

Results: Results indicate greater instability of rectified segments with larger strain and displacements, mainly under extension.

Conclusion: It was concluded that the rectified model is predisposed to the development of scoliosis since higher deformations and displacements in this condition were observed, going in favor of the assumption that this factor would be one of the causes of Adolescent Idiopathic Scoliosis.

Next »
Graphical Abstract

[1]
Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.Y.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet, 2008, 371(9623), 1527-1537.
[http://dx.doi.org/10.1016/S0140-6736(08)60658-3] [PMID: 18456103]
[2]
Castelein, R.M.; Dieën, J.H.; Smit, T.H. The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis: A hypothesis. Med. Hypotheses, 2005, 65(3), 501-508.
[http://dx.doi.org/10.1016/j.mehy.2005.03.025] [PMID: 15913901]
[3]
Roussouly, P.; Labelle, H.; Rouissi, J.; Bodin, A. Pre- and postoperative sagittal balance in idiopathic scoliosis: A comparison over the ages of two cohorts of 132 adolescents and 52 adults. Eur. Spine J., 2013, 22(S2)(Suppl. 2), 203-215.
[http://dx.doi.org/10.1007/s00586-012-2571-x] [PMID: 23188161]
[4]
Aroeira, R.M.C.; Pertence, A.E.M.; Kemmoku, D.T.; Greco, M. The effect of hypokyphosis on the biomechanical behavior of the adolescent thoracic spine. J. Braz. Soc. Mech. Sci. Eng., 2018, 40(3), 128.
[http://dx.doi.org/10.1007/s40430-018-1061-4]
[5]
Stott, B.; Driscoll, M. Biomechanical evaluation of the thoracolumbar spine comparing healthy and irregular thoracic and lumbar curvatures. Comput. Biol. Med., 2023, 160, 106982.
[http://dx.doi.org/10.1016/j.compbiomed.2023.106982] [PMID: 37141649]
[6]
Zaydman, A.M.; Strokova, E.L.; Pahomova, N.Y.; Gusev, A.F.; Mikhaylovskiy, M.V.; Shevchenko, A.I.; Zaidman, M.N.; Shilo, A.R.; Subbotin, V.M. Etiopathogenesis of adolescent idiopathic scoliosis: Review of the literature and new epigenetic hypothesis on altered neural crest cells migration in early embryogenesis as the key event. Med. Hypotheses, 2021, 151, 110585.
[http://dx.doi.org/10.1016/j.mehy.2021.110585] [PMID: 33932710]
[7]
Koutras, C.; Pérez, J.; Kardash, K.; Otaduy, M.A. A study of the sensitivity of biomechanical models of the spine for scoliosis brace design. Comput. Methods Programs Biomed., 2021, 207, 106125.
[http://dx.doi.org/10.1016/j.cmpb.2021.106125] [PMID: 34020374]
[8]
Kardash, K.; Koutras, C.; Otaduy, M.A. Design of personalized scoliosis braces based on differentiable biomechanics—Synthetic study. Front. Bioeng. Biotechnol., 2022, 10, 1014365.
[http://dx.doi.org/10.3389/fbioe.2022.1014365] [PMID: 36440444]
[9]
Mengoni, M. Biomechanical modelling of the facet joints: A review of methods and validation processes in finite element analysis. Biomech. Model. Mechanobiol., 2021, 20(2), 389-401.
[http://dx.doi.org/10.1007/s10237-020-01403-7] [PMID: 33221991]
[10]
Meiring, A.R.; de Kater, E.P.; Stadhouder, A.; van Royen, B.J.; Breedveld, P.; Smit, T.H. Current models to understand the onset and progression of scoliotic deformities in adolescent idiopathic scoliosis: A systematic review. Spine Deform., 2023, 11(3), 545-558.
[http://dx.doi.org/10.1007/s43390-022-00618-1] [PMID: 36454530]
[11]
Xu, C.; Xi, Z.; Fang, Z.; Zhang, X.; Wang, N.; Li, J.; Liu, Y. Annulus calibration increases the computational accuracy of the lumbar finite element model. Global Spine J., 2023, 13(8), 2310-2318.
[http://dx.doi.org/10.1177/21925682221081224] [PMID: 35293827]
[12]
Aroeira, R.M.C. Biomechanical study of the thoracic spine of an adolescent, in kyphosis and hypokyphosis, under asymmetric ligament loading: A possible prediction of idiopathic scoliosis; Ph.D. Thesis: Universidade Federal de Minas Gerais, 2017. https://pos.dees.ufmg.br/defesas/972D.PDF?src=19342
[13]
Meijer, G.J.M. Development of a non-fusion scoliosis correction device; Ph.D. Thesis: University of Twente, 2011.
[http://dx.doi.org/10.3990/1.9789036532297]
[14]
Tyndyka, M.A.; Barron, V.; McHugh, P.E.; O’Mahoney, D. Generation of a finite element model of the thoracolumbar spine. Acta Bioeng. Biomech., 2007, 9(1), 35-46.
[PMID: 17933103]
[16]
Brandão, T.M. Computational modeling of the thoracic spine in children: assessment of the contribution of rectified kyphosis to the possible development of adolescent idiopathic scoliosis; M.Sc. Thesis: Universidade Federal de Minas Gerais, 2022. https://pos.dees.ufmg.br/defesas/1523M.PDF?src=647
[17]
Santos, M.T. Hierarchical models for aircraft joints analyses; M.Sc. Thesis: Universidade Federal de Minas Gerais, 2022. https://pos.dees.ufmg.br/defesas/1578M.PDF?src=9732
[18]
Drumond, T.P. Evaluation of the increase in the mass of wing leading edges of commercial aircraft designed to withstand impact with remotely piloted aircraft; M.Sc. Thesis: Universidade Federal de Minas Gerais; , 2020. https://pos.dees.ufmg.br/defesas/1157M.PDF?src=21166
[19]
ASME. An illustration of the concepts of verification and validation in computational solid mechanics; American Society of Mechanical Engineers: n. ASME V&V, 2012.
[20]
Nachemson, A. The load on lumbar disks in different positions of the body. Clin. Orthop. Relat. Res., 1966, 45(1), 107-122.
[http://dx.doi.org/10.1097/00003086-196600450-00014] [PMID: 5937361]
[21]
de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ., 2007, 85(9), 660-667.
[http://dx.doi.org/10.2471/BLT.07.043497] [PMID: 18026621]
[22]
White, A.A. III. Analysis of the mechanics of the thoracic spine in man. An experimental study of autopsy specimens Acta Orthop. Scand., 1969, 40(sup127), 1-105.
[http://dx.doi.org/10.3109/ort.1969.40.suppl-127.01] [PMID: 5264709]
[23]
Zhang, Q.; Chon, T.; Zhang, Y.; Baker, J.S.; Gu, Y. Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads. Comput. Biol. Med., 2021, 136(818), 104745.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104745] [PMID: 34388472]
[24]
Driscoll, M.; Aubin, C.E.; Moreau, A.; Villemure, I.; Parent, S. The role of spinal concave–convex biases in the progression of idiopathic scoliosis. Eur. Spine J., 2009, 18(2), 180-187.
[http://dx.doi.org/10.1007/s00586-008-0862-z] [PMID: 19130096]
[25]
Panjabi, M.M.; Krag, M.H.; Dimnet, J.C.; Walter, S.D.; Brand, R.A. Thoracic spine centers of rotation in the sagittal plane. J. Orthop. Res., 1983, 1(4), 387-394.
[http://dx.doi.org/10.1002/jor.1100010407] [PMID: 6491788]
[26]
Trautwein, H.S. Desenvolvimento de um modelo em Elementos Finitos da Coluna Torácica; M.Sc. Thesis: Universidade Federal de Santa Catarina, 2019. https://repositorio.ufsc.br/bitstream/handle/123456789/215547/PEMC1972-D.pdf
[27]
Dassault systèmes simulia corp. abaqus 6.14 Online Documentation, Available from: http://130.149.89.49:2080/v6.14/2014.
[28]
Rho, J.Y.; Tsui, T.Y.; Pharr, G.M. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997, 18(20), 1325-1330.
[http://dx.doi.org/10.1016/S0142-9612(97)00073-2] [PMID: 9363331]
[29]
Katzenberger, M.J.; Albert, D.L.; Agnew, A.M.; Kemper, A.R. Effects of sex, age, and two loading rates on the tensile material properties of human rib cortical bone. J. Mech. Behav. Biomed. Mater., 2020, 102, 103410.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103410] [PMID: 31655338]
[30]
Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng., 2018, 20(1), 119-143.
[http://dx.doi.org/10.1146/annurev-bioeng-062117-121139] [PMID: 29865872]
[31]
White, A.A.; Panjabi, M.M. Clinical Biomechanics of the Spine, 2nd ed; J. B. Lippincott Company: Philadelphia, 1990.
[32]
Natour, J. Spine: Basic knowledge, 2nd ed; Etcetera, 2004.
[33]
Kurutz, M. Finite Element Modelling of human lumbar spine; Finite Element Analysis, 2010, pp. 210-236.
[34]
Little, J.P.; Adam, C.J. The effect of soft tissue properties on spinal flexibility in scoliosis: Biomechanical simulation of fulcrum bending. Spine, 2009, 34(2), E76-E82.
[http://dx.doi.org/10.1097/BRS.0b013e31818ad584] [PMID: 19139657]
[35]
Ruberté, L.M.; Natarajan, R.N.; Andersson, G.B.J. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments—A finite element model study. J. Biomech., 2009, 42(3), 341-348.
[http://dx.doi.org/10.1016/j.jbiomech.2008.11.024] [PMID: 19136113]
[36]
Costi, J.J.; Freeman, B.J.C.; Elliott, D.M. Intervertebral disc properties: challenges for biodevices. Expert Rev. Med. Devices, 2011, 8(3), 357-376.
[http://dx.doi.org/10.1586/erd.11.1] [PMID: 21542708]
[37]
Treloar, L.R.G. Theory of large elastic deformations. Nature, 1943, 151(3839), 616.
[http://dx.doi.org/10.1038/151616a0]
[38]
Holzapfel, G.A.; Gasser, T.C.; Ogden, R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast., 2000, 61(1/3), 1-48.
[http://dx.doi.org/10.1023/A:1010835316564]
[39]
Rivlin, R.S.; Saunders, D.W. Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. A, 1951, 243(865), 251-288.
[http://dx.doi.org/10.1098/rsta.1951.0004]
[40]
Xie, F.; Zhou, H.; Zhao, W.; Huang, L. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model. Technol. Health Care, 2017, 25(S1), 177-187.
[http://dx.doi.org/10.3233/THC-171320] [PMID: 28582905]
[41]
Kumar, N.; Rao, V.V. Hyperelastic Mooney-Rivlin model: determination and physical interpretation of material constants. MIT Int J Mech Eng, 2016, 6(1), 43-46.
[42]
Lalonde, N.M.; Villemure, I.; Pannetier, R.; Parent, S.; Aubin, C.É. Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clin. Biomech., 2010, 25(6), 510-516.
[http://dx.doi.org/10.1016/j.clinbiomech.2010.03.009] [PMID: 20413197]
[43]
Pawlikowski, M.; Skalski, K. Sowiński, T. Hyper-elastic modelling of intervertebral disc polyurethane implant. Acta Bioeng. Biomech., 2013, 15(2), 43-50.
[PMID: 23952528]
[44]
Gajewski, M.D.; Miecznikowski, M. Assessment of the suitability of elastomeric bearings modeling using the hyperelasticity and the finite element method. Materials, 2021, 14(24), 7665.
[http://dx.doi.org/10.3390/ma14247665] [PMID: 34947260]
[45]
Lalo, D.F.; Greco, M. A new approach for rubber numerical modeling under biaxial testing conditions thorough finite element simulation. J. Mech. Mater. Struct., 2022, 17(4), 319-342.
[http://dx.doi.org/10.2140/jomms.2022.17.319]
[46]
Momeni, S.N.; Fatemi, A.; Goel, V.K.; Agarwal, A. On the use of biaxial properties in modeling annulus as a Holzapfel-Gasser-Ogden material. Front. Bioeng. Biotechnol., 2015, 3, 69.
[http://dx.doi.org/10.3389/fbioe.2015.00069] [PMID: 26090359]
[47]
Calvo-Echenique, A.; Cegoñino, J.; Chueca, R.; Pérez-del Palomar, A. Stand-alone lumbar cage subsidence: A biomechanical sensitivity study of cage design and placement. Comput. Methods Programs Biomed., 2018, 162, 211-219.
[http://dx.doi.org/10.1016/j.cmpb.2018.05.022] [PMID: 29903488]
[48]
Wilson, R.L.; Bowen, L.; Kim, W.; Cai, L.; Schneider, S.E.; Nauman, E.A.; Neu, C.P. In vivo intervertebral disc deformation: Intratissue strain patterns within adjacent discs during flexion–extension. Sci. Rep., 2021, 11(1), 729.
[http://dx.doi.org/10.1038/s41598-020-77577-y] [PMID: 33436667]
[49]
Fang, Z.; Mao, H.; Moser, M.A.J.; Zhang, W.; Qian, Z.; Zhang, B. Irreversible electroporation enhanced by radiofrequency ablation: An in vitro and computational study in a 3D liver tumor model. Ann. Biomed. Eng., 2021, 49(9), 2126-2138.
[http://dx.doi.org/10.1007/s10439-021-02734-x] [PMID: 33594637]
[50]
Wilke, H.J.; Herkommer, A.; Werner, K.; Liebsch, C. In vitro analysis of the segmental flexibility of the thoracic spine. PLoS One, 2017, 12(5), e0177823.
[http://dx.doi.org/10.1371/journal.pone.0177823] [PMID: 28520819]
[51]
Salsabili, N. Analysis of the physical behavior of spine joints: Application/development of complex structures; Phd diss. Editication, 2019.
[http://dx.doi.org/10.20868/UPM.thesis.58192]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy